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Providing Performance Guarantees in
Multipass Network Processors

Isaac Keslassy, Kirill Kogan, Gabriel Scalosub, Michael Segal

Abstract—Current network processors (NPs) increasingly deal
with packets with heterogeneous processing times. In such an
environment packets that require many processing cycles delay
low latency traffic, because the common approach in today’s NPs
is to employ run-to-completion processing. These difficulties have
led to the emergence of the Multipass NP architecture, where
after a processing cycle ends, all processed packets are recycled
into the buffer and re-compete for processing resources.

In this work we provide a model that captures many of
the characteristics of this architecture, and consider several
scheduling and buffer management algorithms that are specially
designed to optimize the performance of multipass network
processors. In particular, we provide analytical guarantees for the
throughput performance of our algorithms. We further conduct
a comprehensive simulation study which validates our results.

I. INTRODUCTION

A. Background
Multi-core Network Processors (NPs) are widely used to

perform complex packet processing tasks in modern high-
speed routers. NPs are able to address such diverse functions as
forwarding, classification, protocol conversion, DPI, intrusion
detection, SSL, NAT, firewalling, and traffic engineering. They
are often implemented using many processing cores. These
cores are either arranged as a pool of identical cores (e.g.,
the Cavium CN68XX [28] or the AMCC nP7310 [29]), as a
long pipeline of cores (e.g., the Xelerated X11 [30]), or as
a combination of both (e.g., the EZChip NP-4 [31] or the
Netronome NFP-32xx [32]).

These architectures are very efficient for simple traffic
mixes. However, following operator demands, packet pro-
cessing needs are becoming more heterogeneous and rely
on a growing number of more complex features, such as
advanced VPN encryption (like IPsec-VPN and SSL-VPN),
LZS decompression, VoIP SBC, video CAC, per-subscriber
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queueing, and hierarchical classification for QoS [20], [28],
[33], [34].

These features are increasingly challenging for traditional
architectures, posing implementation, fairness, and bench-
marking issues. First, longer and more complex features
require either deeper pipeline lengths (e.g., 512 PISC pro-
cessor cores in the Xelerated HX3XX series [30]) or longer
processing times in run-for-completion cores. Second, a few
packets with many features can delay, and even temporarily
starve, the later packets. In fact, given limited high-speed
buffering, this might lead to large drop rates upon congestion.
This was illustrated in the Christmas tree packet DoS (Denial-
of-Service) attack, in which each packet “lights up” several
IP options processing bits [20]. Finally, and maybe more
significantly, typical benchmarking tests used to rely on a
simple stream of minimum-sized packets with only a basic
IP forwarding service to measure the “worst-case throughput”
of an NP [20], [23]. As benchmarking tests start to measure
throughput given more advanced processing features, the im-
pact of these features will be even more highlighted.

In view of the increasing impact of the packets with heavy
features, another NP architecture has emerged as a leading
alternative in the industry: the Multipass NP architecture. In
this architecture, the processing time of a packet is divided
into several time intervals, called passes or cycles. Intuitively,
when a packet arrives to the NP, it is sent to a processing core.
Then, after the core completes its processing pass, the packet
is recycled into the set of packets awaiting processing. And
so on, until all the packet passes are completed.

In practice, another appeal of the multipass architecture is
that it does not require the NP designer to define a large
pipeline length in advance. This is especially useful for NPs
with different possible markets. In addition, note that in mul-
tipass NPs, actually recycling packets would involve complex
interconnections and large buffers. Therefore, to decrease the
cost of recycling, packets practically stay buffered and small
control messages go through recycling instead.

This NP architecture with recycling has for instance been
implemented in the recent Cisco QuantumFlow NP [33].
Forming the heart of Cisco’s most recent ASR 1000 edge
routers, this 40-core NP might become the most widespread
among high-speed routers. Also, although not strictly multi-
pass NP architectures, several NP architectures in the literature
already allow for recycling of complex packets, such as [24]
for IP control packets.

Given a heterogeneous set of packet processing times,
the scheduler plays a significant role in the multipass NP
architecture. This is because it should make sure that heavy
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packets with many passes do not monopolize the cores and
starve packets with fewer passes.

To the best of our knowledge, despite the emergence of
the multipass NP architecture, there has not yet been any
analysis of its scheduler performance in the literature. In
particular, NP schedulers are typically designed for the worst-
case throughput to support a guaranteed wire rate (see Section
2.2 in [23]). But little is known regarding the worst-case
throughput of the various possible multipass NP schedulers.

The goal of this paper is to offer designs with proven
performance guarantees for the multipass-NP scheduler. Our
solutions enable dealing with the various requirements posed
to the scheduler (such as delay, throughput, and implementa-
tion complexity), and illustrate tradeoffs as to the scheduler’s
ability to fulfill these requirements. Our analysis also makes
it possible for the designer of future multipass NPs to have
analytical worst-case guarantees on the NP performance, in-
cluding for traffic with complex processing needs.

B. Our Contributions

In this paper, we analyze the performance of scheduling
and buffer management policies in multipass NPs, and provide
guarantees as to their worst-case throughput.

We consider settings where each arriving packet requires
some number of processing passes, and study the interplay of
three factors:
• The scheduling policy: we study both FIFO buffers, and

Priority Queues (where priority is determined by the
number of remaining passes required).

• The buffer management policy: we design and evaluate
both preemptive policies (where packets residing in the
buffer can be discarded), and non-preemptive policies.

• The implementation cost: Our model allows for a copying
cost of packets into the the buffer which reflects the
impact multiple accesses to the buffer have system’s
throughput.

We design and analyze algorithms which aim at maximizing
the overall value obtained by the system, which is affected by
both the packet-level throughput (considered as benefit) an the
copying cost (considered as penalty). We note that our model
can also be used to model cold-cache penalties. A detailed
description of our model is given in Section II.

For our analytical results, we use competitive analysis to
evaluate the performance of our proposed policies. For the
case where no copying cost is incurred, we design and analyze
buffer management algorithms for both FIFO- and PQ-based
environments. We show that non-preemptive architectures may
suffer form extremely large performance degradation com-
pared to the optimal performance possible. On the other hand,
we prove that natural buffer management policies for PQ-
based environments are optimal when preemption is allowed,
and further show that FIFO-based environments endowed
with preemption, although they are not optimal, can obtain
a reasonable guaranteed throughput compared to the optimal
performance possible, which depends only on the maximum
number of passes a packet requires. These results are presented
in Section III. For the case where the system incurs a strictly

positive copying cost, we devise competitive buffer man-
agement algorithms for PQ-based environments, and provide
an elaborate analysis of their performance guarantees. These
results are presented in Section IV.

To complete our study, we present a simulation study that
further validates our results and provides additional insights as
to the performance of multicore NPs. Specifically, our results
show that the design criteria governing our algorithms, which
are intended to optimize towards the worst-case scenario,
exhibit very good performance also for simulated average-
case traffic. In addition, our simulation study shows that the
number of available cores has a striking non-trivial effect on
the performance of the various policies we propose. These
results are presented in Section V.

Our work gives rise to a multitude of questions and possible
extensions. We discuss these further in Section VI.

C. Related Work
As mentioned above, recycling is not new in NPs and has

previously appeared in the literature, especially for particularly
complex packets that cannot be processed using a typical
pipelining scheme For instance, in the Open Network Lab’s
NP [24], the XScale recycles IP control packets and other
exceptional packets, and also enables the use of plugins for
special processing. Multipass NP power consumption has also
been a previous topic of study. However, to our knowledge,
there is no previous work in the literature that discusses the
scheduling and buffer management policies in multipass NPs.
Several other related topics have been studied in the context
of NPs, namely, task mapping and load-balancing [13], [25].
In addition, [18] introduces a queueing network to model
NP resources and application work flows. Finally, [8] further
studies the impact of caches on performance. However, none
of these papers considers the impact of recycling in their
models. Moreover, no paper analyzes the impact of the packet
admission control policy on the worst-case NP performance.

There is also a long history of OS scheduling for mul-
tithreaded processors. A comprehensive overview of com-
petitive online scheduling for server systems is provided in
[22]. For instance, the SRPT (Shortest Remaining Processing
Time) algorithm always runs the job with the least amount of
remaining processing time, and it is well known that SRPT
is optimal for average response [21]. Additional objectives,
models, and algorithms have been studied extensively in this
context (e.g., [10], [17], [19], [21], to name but a few). Another
related line of research which takes into account some notion
of “throughput” in the context of OS scheduling assigns jobs
to processors with fluctuating speeds, which is not known
precisely to the scheduler [11]. When comparing this body
of research with the framework of NPs one should note that
OS scheduling is mostly concerned with average response
time, average slowdown, etc., while NP scheduling is targeted
at providing (worst-case) guarantees on the throughput. In
addition, NP scheduling is unique in that it inherently has
a limited-size buffer.

Another large body of research related to our work fo-
cuses on competitive packet scheduling and buffer manage-
ment, mostly for various switching architectures, such as
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Fig. 1. An outline of the architecture model, as an abstraction of a standard
Multipass NP Architecture (see, e.g. [33]).

Output-Queued (OQ) switches (e.g., [1], [16]), shared memory
switches with OQs (e.g., [12], [15]), and merging buffers
(e.g., [14]). This body of work has also studied more general
multi-queue switches (e.g., [2], [4]–[6]). Some works also
provide experimental studies of these algorithms and further
validate their performance [3].

II. MODEL DESCRIPTION

A. Multipass NP Architecture

Figure 1 illustrates the multipass NP architectural model
used in this paper. It is a simplified model of the Cisco
QuantumFlow NP architecture [33]. The three major modules
in our model are: (a) the Input Buffer (IB), (b) the Scheduler
Module (SM), and (c) a set of C cores or Packet Processing
Elements (PPEs).

First, the IB module is used to buffer incoming packets. The
IB holds a buffer that can contain at most B packets. It obeys
a given Buffering Model (BM), as defined later. Second, the
SM module has two main functionalities in our model: the
buffer management, as later described, and the assignment of
packets to PPEs, by binding each PPE with its corresponding
IB packet. Each PPE element is a processing core that works
on a specific packet stored in the IB for one cycle (predefined
period of time), also referred to as a time slot. For simplicity
we assume that each PPE is single threaded.

We divide time into discrete time slots, where each step
consists of four phases: (i) transmission, in which completed
packets leave the NP and incomplete control packets for those
with remaining passes are recycled, (ii) arrival, in which
the SM performs its buffer management task considering
newly arrived packets and recycled control packets (observe
that recycled control packets are admitted to IB before new
arrivals), (iii) scheduling, in which C head-of-queue packets
are designated for processing, and (iv) processing, in which
the SM assigns a designated packet to each PPE, and packet
processing takes place.

We assume arbitrary packet arrival (i.e., it is not governed by
any specific stochastic process, and may even be adversarial).

We also assume that all packets have unit size. Each arriving
packet p is further stamped with the number of passes it
requires from the NP, denoted r(p). This number is essentially
the number of times the packet should be assigned to a PPE
if it is to be successfully delivered. The availability of this
information relies on [26], which shows that “processing on an
NP is highly regular and predictable. Therefore it is possible
to use processing time predictions in admission control and
scheduling decisions.”

B. Problem Statement and Objectives

In the NP multipass architecture, new packets incur higher
costs than recycled packets. New packets admitted to the buffer
monopolize part of the memory link capacity to enter the
memory, and therefore require more capacity in the memory
access implementation of an NP. Each new packet also needs
to update many pointers and associated structures at link
speeds. These costs are substantially higher than the costs
associated with recycled control packets corresponding to
packets already stored in the buffer.

To reflect the value of throughput, we assume that each
departed packet has unit value. However, to reflect the cost
of admitting new packets, each newly admitted packet is also
assumed to incur a fixed copying cost cost of α ∈ [0, 1) for
copying it to IB. Finally, we measure the final value as the
total throughput value minus the total copying cost.

Any specific architecture corresponding to our model can
be summarized by a 4-tuple (B,BM,α,C), where B denotes
the buffer size available for IB, BM is the buffering model
(in this paper it will usually be PQ or FIFO), α is the copying
cost, and C is the number of available PPEs.

Our objective is the following: given a (B,BM,α,C)-
architecture, and given some finite arrival sequence, maximize
the value of successfully delivered packets.

For the case where α = 0, the overall value of success-
fully delivered packets is equal to the system’s packet-level
throughput. For the case where α > 0 the overall value of
successfully delivered packets equals the throughput minus the
overall copying cost incurred by admitting packets to IB.

Our goal is to provide performance guarantees for vari-
ous scheduling and buffer management algorithms. We use
competitive analysis [9], [27] to evaluate the performance
guarantees provided by online algorithms. An algorithm ALG
is said to be c-competitive (for some c ≥ 1) if for any arrival
sequence σ, the overall value of packets successfully delivered
by ALG is at least 1/c times the overall value of packets
successfully delivered by an optimal solution (denoted OPT ),
obtained by a possibly offline clairvoyant algorithm.

C. Further Notation and Algorithmic Framework

We will define a greedy buffer management policy as a
policy that accepts all arrivals whenever there is available
buffer space (in the IB). Throughout this paper we only look
at work-conserving schedulers, i.e. schedulers that never leave
a processor idle unnecessarily.

We will say that an arriving packet p preempts a packet
q that has already been accepted into the IB module iff q
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is dropped and p is admitted to the buffer instead. A buffer
management policy is called preemptive whenever it allows
for preemptions.

For any algorithm ALG and any time-slot t, we define
IBALGt as the set of packets stored in IB of algorithm ALG
at time t.

We assume that the original number of passes required by
any packet is in a finite range {1, . . . , k}. The value of k will
play a fundamental role in our analysis. We note, however,
that none of our algorithms need know k in advance.

The number of residual passes of a packet is key to several
of our algorithms. Formally, for every time t, and every packet
p currently stored in IB, its number of residual passes, denoted
rt(p), is defined to be the number of processing passes it
requires before it can be successfully delivered.

Most of our algorithms will take the general form depicted
in Algorithm 1, where the specific subroutine determining
whether or not preemption takes place will depend on the
algorithm. We note that we will distinguish between the
various embodiments of our algorithms also depending on the
BM they employ in the IB. More specifically, we will focus
our attention on two natural BMs:

1) FIFO: In this policy packets are serviced in FIFO order,
i.e. the C head-of-line packets are chosen for assignment
to the PPEs. Upon completion of a processing round by
the PPEs, all the packets that have been processed in
this round and still require further processing passes are
queued at the tail of the IB queue.

2) Priority Queueing (PQ): In this policy packets are ser-
viced in non-increasing order of residual passes, i.e., C
packets with the minimum number of residual passes are
chosen for assignment to the PPEs in every time slot.

We assume that the queue order is also maintained according
to the BM preference order.

The generic algorithmic setting for the buffer management
policy of the SM is defined in Algorithm 1. The specific
algorithms discussed in the following sections will differ
according to the decision made by the DECIDEIFPREEMPT
procedure, which decides which packet to discard in case of
overflow.

Algorithm 1 ALG: Buffer Management Policy
1: upon the arrival of packet p:
2: if the buffer is not full then
3: accept packet
4: else
5: DECIDEIFPREEMPT(ALG,p)
6: end if

III. BUFFER MANAGEMENT WITH NO COPYING COST
(α = 0)

A. Non-preemptive Policies

In this section we consider non-preemptive greedy buffer
management policies. Essentially, the subroutine DECIDEIF-
PREEMPT for such policies simply rejects the pending packet.

The following theorem provides a lower bound on the perfor-
mance of such non-preemptive policies for FIFO schedulers
.

Theorem 1. The competitive ratio of any non-preemptive
greedy buffer management policy (B,FIFO,C, 0)-system is
at least k

C , where k is a maximal number of passes required
by any packet.

Proof: Assume for simplicity that B/C is an integer.
Consider the following set of arrivals. During the first time
slot arrive B packets with maximal number of passes k. Since
online algorithm A is greedy it accepts all of them. OPT does
not accept these packets. During the next kB/C time slots the
buffer of A is full since it is FIFO and non preemptive. During
this time interval arrive kB/C packets with a single required
pass and all of them are transmitted by OPT .

The following theorem provides a similar lower bound for
PQ schedulers.

Theorem 2. The competitive ratio of any non-preemptive
greedy buffer management policy (B,PQ,C, 0)-system is at
least k − 1, where k is a maximal number of passes required
by any packet.

Proof: We will show more specifically that the compet-
itive ratio is at least (k − 1)(1 − ε), for any ε > 0. Assume
for simplicity that k/C is an integer. At time 0 we have the
arrival of B packets, each requiring k passes, and at time 1 we
have the arrival of (k − 1)C packets, each requiring a single
pass. Consider the sequence of time slots ai = ik − 1, for
i = 1, . . . , `. At any time ai we have the arrival of C packets,
each requiring k passes. At any time ai+1 we have the arrival
of (k − 1)C packets, each requiring a single pass.

We now turn to analyze the performance of any greedy
PQ policy given the above arrival sequence. At time 0 all
B packets are accepted (due to greediness), and none of the
arrivals at time 1 can be accommodated into the buffer. It is
easy to show by induction by the arrival of packets at time a1,
C of the packets accepted by at time 0 are delivered, and the
buffer has room to accommodate the newly arriving C packets
at time a1, and none of the packets arriving at time a1 + 1
can be accommodated into the buffer. It is therefore easy to
show by induction that for any i = 1, . . . , ` − 1, the number
of packets delivered by the algorithm between ai and ai+1 is
exactly C, the algorithm accepts all packets arriving at ai+1,
and cannot accept any of the packets arriving at time ai+1 +1.
This gives an overall throughput of at most B + `C packets.

Let us now turn to describe a feasible solution whose
throughput serves as a lower bound on OPT. This solution
would accept B − (k − 1)C packets that arrive at time
0, (k − 1)C packets that arrive at time 1, and for every
i = 1, . . . , `, accepts the packets that arrive at time ai+1. We
first show that the number of packets residing in the buffer
of this solution never exceeds the buffer capacity of B. By
definition, the overall number of packets accepted by time 1 is
B. Furthermore, the algorithm delivers all packets that arrived
at time 1 by time 1 + (k − 1) = k = a1 + 1 (since each of
them requires a single pass), and can therefore accommodate
the newly arriving packets at time a1 + 1. It is easy to show
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by induction that for any i = 1, . . . , ` − 1, the number of
packets delivered by this solution between ai+1 and ai+1 +1
is exactly (k − 1)C, and the solution can accept all packets
arriving at ai+1 +1. It follows that this solution has an overall
throughput of B − (k − 1)C + `(k − 1)C.

Combining the above we obtain that the competitive ratio
of any greedy buffer management policy in a (B,PQ,C, 0)-
system is at least

B − (k − 1)C + `(k − 1)C
B + `C

=
B + (`− 1)(k − 1)C

B + `C

which tends to k − 1 as ` grows to infinity, thus completing
the proof.

As demonstrated by the above results, the simplicity of non-
preemptive greedy policies does have its price. In the following
sections we explore the benefits of introducing preemptive
policies, and provide an analysis of their guaranteed perfor-
mance.

B. Preemptive Policies
For the case where α = 0, we focus our attention on the

intuitive rule for preemption which states that a newly arrived
packet p should preempt a buffered packet q at time t if
rt(p) < rt(q). This rule is formalized in Algorithm 2, which
gives a formal definition of the DECIDEIFPREEMPT procedure
of Algorithm 1.

Algorithm 2 DECIDEIFPREEMPT(ALG,p)
1: i← first packet in IBALGt s.t. rt(pi) = maxi′ {rt(pi′)}
2: . first in the order implied by the BM
3: if r(p) < rt(pi) then
4: drop pi and accept p
5: else
6: reject p
7: end if

In what follows we consider the performance of the above
preemption rule for two specific BMs, namely: ALG ∈
{PQ,FIFO}.

1) Preemptive Priority Queueing: In this section we study
the performance of a BM implementing PQ, where priorities
are set in accordance with the non increasing order of residual
passes.1 We refer to this algorithm as PQ1.2 The following
theorem provides some guarantee as to its performance.

Theorem 3. PQ1 is optimal.

Proof: Let O be the set of packets successfully delivered
by some optimal solution O. We will sometime abuse nota-
tion and use O (the set of packets) to refer to OPT (the
solution). For every time t, every algorithm A, and every
integer ` ∈

{
1, . . . ,

∣∣IBOt ∣∣}, let PAt (`) denote the set of `
head-of-queue packets in IBAt (recall we can assume without
loss of generality that packets in IB are ordered according
to A’s buffering model). Consider algorithm PQ1. Recall that

1Packet p has a higher priority than packet q at time t if rt(p) < rt(q).
2The reason for choosing the subscript 1 would become clear in section IV.

for any such `, the head-of-line packets in IBPQ1
t have the

minimal number of residual passes. Consider the following
volume function

ΦAt (`) =
∑

p∈PAt (`)

rAt (p)

where rAt (p) denotes the residual number of passes of packet
p in IBAt . ΦAt (`) measures the amount of remaining work
required for processing the ` head-of-queue packets in the
buffer of A at time t.

We will prove that for any time t and any integer ` ∈{
1, . . . ,

∣∣IBOt ∣∣},

ΦPQ1
t (`) ≤ ΦOt (`), (1)

i.e., the amount of residual work necessary by PQ1 for
processing the ` head-of-queue packets is at most that required
by OPT. Note that it is sufficient to consider φ as defined at
the end of each time step, although the inequality holds also
after each of the phases within a time step. By proving that the
inequality in Equation (1) holds for any `, we would obtain
in that

φPQ1
t (1) ≤ φOt (1),

which implies that whenever OPT processes a 0-residual
passes packet, so does PQ1. Therefore, if Equation (1) holds,
the throughput of PQ1 is at least that of OPT, completing the
proof.

We now turn to prove Equation (1). First note that without
loss of generality we can assume that OPT is both work-
conserving, i.e., never idles when its buffer is non-empty,
and also non-preemptive. Since PQ1 does not perform any
admission control, and always accepts packets when it has
room, then at any time t, IBPQ1

t ≥ IBOt .
The proof follows by induction on t. For t = 0, the claim

clearly holds since by definition PQ1 accepts the maximal
size set of packets of minimal passes (up to the buffer capacity
limit B) among all arrivals at t = 0, and stores them in non-
decreasing order of residual passes. Assume the claim holds
for t′ < t, and consider time t. We will show the inequality
holds after each of the phases within time step t. For the trans-
mission phase, note that by the induction hypothesis, for every
` ΦPQ1

t−1 (`) ≤ ΦOt−1(`), and since both PQ1 and OPT are work-
conserving, both sides of the inequality reduce by the amount
of processing done in the transmission phase (the same for
both PQ1 and OPT, unless the buffer of OPT becomes empty,
in which case the inequality is trivially true since we are only
concerned with ` ≤

∣∣IBOt ∣∣, and
∣∣IBOt ∣∣ = 0 in this case). This

implies that the inequality holds after the transmission phase.
Consider now the arrival phase within time step t. We will
consider the buffer management decisions made by PQ1 as if
they were done in a series of phases. In the first phase, assume
PQ1 retains in its buffer PPQ1

t (
∣∣IBOt ∣∣), and let RPQ1

t denote
the remaining packets in its buffer, i.e., packets in positions
greater than

∣∣IBOt ∣∣ that are currently in IBPQ1
t (which are set

aside at this point). In the second phase, assume PQ1 accepts
the set of packets AOt , the set of packets accepted by OPT at
time t (recall that by our assumption OPT is non-preemptive,
hence by the fact that OPT does not overflow, PQ1 also
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has room to accept these packets in this phase). Denote by
ĨB

PQ1

t = PPQ1
t (

∣∣IBOt ∣∣) ∪ AOt . For this buffer occupancy
(when sorted by non-decreasing residual passes order), by the
induction hypothesis on PPQ1

t (
∣∣IBOt ∣∣), the inequality holds

since the added packets are exactly those accepted by OPT at
time t. Note that

∣∣∣ĨBPQ1

t

∣∣∣ =
∣∣IBOt ∣∣, where IBOt is considered

at the end of time step t. Now let PQ1 consider the remaining
packets pending, by first considering packets in RPQ1

t , and
afterwards considering any additional packets which arrived
at time t (and were not accepted by OPT). Let IBPQ1

t denote
the buffer of PQ1 after this sequence of events. First note
that this sequence mimics exactly the behavior of PQ1 (up to
accepting packets which are equivalent to those accepted by
OPT). Let p` (p̃`) denote the packet in position ` in IBPQ1

t

(
∣∣∣ĨBPQ1

t

∣∣∣). By the priority-based preemption rule of PQ1,
for every position ` ∈

{
1, . . . ,

∣∣IBOt ∣∣}, rt(p`) ≤ rt(p̃`). This
follows from the fact that the queues are ordered in non-
decreasing order of residual passes, and the candidate packets
considered by PQ1 which resulted in the buffer configuration
IBPQ1

t is a superset of
∣∣∣ĨBPQ1

t

∣∣∣. It therefore follows that for

any ` ∈
{

1, . . . ,
∣∣IBOt ∣∣}, ΦPQ1

t (`) ≤ ΦOt (`), thus completing
the proof.

The above theorem provide concrete motivation for using a
priority queuing buffering model. It also enables using PQ1

as a benchmark for optimality.
On the other hand, priority queueing has many drawbacks

in terms of the difficulty in providing delay guarantees and in
terms of implementation. For instance, low-priority packets
may be delayed arbitrarily for an arbitrarily long amount
of time due to the steady arrival of low-priority packets.
Therefore it is of interest to study BMs that ensure such
scenarios do not occur. One such predominant BM is using
FIFO queueing, which is discussed in the following section.

2) Preemptive FIFO: In this section we analyze the pre-
emptive policy depicted in Algorithm 2, where the BM imple-
ments FIFO queueing. We refer to this algorithm as FIFO1.
FIFO has many attractive features, including bounded delay,
and it is easy to implement. We first begin with providing
the counterpart to Theorem 3 which shows that as opposed to
priority queueing, the performance of FIFO1 can be rather
far from optimal.

Theorem 4. FIFO1 has competitive ratio Ω( log k
C ) in a

(B,FIFO,C, 0)-system.

Proof: Assume for simplicity that B/C is an integer, and
further assume that k+ 1 = B

C . Consider the following arrival
sequence: for i = 0, . . . , k we have B packets with k − i
required passes arriving at time ti = iB/C.

Let us first consider the performance of FIFO1 given the
above arrival sequence. At time t0 FIFO1 accepts B packets,
each with k required passes. Call this set A. It is easy to see
that for every i = 1, . . . , k at time ti all the packets in A are
still in FIFO1’s buffer, and each has k − i residual passes.
Hence, FIFO1 never has a reason to preempt any of the
packets in A. It follows that at time tk the buffer holds B
packets with 1 residual passes and can eventually only deliver

B packets.
We now turn to consider the performance of an optimal

policy for the above arrival sequence. We first show a policy
that delivers (1 + 1

C )B − 1 packets out of the above arrival
sequence (implying a lower bound of 1+ 1

C− 1
B on the compet-

itive ratio). We then refine our analysis to prove the required
result. We henceforth start by considering the conservative
policy which for any i = 0, . . . , k− 1 accepts a single packet
at time ti, and further accepts all B packets arriving at time
tk. First note that the above policy is feasible: since for any i,
ti+1 − ti = B

C ≥ k + 1, if a policy accepts a single packet at
time ti, then we are guaranteed to have this packet delivered
by time ti+1. This implies that the buffer is empty at time ti+1,
implying in turn the feasibility of the above policy. Since the
policy accepts k = B

C − 1 packets by time tk, and B packets
at time tk, we have a total throughput of (1 + 1

C )B − 1 as
required.

Let us now turn to refine our analysis, and present a better
policy which implies the required result, and is based upon
the simple policy just described. Recall that at time ti, the
buffer is empty, and we have B packets with k − i required
passes arriving. Our new policy accepts b B

C(k−i+1)c of these
packets. We will show that this new policy ensures that the
buffer is empty just before the arrival phase at any time
ti+1. The overall number of time steps required to deliver
a set of b B

C(k−i+1)c packets, each requiring k − i passes, is
b B
C(k−i+1)c · (k − i + 1) ≤ B

C = ti+1 − ti, which implies
that by time ti+1 the buffer is indeed empty. Note that since
k = B

C − 1, b B
C(k−i+1)c ≥ 1 for every i = 0, . . . , k. We can

now evaluate the performance of this new policy. The overall
number of packets accepted (and delivered) by the policy is∑k

i=0b B
C(k−i+1)c ≥

∑k
i=0( B

C(k−i+1) − 1)
= B

C

∑k+1
j=1

1
j − (k + 1)

= B
C ·Hk+1 − (k + 1)

where Hn is the n-th harmonic number which satisfies Hn =
Θ(log n). Since B = Θ(k), the result follows.

We now turn to provide an upper bound on the performance
of FIFO1, as given by the following theorem.

Theorem 5. FIFO1 is 2k-competitive in a (B,FIFO,C, 0)-
system.

Proof: Consider intervals of time when OPT transmits
out kB packets. In this case FIFO1 transmits at least B
packets and in the worst case at the end of interval its buffer
is full (because of greediness) and each packet has k residual
passes. Since FIFO1 needs to pay for at most B packets
from the previous iteration in the worst case FIFO1 is 2k
competitive.

IV. BUFFER MANAGEMENT WITH COPYING COST (α > 0)

In this section we consider the more involved case where
each packet admitted to the buffer incurs copying cost α. For
this model, it is preferable to perform as few preemptions
as possible, since preemptions increase the costs, but do not
contribute to the overall throughput. We recall that the overall
performance of an algorithm in this model is defined as the
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algorithm’s throughput, from which we subtract the overall
copying cost incurred due to admitting distinct packets to the
buffer.

A. Characterization of the Optimal Algorithm
We first note that if we consider algorithm PQ1 described

in the previous section, which is optimal for the case where
α = 0, we are guaranteed to have it produce the maximum
throughput possible given the arrival sequence. If we further
consider a slightly distorted model where PQ1 is allowed to
“pay” its copying cost only upon the successful delivery of
a packet, we essentially obtain an optimal solution also for
cases where α > 0, because in that case PQ1 never pays a
useless cost of α for a packet that it ends up dropping . This
is formalized in the following theorem:

Theorem 6. PQ1 that pays the copying cost only for trans-
mitted packets is optimal for the (B,PQ,α,C)-architecture,
for any α ∈ [0, 1).

The theorem can also be seen with a different perspective.
Intuitively, a PQ1 scheduler that would know in advance
what packets are winners and would only accept those would
be optimal. More formally, combining PQ1 with a buffer
admission control policy that would only accept the packets
that ultimately depart using a given optimum scheduling policy
can reach optimality.

B. Optimizing Priority Queuing
Given a copying cost α < 1, we will define a value

β = β(α) ≥ 1 (the precise value of β will be derived
from our analysis below), which will be used in defining the
preemption-rule DECIDEIFPREEMPT(PQβ ,p), as specified in
Algorithm 3. The algorithm essentially preempts a packet q in
favor of a newly arrived packet p only if p has significantly
fewer residual passes than q’s residual passes. Note that the
special case where β = 1 coincided with algorithm PQ1

described in section III-B (hence the subscript 1).

Algorithm 3 DECIDEIFPREEMPT(PQβ ,p)

1: pB ← last packet in IBPQβt

2: . note that rt(pB) = max
p′∈IBPQβt

rt(p′)

3: if rt(p) < rt(pB)
β then

4: drop pB and accept p
5: else
6: reject p
7: end if

We now turn to analyze the performance of the algorithm
which uses PQβ-preemption. We first prove an upper bound
on the performance of the algorithm, for any value of β. We
can then optimize the value of β = β(α) so as to yield the best
possible upper bound. We focus our attention in this analytical
section on the case where C = 1. We note that for any two
values of β, β′ ≥ k, the algorithm would behave the same,
i.e., be non-preemptive. It therefore follows that although our
algorithm need not know the value of k in advance, and may

p1 p2 · · · pm−1 pm

in G

q(1) q(2) q(m−1) q
(m)
1 q

(m)
2

· · · q
(m)
`

at most L packets

Fig. 2. Outline of mapping χ. Packet p1 is admitted to the buffer upon arrival
without preempting any packet, and henceforth packet pi+1 preempts packet
pi. The mapping ψ along the preemption sequence is depicted by dashed
arrows. Such a sequence ends at a packet pm which is successfully delivered
by PQβ . Mapping φ, depicted by solid arrows, maps at most 1 packet to any
packet that is preempted in the sequence, and at most L packets to the last
packet of the sequence which is successfully delivered by PQβ . This gives
an overall of 2(m−1)+L packets mapped to any single packet successfully
delivered by PQβ .

very well design an algorithm which uses a value of β > k
(being unaware of the real value of k), in our analysis we may
assume that β ≤ k, since any algorithm which uses a value of
β > k is equivalent to an algorithm that uses a value of k for
β. This having been said, the optimal value of β = β(α, k),
that minimizes the competitive ratio, does depend on the value
of k, and in order to find this optimal value, k has to be given
in advance.

Theorem 7. For C = 1, algorithm PQβ has a competitive
ratio of

(2 + log β
β−1

(k/2)− 1 + 2 logβ k)(1− α)

1− α logβ k
,

for B ≥ 2, β > 1, α < min(1, logβ k).

C. Proof Intuition for Theorem 7
In the remainder of this section, we will focus on the proof

of Theorem 7. We will denote by G the set of packets
successfully delivered by PQβ , and by O be the set of
packets successfully delivered by some optimal solution OPT.
Consider a partition of the set of packets O\G = A1∪A2, such
that A1 is the set of packets dropped by PQβ upon arrival, and
A2 is the remaining set of packets, consisting of packets that
were originally accepted, but at some point were preempted by
more favorable packets. It follows that O = A1∪A2∪(G∩O).

Our analysis will be based on describing a mapping of
packets in O to packets in G, such that every packet in G
piggybacks a bounded number of packets of O. Our mapping
will be devised in several steps.

First, we define a mapping φ : A1 7→ A2 ∪G such that for
every p ∈ A2,

∣∣φ−1(p)
∣∣ ≤ 1, and for every p ∈ G,

∣∣φ−1(p)
∣∣ ≤

L, for some value of L to be determined later (see Lemma 12).
We then define a mapping ψ : A2∪G 7→ G such that for every
p ∈ G,

∣∣ψ−1(p)
∣∣ ≤M , for some value of M to be determined

later (see Lemma 14). By composing these two mappings we
obtain a mapping χ : O \G 7→ G such that for every p ∈ G,∣∣χ−1(p)

∣∣ ≤ 2(M−1)+L, i.e., there are at most 2(M−1)+L
packets from O \G mapped to any single packet in p ∈ G by
χ. Figure 2 gives an outline of the resulting mapping χ.

It is important to note that this mapping is done in hindsight,
as part of the analysis, and is not part of the algorithm’s
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φ before collapse

O G

p1

p2

p3

p4

p5

p6

φ after collapse (p1 delivered)

O G

p2

p3

p4

p5

p6

Fig. 4. Outline of a mapping-collapse. Upon the delivery of the HOL packet
in G, p1, the largest set of live A1 packets closest to the head of queue
in G (but no more than L) are mapped to the new HOL packet, p2, and
remaining packets of A1 in O’s buffer are shifted downwards appropriately.
In this example we take L = 3.

definition. We can therefore assume that for our analysis,
we know for every packet arrival which algorithm(s) would
eventually successfully deliver this packet.

D. The Basic Mapping φ
Our goal in this section is to define a mapping φ : A1 7→

A2∪G such that for every p ∈ A2,
∣∣φ−1(p)

∣∣ ≤ 1, and for every
p ∈ G,

∣∣φ−1(p)
∣∣ ≤ L, for some value of L to be determined

later (see Lemma 12). For every time t, we will denote the
ordered set of packets residing in the buffer of PQβ at t by
pt1, p

t
2, and so on. Recall that since the buffer size is at most

B, such a sequence is of length at most B. For clarity, we will
sometimes abuse notation and omit the superscript t, when it
is clear from the context. We will further define the load of
pi at t by nt(pi) =

∣∣φ−1(pi)
∣∣, i.e. the number of packets

currently mapped to packet pi. In order to avoid ambiguity as
for the reference time, t should be interpreted as the arrival
time of a single packet. If more than one packet arrive in a
time slot, these notations should be considered for every packet
independently, in the sequence in which they arrive (although
they might share the same actual time slot).

The mapping will be dynamically updated at each event of
packet arrival, or packet transmission from the buffer of G,
as follows: Assume packet p arrives at time t. We distinguish
between 3 cases:

1) If p is not in both O and G (i.e., neither PQβ nor
OPT deliver it successfully), then the mapping remains
unchanged.

2) If p ∈ A1, and it is assigned to buffer slot j in the buffer
of O upon arrival, perform an (O, j)-mapping-shift (see
detailed description below).

3) If p ∈ A2 ∪ G, and it is assigned to buffer slot i in the
buffer of G upon arrival (i.e., after its acceptance to the
buffer we have pi = p), perform a (G, i)-mapping-shift
(see detailed description below).

The last case to consider is the case of a packet being suc-
cessfully delivered by G. In this case we perform a mapping-
collapse onto the head-of-line (HOL) packet in G (see detailed
description below).

At any given time, we will consider the set of live packets
in A1 that are currently in the buffer of O, where this set is

updated dynamically as follows: Every packet q ∈ A1 is alive
upon arrival. A live packet q ceases to be alive the moment
φ(q) is completed (either by being preempted, or by being
delivered). All remappings described henceforth only apply to
live packets. Specifically, for every event causing a change or
update in the mapping occurring in any time t, packets in A1

which are no longer alive at t are essentially considered by
the following procedures as packets which are in A2∪(G∩O)
(i.e., their mappings do not change, and they are sidestepped
when shifting mappings).

We first give some definitions. We say a mapping is se-
quential if for every i < i′, the set of packets mapped to
the the packet in slot i would leave OPT before the set of
packets mapped to the packet in slot i′ (assuming both of
these slots are non-empty). We further say a mapping is i-
prefix-full if every packet in slot i′ ≤ i has packets mapped
to it and every packet in slot i′ > i has no packets mapped
to it, and furthermore if i > 1 then the HOL packet in G has
L packets mapped to it. See Figure 5 for an example of a
mapping satisfying these two properties.

In order to finalize the description of φ, it remains to
explain the notion of mapping-shifts, and mapping-collapse.
An (O, j)-mapping-shift works as follows: If the HOL packet
in G has less than L packets currently mapped to it, we map
the arriving packet p ∈ A1 to the HOL packet in G. Otherwise,
we find the minimal index i of a packet in the buffer of G
to which no packet is mapped to, and map packet p to this
packet. If there is no such packet in the buffer of G (i.e., the
HOL packet has load L, and every other packet in the buffer
of G has load exactly 1), then we map p to the last packet
in G. Clearly this mapping is feasible, i.e., whenever a packet
p ∈ A1 arrives, there is a packet in G to which we can map
p. In order to complete this mapping-shift, we swap mappings
(without changing the number of packets mapped to to any
packet in G) such that the resulting mapping is sequential.
See Figure 3(a) for an example of an (O, j)-mapping-shift.

A (G, i)-mapping-shift is simpler and works as follows: for
any non-empty buffer-slot j > i, remap any packets mapped
to pj , to pj−1, in sequence, starting from j = i+1. Figure 3(b)
gives an example of a (G, i)-mapping-shift.

We now turn to describe the effect of a mapping-collapse.
Upon the successful delivery of the HOL packet in G, the
packet which was just in the second position in G’s buffer,
becomes the HOL. This packet may have at most 1 packet
mapped to it (according to the definition of the mapping).
Upon its becoming the HOL packet, we remap the largest set
of live packets in A1 currently in the buffer of O, to the new
HOL packet, such that there are at most L packets mapped
to it. If we have remapped r such packets, and there remain
additional packets in A1 currently in the buffer of O, then we
remap each of these packets r positions downward, such that
the resulting mapping is i-prefix-full for some buffer position
i ∈ {1, . . . , B}. Figure 4 gives an example of a mapping-
collapse.

We say a mapping satisfies the head-of-line-before-OPT
(HOBO) property w.r.t. L, if at any time t, if the HOL packet
in G has L packets mapped to it, then the last of these packets
would leave O no earlier than this HOL packet would leave
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q inserted to buffer slot 4
and mapped to p5

O
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q
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complete the (O, j)-mapping-shift
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(a) (O, j)-mapping-shift (q ∈ A1 is admitted by O to slot j = 5)

φ before G accepts p

O G

p1

p2

p3

p4

p5

p6

p

complete the (G, i)-mapping-shift

O G

p1

p2

p

p3

p4

p5

p6

p inserted to buffer slot 3

O G

p1

p2

p

p3

p4

p5

p6

(b) (G, i)-mapping-shift (p is admitted by G to slot i = 3)

Fig. 3. Outline of mapping-shifts. The new packet is inserted into the corresponding buffer slot, and the mapping is shifted accordingly. Cyan packets are
packets that are either in A2 ∪ (O ∩G), or packets in A1 that are no longer alive. White packets are live A1 packets, which might be affected by changes
in the mappings. In both examples L = 3.

G

O

L

p1p2p3p4p5p6p7p8· · ·p`

L packets mapped to p1
0 packets mapped

to pis after p7
1 packet mapped to
each of p2, . . . , p6

mapped packets form sequential blocks

Fig. 5. An example of a mapping which is 6-prefix-full and sequential. Cyan
packets are packets that are either in A2∪ (O∩G) or A1 packets that are no
longer alive. Mapped white packets are in A1. In the example above, L = 5.

G.
The following lemma shows that if L satisifes the HOBO

property, then except for maybe the HOL packet in the buffer
of G, any other packet in the buffer has load at most 1.
This follows by definition for all such non-HOL packets, save
possibly for the last packet in the buffer, which is the focus
of the lemma.

Lemma 8. If L satisfies the HOBO property, then at most one
O packet is mapped to the last packet in G.

Proof: Assume q ∈ A1 arrives at time t. It follows that
upon its arrival, the buffer of G is full (since otherwise it
would have accepted q). Assume by contradiction that the
HOL packet in G’s buffer has load L, and that every other
packet in G’s buffer has load exactly 1. Since L satisfied the
HOBO property, we are guaranteed to have that the last packet
mapped to the HOL packet in G is delivered by O no earlier
than the HOL packet in G is delivered by G. In particular, at
time t the last packet mapped to the HOL packet in G has
not yet been delivered by O, and it resides in the buffer of O.
Since the mapping is maintained sequential, we are guaranteed
to have that all packets in the buffer of O mapped to packets
other than the HOL packet in G are also residing in the buffer
of O. It follows that the buffer occupancy of O is at least that

of G, which by the fact that the buffer of G is full, implies that
the buffer of O is full upon the arrival of q, contradicting the
fact that O accepts q upon its arrival (since recall we assumed
without loss of generality that O never preempts an accepted
packet).

The above lemma essentially guarantees that if we choose L
such that the HOBO property is maintained, then each packet
in G buffer except the first has at most one mapping.

The following lemma ensures that upon every event which
affects the mapping, every live packet has sufficiently many
residual passes, compared to the packet to which it is mapped
to.

Lemma 9. For every i ∈ {1, . . . , B}, let pi denote the packet
residing in slot i in the buffer of G. For every such i, if q is
(re)mapped to pi at time t, then rOt (q) ≥ 1

β r
G
t (pi).

Proof: We prove by induction on the sequence of events
(essentially, induction on t) that in every event which causes
a (re)mapping of q to some packet pi at time t, the property
rOt (q) ≥ 1

β r
G
t (pi) holds. First note that every packet q ∈ A1

arriving at time t′, causes an O-shift, which implies that at
time t′, rOt (q) ≥ 1

β r
G
t (pj) for all j ∈ {1, . . . , B}, and in

particular this is true for the packet pi to which q is mapped
to upon its arrival at time t′. We now turn to the induction
step, and prove the property holds for every event causing a
remapping of q. For an O-shift affecting the mapping of q,
this happens upon the arrival of a packet q′ at some time t,
such that rOt (q′) ≤ rOt (q) (since by definition, an (O, j)-shift
might cause remapping of packets only in positions j′ ≥ j.
By combining this observation with the fact that an O-shift
occurred upon the arrival of q′ implies rOt (q′) ≥ 1

β r
G
t (pj) for

all j ∈ {1, . . . , B}, we are guaranteed to the have the property
hold iin case of an O-shift. For a G-shift affecting the mapping
of q, note that this can only occur by changing the target
of the mapping from being packet pi+1, to being packet pi
(by the definition of G-shifts). In this case we have rOt (q) ≥
1
β r

G
t (pi+1) ≥ 1

β r
G
t (pi), since G maintains its buffer in non

decreasing order of residual passes. The last case to consider
is the that where we have a mapping-collapse affecting the
mapping of q. In this case, q is originally mapped to some
packet pi+m (for some m), and after the collapse is mapped
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time
sp

p becomes HOL

for the last time

s∗p

p delivered

p

q1 q2 q3 · · · q −̀1 q`

t1 t2 t3 t −̀1 t`

Fig. 6. An outline of the mappings to the HOL packet p in G during the
interval Hp = [sp, s∗p). For each i, packet qi is mapped to p at time ti.

to packet pi. In this case as well, similarly to the case of the
G shift, since we remap to packets which are closer to G’s
head-of-queue, the induction hypothesis implies the property
is maintained.

In what follows, we assume that B ≥ 2.
For every packet p ∈ G ∪ A2, consider the set of packets

mapped to p when p is completed. If p ∈ A2, i.e., it is
preempted by G at some time t, then since preemption always
takes place from the last slot in the buffer of G, by the
definition of the mapping there could be at most one packet
mapped to p when it is completed. We thus have the following
lemma.

Lemma 10. For every p ∈ A2, φ−1(p) ≤ 1 when p is
preempted.

If p ∈ G, let sp be the latest time in which p becomes the
HOL packet in G, and let s∗p denote the time in which it is
delivered by G. We further consider the set of packets mapped
to p upon its delivery, and denote this set by q1, . . . , q`, where
the order is implied by the order in which these packets
are mapped to p. This set of packets may be split into two
sets: q1, . . . , qi, which are the packets mapped to p due to
the mapping-collapse at time sp, and the set qi+1, . . . , q`
which are additional packets mapped to p (which can only
be due to O-shifts occurring at times t ∈ Hp = [sp, s∗p)).
For every such packet qi, let ti denote the time in which it
is mapped to p during the interval Hp. We hereby introduce
the following notation: let xit = rOt (qi), and let yt = rGt (p).
Using this notation, Lemma 9 implies that at any time ti,
xit ≥ 1

β yt. Figure 6 provides a graphical description of the
packets mapped to p along time.

In what follows we provide an analysis which will eventu-
ally enable us to determine the value of L used in the definition
of the mapping. Consider any value L̃ which satisfies the
following property (using the notation introduced above):

For every p ∈ G, if it has load L̃ upon delivery, there exists
some t ∈ Hp such that

yt ≤
∑

1≤j≤L̃|tj≥t
xjtj . (2)

Any value L̃ satisfying this property is said to be HOBO-
compliant.

We first note that there exists an HOBO-compliant value
of L̃. Assume we take in the our mapping L = k. This
implies that during Hp, if p has load L, then there are
L = k distinct packets mapped to p during Hp, where each of

these packets has some strictly positive number of residual
passes. This implies that for t = sp, Equation (2) holds,
since yt ≤ k ≤ ∑k

j=1 x
j
tj . It follows that L̃ = k is HOBO-

compliant. It is worthwhile to note that by definition, if L̃ is
HOBO-compliant, then every L ≥ L̃ is also HOBO-compliant
(since the right hand side of Equation (2) can only increase,
where the left hand side remains unchanged).

Next, we prove that for any value L̃ which is HOBO-
compliant, satisfies HOBO.

Lemma 11. If L̃ is HOBO-compliant, then L̃ satisfies HOBO.

Proof: Consider the time t ∈ Hp for which Equation (2)
holds. For such a t, the sum of residual passes of packets
mapped to p as of time t (non of which is already delivered
by O) is at least the number of residual passes remaining for p
at time t. Since by definition p is the HOL packet throughout
Hp, and is delivered by the end of this interval, this implies
that the last of the packets mapped to p cannot be delivered
by O before p is delivered by G.

We henceforth abuse notation, and let L̃ denote the minimal
integer which is HOBO-compliant. The following lemma
provides an upper bound on L̃.

Lemma 12. L̃ satisfies

L̃ ≤ 2 + log β
β−1

(k/2) . (3)

Proof: By definition, L̃ is the minimal value for which for
any packet p ∈ G such that has load L upon its delivery, there
exists some time t ∈ [sp, s∗p] for which yt ≤

∑
j≤L̃|tj≥t x

j
tj .

Therefore, if we consider L̃ − 1, then there exists some
packet p ∈ G such that that has load L̃ − 1, yet for every
time t ∈ [sp, s∗p], yt >

∑
j≤L̃|tj≥t x

j
tj . In particular this holds

for every time t = ti, for i = 1, . . . , L̃ − 1. We now abuse
notation and let yi = yti , and also let xi = xiti . We further let
zi =

∑L−1
j=i xj .

Using the above notation, we have for every i ∈
{1, . . . , L− 1},

yi > zi,

i.e.
yi ≥ zi + 1,

In addition, by Lemma 9 we have for every i = 1, . . . , L−2,

xi = zi − zi+1 ≥
1
β
· yi.

Therefore, combining both equations, we obtain:

zi+1 ≤ zi −
1
β
· yi

≤ zi −
1
β
· (zi + 1)

i.e.
zi+1 + 1 ≤

(
1− 1

β

)
· (zi + 1) .

By iteration, we get:

zL−1 + 1 ≤
(

1− 1
β

)L−2

· (z1 + 1) .
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Finally, we use zL−1+1 = xL−1+1 ≥ 2 and z1+1 ≤ y1 ≤ k.
Therefore we obtain:

2 ≤
(

1− 1
β

)L−2

· k.

Rearranging the terms we obtain the required result.
We thus have the following corollary:

Corollary 13. For L = 2 + log β
β−1

(k/2), for every p ∈ G,
φ−1(p) ≤ L when p is delivered.

Proof: By our choice of L, Lemma 12 implies that L is
HOBO-compliant. For such an L, Lemmas 11 and 8 ensure
that the mapping φ is feasible. Since every p ∈ G is the HOL
packet of G upon delivery, it follows by the definition of the
mapping that φ−1(p) ≤ L, as required.

E. The Mapping ψ
In this section we define a mapping ψ : A2 ∩G 7→ G such

that for every p ∈ G,
∣∣ψ−1(p)

∣∣ ≤ logβ k, i.e., there are at most
logβ k packets from A2 ∩ G mapped to any single packet in
p ∈ G by ψ.

The mapping essentially follows a preemption sequence of
packets, up to a packet that is successfully delivered by G.
Formally, it is defined by backward recursion as follows: if
p ∈ G, then ψ(p) = p. Otherwise p ∈ A2 is preempted in
favor of some packet q ∈ A2 ∪G, such that r(p) > βr(q), in
which case we define ψ(p) = ψ(q).

Lemma 14. For every p ∈ G,
∣∣ψ−1(p)

∣∣ ≤ logβ k.

Proof: The proof follows immediately from the fact that
for every p preempted by q we have r(p) > βr(q), i.e., a
reduction of the number of required passes by a factor of β.
Since r(p) ≥ 0 is integral, it follows that any such sequence of
preemptions can be of length at most logβ k. Since preemption
is one-to-one it follows that the maximum number of packets
mapped to any single p ∈ G is bounded by the length of any
such preemption sequence, which completes the proof.

F. Putting it All Together
We are now in a position to prove our main theorem.

Proof of Theorem 7: Our proof essentially relies on
determining the value of L in the description of mapping φ.
We set L = 2+log β

β−1
(k/2), as suggested by Lemma 12 and

Corollary 13.
By composing the mappings φ and ψ we obtain a mapping

χ : A1 ∩ A2 7→ G such that for every p ∈ G,
∣∣χ−1(p)

∣∣ ≤
2(logβ k − 1) + L = L− 2 + 2 logβ k. This follows from the
fact that every packet along the preemption sequence save the
last piggybacks at most 1 packets by φ (Lemma 10), and the
last packet in the preemption sequence piggybacks at most L
packets by φ (Corollary 13). One should also take into account
all the packets in the preemption sequence itself which are
accounted for by ψ (save the last one, which is successfully
delivered by G). Again, see Figure 2 for an illustration of the
mapping χ.

All that remains is to bound the value obtained by the
optimal solution, compared to the value obtained by by PQβ .

Assuming α < 1
logβ k

, one can see that the overall payments
made by the algorithm in any preemption sequence sum to at
most α logβ k < 1 (since payment is made only for packets in
A2∪G), and hence they do not exceed the unit profit obtained
by delivering the last packet in the sequence. It follows that any
packet delivered by our algorithm contributes at least a value
of 1 − α logβ k. For every such packet, the optimal solution
may obtain a value of at most (L−2+2 logβ k+1)(1−α) =
(2 + log β

β−1
(k/2)− 1 + 2 logβ k)(1−α). Note the additional

value of 1 in the denominator, which accounts for packets in
O ∩G. The result follows.

Before we turn to describe our simulation setting and
results, it would be instructive to discuss some of the conse-
quences of Theorem 7. By optimizing the value of β one can
obtain the minimum value for the competitive ratio (depending
on the value of α). Table I gives an illustration of the optimal
values of β and the competitive ratio they imply for k = 10.

α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
β 3.03 3.24 3.49 3.75 4.05 4.38 4.75 5.16

CR 8.37 9.23 10.21 11.32 12.57 14.00 15.63 17.48

TABLE I
OPTIMAL VALUES OF β , AND THE IMPLIED COMPETITIVE RATIO (CR), AS

GIVEN BY THEOREM 7, FOR k = 7.

V. SIMULATION STUDY

In this section we compare the performance of the family
of algorithms PQβ for various values of β (defined in Sec-
tion IV), as well as algorithms PQ1 and FIFO1 (defined in
Section III-B), and the non-preemptive algorithm that uses PQ
(defined in Section III-A), which we dub PQ∞ (this notation
is used to maintain consistency with our notation of PQβ).

When considering the family of algorithms PQβ , we con-
sider several values for β, and do not restrict ourselves to
the optimal values implied by our analysis. The reason for
this is that our analysis is targeted at bounding the worst case
performance, and it is instructive to evaluate the performance
of the algorithms using different values of β for simulated
traffic that is not necessarily worst-case.

Our traffic is generated using an ON-OFF Markov modu-
lated Poisson process (MMPP), which is targeted at producing
bursty traffic. The choice of parameters is governed by the
average arrival load, which is determined by the product of the
average packet arrival rate and the average number of passes
required by packets. For a choice of parameters yielding an
average packet arrival rate of λ, where every packet has its
required number of passes chosen uniformly at random within
the range [1, k], we obtain an average arrival load (in terms of
required passes) of λ · k+1

2 .
Figures 7 and 8 provide the results of our simulations.

The Y -axis in all figures represents the ratio between the
algorithms’ performance and the optimal performance possible
given the arrival sequence. For the case where α = 0
the optimal performance is obtained by PQ1 (as proved in
Theorem 3), whereas for α > 0 the optimal performance is
obtained by the algorithm that incurs the copying cost only
upon transmission (as proved in Theorem 6).
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We conduct two sets of simulations; one targeted at a better
understanding of the dependence on the number of recycles,
and the other targeted at evaluating the power of having
multiple cores. We note that the standard deviation throughout
our simulation study never exceeds 0.05 (deviation bars are
omitted from the figures for readability).

A. Variable Maximum Number of Required Passes
In the first set of simulations we set the average arrival

rate to be λ = 0.3. By performing simulations for variable
values of the maximum number of required passes k in
the range [4, 24], we essentially evaluate the performance of
our algorithms in settings ranging from underload (average
arrival load of 0.75) to extreme overload (average arrival load
of 3.75), which enables validating the performance of our
algorithms in various traffic scenarios. For every choice of
parameters, we conducted 20 rounds of simulation, where
each round consisted of simulating the arrival of 1000 packets.
Throughout our simulations we used a buffer of size B = 20,
and restricted our attention to the single-core case, i.e., C = 1.

For α = 0, Figure 7(a) shows that the performance of
PQβ degrades as β increases. This behavior is of course
expected, since the optimal performance is known to be
obtained by algorithm PQ1 which preempts whenever some
gain can be obtained. The non-preemptive algorithm (PQ∞)
has poor performance, and the performance of FIFO1 lays
in between the performance of the algorithms PQβ and
the non-preemptive algorithm. When further considering the
performance of the algorithms for increasing values of α,
in Figures 7(a)-7(c), and most notably in Figure 7(c), an
interesting phenomenon is exhibited: the performance of all
algorithms (especially FIFO1) degrades substantially, save
the performance of the non-preemptive algorithm which is
maintained essentially unaltered.

One of the most interesting aspects arising from our simula-
tion results is the fact that they seem to imply that our worst-
case analysis has been beneficial in designing algorithms that
work well also on average. This can be seen especially by
comparing Figures 7(b) and 7(c): the results show that when
α changes, the value of β for which PQβ performs best
also changes (specifically, compare PQ1.5 and PQ2). This
change is in accordance with the value of β that optimizes the
competitive ratio, which is a worst-case bound derived from
our analysis (see, e.g., the optimal values of β appearing in
Table I for k = 10).

B. Variable Number of Cores
In this set of simulations we evaluated the performance of

our algorithms for variable values of C in the range [1, 25].
For each choice of parameters, we conducted 20 rounds of
simulation, where each round consisted of simulating the
arrival of 1000 packets. Throughout our simulations we used
a buffer of size B = 20, and used k = 16 as the maximum
number of passes required by any packet.

Figure 8(a) presents the results for a constant traffic arrival
rate of λ = 3. Not surprisingly, the performance of all algo-
rithms improves drastically as the number of cores increases.

The increase in the number of cores essentially provides the
network processor with a speedup proportional to the number
of cores (assuming the average arrival rate remains constant).

We further evaluate the performance of our algorithms for
increasing number of cores, while simultaneously increasing
the average arrival rate (set to λ = 0.3 · C, for each value of
C), such that the ratio between the speedup and the arrival
rate remains constant. The results of this set of simulations is
presented in Figures 8(b) and and 8(c), for α = 0 and α = 0.4,
respectively. Contrarily to what may have been expected, the
performance of some of the algorithms is not monotonically
non-decreasing as the number of cores increases. Furthermore,
the performance of some of the algorithms, and especially
the non-preemptive algorithm PQ∞, decreases drastically as
the number of cores increases (up to a certain point), when
compared to the optimal performance possible. Only once
the number of cores is sufficiently large (which occurs when
C ≥ 14), do all algorithms exhibit a steady improvement in
performance as the number of cores further increases. This
is due to the fact that for such a large number of cores,
almost all packets in the buffer are scheduled in every time
slot (recall that the buffer used in our simulations has a
size of B = 20). It is interesting to note that this behavior
trend is independent of the value of α for both FIFO1

and PQ∞. These results provide further motivation, beyond
the worst-case lower bounds presented in Section III-A, for
adopting preemptive buffer management policies in multi-core,
multipass NPs, and shows the vulnerability of architectures
based on FIFO buffers.

VI. DISCUSSION

The increasingly-heterogeneous packet-processing needs of
NP traffic are posing design challenges to NP architects. In
this paper we provide performance guarantees for various
algorithms within the multipass NP architecture, and further
validate these results by simulations.

Our results can be extended in several directions to reflect
current NP constraints. Our work which focuses on unit-sized
packets and homogeneous PPEs can be considered as a first
step towards solutions which more generally deal with variable
packet sizes and heterogeneous PPEs. In addition, it would be
interesting to study non-greedy algorithms which are equipped
with an admission control mechanism that aim at maximizing
the guaranteed NP throughput. Last, it would be interesting
to see the impact of moving the computation of the number
of passes needed for each packet from the entrance of the NP
to PPEs during the first pass. This is especially interesting
because the first pass often corresponds to processing features
that lead to the early dropping of packets, such as ACL.
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