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Abstract— The Capacity Allocation Paradox (CAP) destabilizes a 
stable small-buffer network when a link capacity is increased.  
CAP is demonstrated in a basic 2x1 network topology. We show 
that it applies to fluid, wormhole and packet-switched networks, 
and prove that it applies to various scheduling algorithms such as 
fixed-priority, round-robin and exhaustive round-robin. Their 
capacity regions are modeled and surprising phenomena are 
described. For instance, once increasing a link capacity 
destabilizes a stable network, increasing it further to infinity 
might never restore stability. Further, we exhibit networks with 
arbitrarily tight link-capacity stability regions, in which any 
small deviation from an optimal link capacity might make the 
network unstable. Finally, we suggest ways to mitigate CAP, e.g.  
by using GPS scheduling. 

I. INTRODUCTION 
ETWORK designers typically assume that adding 
capacity can only improve performance. Thus, the 

principal goal of network design is assumed to be finding the 
minimum capacity needed for acceptable performance. 
Beyond that minimum capacity, any capacity should work. 

Such intuitive view is central to classical networking theory. 
For instance, queuing theory teaches us that increasing the 
service rate µ stabilizes most queues of arrival rate λ, as long 
as λ < µ  [1]. Likewise, information theory shows that 
increasing the channel capacity C can help transmit most 
codes of  information rate R with arbitrarily small block error, 
as long as R < C  [2]. More generally, the network capacity 
region is considered in such diverse networking fields as 
multi-hop wireless networks  [3], queuing networks  [4], packet 
switches  [5], mobile ad-hoc networks  [6], interconnection 
networks  [7], networks-on-chip  [8], and satellite transmissions 
 [9].  

There are two well-known theoretical exceptions to this 
rule, but network designers can easily avoid them. First, 
Braess’s paradox states that increasing the capacity of a link 
may harm the performance of a network in which each source 
selfishly chooses its route  [10]- [13]. But by making routing 
deterministic, Braess’s paradox can be avoided altogether. 
Second, in networks with reentrant lines or similar cyclic 
dependency, given specific initial conditions, arbitration 
schemes and topologies, increasing the service rate of a queue 
might make the network unstable, as shown in  [14] (see also 
 [15]- [18]). However, most practical networks do not contain 
reentrant lines and do not satisfy the additional specific 

conditions. Thus, in practice, network designers seldom need 
to take these two exceptions into account. 

As a consequence, network capacity allocation algorithms 
are typically simple to design: given a target performance 
guarantee, network designers need only look at the flows that 
do not satisfy this performance target, and allocate more 
capacity on their paths. For instance, such an approach is 
employed to provide performances guarantees in hard-to-
model wormhole networks such as spacecraft networks  [19] 
and networks-on-chip  [20]. It is assumed that offering 
increasingly more capacity would necessarily reach the target 
performance. 

In this paper we revisit this classical assumption of 
networking theory, and show that it may be wrong. When 
some of the buffers in the network are small, we prove that 
adding capacity can make the network unstable, even when 
adding infinite capacity. Therefore, an uncontrolled capacity 
allocation algorithm may not converge.  

This phenomenon is termed the Capacity Allocation 
Paradox (CAP), and we prove that it is quite general in finite-
buffer networks. For instance, Figure 1 illustrates a simple 2×1 
network with two sources A and B, a router R, and a 
destination C. The two sources A and B generate packets at 
respective rates rA and rB. They send the packets to their 
corresponding small buffers at the router R using links of 
capacities CA and CB. In turn, R schedules the packets and 
forwards them to the destination C on a link of capacity CR. If 
the finite router buffers are full, the corresponding sources 
queue their packets at their infinite queues until the buffers are 
not full anymore. For instance, in Figure 1, A cannot send its 
packets because its buffer is full, while B can send its queued 
packet. The network is considered stable if the expected queue 
sizes are bounded. 

We demonstrate that increasing CA or CB can destabilize a 
stable network. For instance, we might want to improve the 
average delay of flow A and change the capacity allocation, by 
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Figure 1: Simple 2×1 network 
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increasing CA while keeping other parameters constant. We 
show that this can make the network unstable by overflowing 
the queue of B. More dramatically, even if we keep increasing 
CA → ∞, the network remains unstable. 

CAP is a critical issue in finite-buffer networks, because it 
applies in general settings. For instance, it can happen using 
any number of sources, since it already happens with two 
sources. More generally, it applies to any finite-buffer network 
topology in which this 2×1 example can be embedded. It can 
also occur with any finite buffer size, though of course it is 
more acute for smaller buffers. Last, we prove that it applies to 
many practical router scheduling schemes, such as fixed-
priority, round-robin and exhaustive round-robin.  

Buffer size is limited in many networks, such as networks-
on-chip  [20], which need to employ small buffers because of 
their area and power requirements, as well as computer 
interconnection networks  [7], spacecraft networks  [19]. The 
prevalence of such small buffer networks emphasizes the 
importance of considering CAP issues. 

Three different settings are used to demonstrate the 
generality of CAP. First, we analyze a bufferless router with 
fluid traffic. That case provides some intuition into the 
underlying reasons behind CAP, as well as into the 
mathematical tools used to analyze it. Wormhole-switched 
networks, in which packets are broken into small flits and 
routers can switch a flit without waiting for the others to 
arrive, and which are quite useful in finite-buffer networks, are 
discussed next. The CAP phenomenon is demonstrated in 
wormhole-switched networks, and their stability region under 
several work-conserving scheduling schemes is characterized. 
We show how in some stable networks, increasing CA to 
infinity while keeping other parameters constant makes the 
network unstable and cannot restore stability. We also prove 
that the size of the stability region for CA can be arbitrarily 
small. In other words, any small deviation from an optimal CA, 
either upwards or downwards, will make the network unstable. 
Last, we propose mitigations of the CAP phenomenon and 
prove that a GPS scheduling algorithm is guaranteed to 
provide stability in the admissible capacity region (i.e., all 
capacities above packet rates) 

Finally, we consider a third setting with classical packet-
switched store-and-forward networks. We model these as 
dropping instead of blocking networks, and assume that 
dropped packets need to be resent. We demonstrate the 
existence of the CAP phenomenon in such a network as well. 

Once a capacity increase makes a network unstable, we 
further illustrate a few ways to bring it back to stability. An 
unintuitive solution is to reduce the link capacities of the 
stable flows. Likewise, it is possible to add capacity and 
buffering on the links of the unstable flows. Last, another 
solution is to change the arbitration policy, e.g. by adopting a 
GPS arbitration.  

The rest of this paper is organized as follows. First, in 
Section  II, we give some intuition for the CAP phenomenon 
based on the fluid traffic setting. Then, in Section  III, we 
analyze wormhole-switched networks and show the existence 
of the CAP as well. We model packet-switched networks in 

Section  IV and prove that CAP occurs in these. Last, Section 
 V presents simulation results and discussions of our models. 

II. INTUITION 
A bufferless example is used to provide intuition into the 

CAP phenomenon. Consider the example of Figure 1 with bit-
by-bit switching and no buffer space in the router, i.e. just 
enough space to switch one bit. Assume that time is slotted, 
and that both nodes A and B receive a packet of size 1 at the 
start of each time-slot. Further assume that traffic from node A 
is of higher priority, and neglect propagation times. 

We show that both the nodes A and B manage to send their 
packets given some initial capacity allocation. Subsequently, 
as we increase one of the link capacities, they cannot both do 
it anymore and the network becomes unstable. 

A. Low Capacity – Stable Network 
Figure 2(a) illustrates how nodes A and B share the capacity 

of link R, CR, when CA=CB=1 and CR=2. For this capacity 
allocation CR=CA+CB and therefore any traffic arriving at the 
router can be immediately transferred and there is no blocking. 
Each node A,B can produce traffic at full rate of 1 and send 
the packet that arrived at the beginning of each time-slot by 
the end of the same time-slot.  

B. High Capacity – Unstable Network 
Consider CA=2. Now CA=CR, and therefore once node A 

transmits its packet it uses the full router output link 
bandwidth. Since A has higher priority, its traffic is not 
interrupted and thus node B cannot send anything. At each 
time-slot n, A sends its packet at rate 2, completing by time 
n+1/2.  

Figure 2(b) illustrates how nodes A and B share the 
capacity CR for this latter capacity allocation. The rate of node 
B is bounded by CB=1 and therefore B is unable to complete 
sending its packet. B only sends half a packet by the end of 
time-slot n, and the other half of the packet remains in the 
queue in node B. For example, during [0,T] node B sends only 
B1(1), the first half of packet B1, and in the next time slot it 
sends the other half, B1(2). Thus, the queue in B grows by half 
a packet each time slot. As a result, due to this increased link 
capacity, the network is now unstable, illustrating the CAP 
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Figure 2: Sharing of Link R, using rA=rB=1, CB=1, CR=2.  
(a) CA =1, stable network (b) CA =2, unstable network. 
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phenomenon.  

C. Fluid Model 
A deterministic continuous model of the system can be 

described as follows. For i∈{A,B}, let (Qi,Ai,Di) denote the 
cumulative amount of data queued, arrived, and departed 
respectively for node i by time t. Then we have,  

 Qi(t) = Qi(0) + Ai(t) – Di(t) (1) 
 Ai(t) = t⎡ ⎤⎢ ⎥  (2) 

 ( )AD t = { } ( )min ,   if  0A R AC C Q t >  (3) 

 ( )BD t = ( ){ } ( )min ,   if  0B R A BC C D t Q t− >  (4) 
Equation (1) expresses the flow conservation at node i. 

Equation (2) reflects the periodic arrivals of packets of size 1. 
Equation (3) states that packets from A can leave at a rate 
limited by the minimum of the link capacity of A and the 
available router output link capacity. Finally, Equation (4) 
limits the rate at which packets leave B to the minimum of the 
link capacity of B and the available router output link 
capacity, given that A has higher priority. 

Let's focus on the case of CA≤CR. When QB(t) > 0, 
substituting (3) into (4) yields: 

 ( ) { } ( )min ,     0
     

B R A A
B

B

C C C Q t
D t

C else
⎧ − >⎪= ⎨
⎪⎩

 (5) 

Observe that B is constrained by two limits: its link capacity 
and the residual bandwidth of the router link after A has been 
served. As CA increases, node A exploits a higher portion of 
the router output bandwidth, but for a smaller portion of the 
time. Equation (5) shows these two contradicting influences of 
CA on the service rate of node B. Assuming A is stable, 
QA(t)>0 for 1/CA of the time. Thus, the average departure rate 
of node B is given by: 

( ) { }1 1min , 1

 max ,0

B B R A B
A A

A B R
B

A

E D t C C C C
C C

C C C
C

C

⎛ ⎞
⎡ ⎤ = − + −⎜ ⎟⎣ ⎦

⎝ ⎠
⎛ ⎞+ −

= − ⎜ ⎟
⎝ ⎠

 (6) 

In our example, for stability we need ( ) 1BE D t⎡ ⎤ ≥⎣ ⎦ . Since 

CB=1, CR=2 and ( )BE D t⎡ ⎤⎣ ⎦ = 1-max(1-1/CA,0) = min(1,1/CA), 

the network is unstable whenever CA>1. Therefore, any 
increase of CA beyond 1 activates the CAP phenomenon and 
the network becomes unstable. 

III. CAP IN WORMHOLE NETWORKS 

A. Model and Notations 
In wormhole-switched networks, packets are broken into 

small flits and routers can switch a flit without waiting for the 
others to arrive. This is in contrast to networks that use store 
and forward where the router should wait for the entire packet 
to arrive before transmitting it. Thus, wormhole switching 
enables the use of small buffers and achieves smaller delay at 
low load. If flits cannot be forwarded from a given node, for 
example because the buffer in the next node on the path is full, 

then it blocks all the flits trailing it, and thus a packet can 
spread along the network (hence the name wormhole). 

Consider the network illustrated in Figure 1. Assume that 
the packet creation process in node i is stationary and ergodic 
of average rate ri. Let L denote the constant number of flits per 
packet, and Ri denote the average rate of flits created in node i. 
Then Ri=ri·L. Let link i denote the link that is going out of 
node i (for example, link R is the link from the router to node 
C). As in Figure 1, let CA, CB, and CR respectively denote the 
flit transmission capacities of links A, B and R. Finally, for 
i∈{A,B}, let queue i denote the queue in node i, which we 
assume infinite, and let buffer i denote the router buffer storing 
packets from node i. Buffer i is assumed finite, of size Bi>0. 

We assume that the buffer size is much smaller than the 
number of flits per packet, namely BA,BB<<L (typically, a 
wormhole buffer may include 4-16 flits, while packets may 
comprise up to 1000 flits). Note that one of the main 
advantages of wormhole networks is that they require small 
buffers in the routers, as reflected by this assumption.  We also 
assume that there are at least two virtual channels from the 
router to node C, and therefore do not consider deadlocks  [7]. 
Considering flit rates rather than bit rates in the following 
accounts for the virtual channel overhead. Finally, we neglect 
all propagation delays, and assume that a node knows when 
there is buffer space available at the next node, thus 
eliminating the use of credits in this analysis. 

Define the maximum utilization Ui of link i∈{A,B} as the 
utilization achieved on link i when queue i is never empty. 
Then queue i is defined to be stable iff Ui·Ci>Ri  [27].  

We consider four common work conserving arbitrations as 
follows: 
1) Exhaustive Packet Round Robin (EPRR)  [22]: The router 

transmits a packet from one input port until the buffer 
becomes empty or until the last flit of a packet is sent. 
Then the router moves to serve the other input port. 

2) Priority  [21]: The router gives higher priority to packets 
from one of the nodes. Thus if the buffer with the higher 
priority is not empty it gets service, otherwise the router 
serves the buffer with the lower priority. 

3) Round Robin Per Flit (RRPF)  [23] [24]: The router 
transmits one flit from one of the buffers and then serves 
the other buffer, interleaving flits from the two buffers. 

4) General Processor Sharing (GPS)  [26], i.e. Packetized 
GPS (PGPS) applied to flits: The router output bandwidth 
is divided between the two flows according to their 
respective flit rates, namely CRRA/(RA+RB) and 
CRRB/(RA+RB). Priority is then assigned dynamically 
according to the flit completion time in bit-by-bit GPS. 

The CAP phenomenon is shown to exist for the EPRR, RRPF 
and Priority  arbitrations, whereas it does not occur when 
using GPS. 

B. Necessary Stability Conditions 
To maintain stability, a link should be capable of 

transmitting all traffic presented to it. The following 
conditions are necessary for stability: 
 CA > RA (7) 
 CB > RB (8) 



TECHNICAL REPORT TR08-02, COMNET, TECHNION, ISRAEL 
 

 CR > RA + RB (9) 
As shown below, in some cases these necessary conditions 

are insufficient. 

C. Stability of EPRR  
Assume that the router uses EPRR arbitration and that the 

necessary stability conditions are fulfilled. We break the 
discussion of the stability conditions into several cases 
according to the relations among link capacities, and show that 
for some capacity allocations the network is stable, while 
increasing one of the links capacities may destabilize the 
network. 

Case (1): CA + CB ≤ CR. In this case, the router output link 
transmits flits at a higher rate than they arrive at the router, 
even if both links A and B are active. 

Theorem 1: When CA + CB ≤ CR, the two buffers together 
will hold no more than one flit, where only flits that are 
completely in the buffer are counted. 

Proof: Instead of considering two buffers we consider one 
faster buffer which both links A and B write to it bit by bit. 
Since the number of bits in a flits is N, to prove the theorem it 
is sufficient to show that the number of bits in the buffer 
cannot exceed 2N-1. Once the number of bits in the buffer 
reaches 2N-1, it is guaranteed that there is one whole flit in the 
buffer and thus the router starts to transmit it. Since 
CA+CB≤CR, the arrival rate to the buffer is smaller than the 
departure rate and therefore the number of bits in the buffer 
starts to decrease. Therefore the buffer will hold no more than 
2N-1 bits and the proof is complete.  ■ 

Theorem 2: When CA + CB ≤ CR, the necessary stability 
conditions are also sufficient. 

Proof: From Theorem 1 we know that the buffers will hold 
no more than one flit, and therefore the queue of node i gets 
service at full link capacity. If the necessary stability 
conditions are fulfilled, the service rate of both queues 
exceeds their average flit generation rate, and thus both queues 
are stable, as well as the entire network. ■ 

Case (2): CA ≥ CR and CB < CR. In this case, the router 
output link transmits flits slower than link A but faster than 
link B. We show that while queue A is stable, the necessary 
stability conditions may not be sufficient for queue B. 

Theorem 3: The necessary stability conditions are also 
sufficient for the stability of queue A. 

Proof: Link R is busy transmitting packets from node B for 
a portion of the time of at most RB/CR. In the worst case during 
these busy periods the entire path from node A to node C is 
idle, and during the remainder of the time the router is able to 
transmit flits from node A. Therefore, a sufficient condition 
for the stability of queue A is: 

{ }1 min ,B
A R A

R

R
C C R

C
⎛ ⎞

− ⋅ >⎜ ⎟
⎝ ⎠

1
A R

B
R AC C

R

R
C R

C≥

⎛ ⎞
⇔ − ⋅ >⎜ ⎟

⎝ ⎠

  
Necessary Condition

R A BC R R⇔ > +  
■

Consider the conditions for stability of queue B. We show 
that the transmission of a packet from A is not interrupted, and 
that there are cases in which the maximum utilization of link B 

is less than 100%. 
Theorem 4: Once the transmission of a packet from node A 

on link R has started, it is not interrupted until the entire 
packet has been transmitted. 

Proof: Since CA≥CR, buffer A does not become empty as 
long as the packet transmission has not ended. Thus, using the 
EPRR arbitration, the packet transmission is not interrupted. ■ 

Theorem 5: Denote x+=max(x,0), then the maximum 
utilization of link B is 

 
+

1 B
B A

R B

BLU r
C C

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (10) 

Proof: By definition, UB is computed when queue B is 
always non-empty. Theorem 4 shows that every time a packet 
from A is transmitted on link R, link B can transfer data only 
until it fills its buffer in the router. Afterwards, and until the 
transmission of the packet from A has ended, link B is stalled. 
The time it takes for buffer B to fill up is BB/CB, and the time it 
takes to send a packet from A is L/CR. Therefore, during the 
transmission of a packet from A, node B is stalled 
for ( )R B BL C B C +− . Since the packet rate from node A is rA, 

the portion of time that link B is stalled is ( )A R B Br L C B C +− , 
yielding Equation (10).  ■ 

The following theorems present the stability conditions for 
queue B. 

Theorem 6: Queue B is stable iff  

 
+

1

B
B

B
A

R B

R
C

BLr
C C

>
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

 
(11) 

Proof:  By definition, queue B is stable iff UB·CB>RB. Using 
the result of Theorem 5, this condition can be rewritten as 

( )( )1 ,B R B B BC L C B C R+⋅ − − >   hence the result.  ■ 

For the following, define π =BB/L (the portion of a packet 
that fits in buffer B) and γ=RB-BB·rA=RB-π ·RA. 

Theorem 7: In Case (2), queue B is stable iff: 

 ( )  OR 
1 /B R B

A R

C C C
R C

γπ
⎛ ⎞

≤ ⋅ >⎜ ⎟−⎝ ⎠
 (12) 

Proof: From Theorem 6 we get that queue B is stable iff 

( )  OR 
1 /B R B B B R B

A R

C C C R C C C
R C

γπ π
⎛ ⎞

≤ ⋅ ∩ > > ⋅ ∩ >⎜ ⎟−⎝ ⎠
 

When the necessary conditions are fulfilled this becomes 

( )  OR 
1 /B R B R B

A R

C C C C C
R C

γπ π
⎛ ⎞

≤ ⋅ > ⋅ ∩ >⎜ ⎟−⎝ ⎠
 

Therefore if the necessary conditions are fulfilled and CB≤π·CR 
the network is stable, otherwise CB>π·CR  and for stability we 

demand 
1 /B

A R

C
R C

γ
>

−
. This completes the proof.  ■ 

Example: All flit rates and capacities are specified in 
Kflits/sec.  Suppose L=1000 flits/pckt, rA=rB=100 pckts/sec and 
RA=RB=100 Kflits/sec. Also, BB=16 flits, CA=300, CR=272 
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(namely, CA>CR as in Case (2)). From Equation (12) we get 
the following conditions for stability: 

(CB ≤ 4.36) OR (CB > 155.3) 
The left-hand relation contradicts the necessary conditions. 
Hence the network is stable iff CB>155.3. For instance, with  
CB=105, queue B is unstable.  

However, if CA is reduced so that CA+CB≤CR, i.e. CA≤167, 
the capacity conditions satisfy Case (1) and the network is 
stable. In other words, having started with an unstable 
network, decreasing the capacity of only one link can yield a 
stable network. This is the CAP phenomenon. 

Note that as we increase the capacity of links A and R, we 
eventually obtain a stable network even for a very low 
capacity of link B (as long as it is strictly greater than RB). In 
the example, if we want the network to be stable with CB=105 
we need to fulfill the following:  

(CR ≥ 6562) OR (CR > 1590) => (CR > 1590) 
Another option would be to switch to case (1) without 
changing CA, by requiring that CR≥405. 

The general analysis of the symmetric case of CB≥CR and 
CA<CR is similar to the foregoing discussion.  

Case (3): CA,CB < CR and CA + CB ≥ CR. In this case, the 
router outputs flits at a slower rate than they arrive at the 
router, but faster than either link A or B. Consequently, packet 
transmission may be interrupted for either queue. 

Finding the exact maximum utilization Ui for this case is 
hard; instead we only provide an estimate. Let us denote by ti

e  
the time it takes to empty buffer i∈{A,B}, assuming that it is 
initially full and that while sending flits, the buffer also 
continuously receives new flits from node i. Since flits leave 
the buffer at rate CR and new flits arrive at the router at rate Ci, 
the buffer emptying rate is CR–Ci. If the buffer starts full, the 
time to empty it is 
 ti

e  = Bi/(CR-Ci) (13)
Similarly, tif  is the time to fill buffer i when it is initially 

empty and not being serviced. Then 
 tif  = Bi/Ci (14)

Theorem 8: For both (i=A, j=B) and (i=B, j=A), the 
maximum utilization Uj of link j is  

 ( )1 i j
j e f ii

e R

LU t t r
t C

+
= − −  (15) 

Proof: By definition, Uj is computed when node j always 
has packets to send. If ti

e ≤ tjf  then by the proof of Theorem 5 
queue j sees an infinite buffer, namely link j can be fully 
utilized. On the other hand, when ti

e > tjf  the utilization of link j 
drops below 100%. For each emptying of queue i, queue j is 
stalled for ti

e – tjf  seconds. The number of flits that are sent 
from buffer i during the time in which it is being emptied is  
ti
e ·CR and therefore for each packet of flow i, buffer i is 

emptied L/(ti
e ·CR) times. These packets of flow i arrive at rate 

ri, hence node j is stalled for a portion of time 
(ti

e – tjf )
+·L/(ti

e ·CR) ·ri. The result follows. ■ 
Theorem 9: The network is stable iff for both (i=A, j=B) 

and (i=B, j=A), 

 ( )1 i j
e f i j ji

e R

Lt t r C R
t C

+⎛ ⎞
− − >⎜ ⎟

⎝ ⎠
 (16) 

 
Proof: Based on the definition that a queue is stable iff 

UB·Cj>Rj. ■  
Note that this is only an approximate condition, though 

simulation results will show that it is a good approximation.  
Case (4): CA,CB ≥ CR. The router outputs flits at a slower 

rate than either links A or B. 
Theorem 10: The necessary conditions in Case (4) are also 

sufficient for stability of the network. 
Proof: From Theorem 3 queue A is stable when CA≥CR. 

Obviously when CB≥CR, queue B is stable. Therefore both 
queues are stable and so is the network. ■ 

D. Stability of Priority 
Assume that the router uses Priority arbitration and without 

loss of generality assume packets from A have higher priority 
than packets from B. First we prove that the necessary stability 
conditions are sufficient for queue A. Then we break the 
discussion of the stability conditions of queue B into several 
cases in the same manner we did for EPRR, and show that for 
some capacity allocations queue B is stable, while increasing 
the capacity of link A may destabilize the network. 

Theorem 11: The necessary stability conditions are also 
sufficient for the stability of queue A. 

Proof: Since packets from A have higher priority, the 
capacity seen by node A is given by min{CA ,CR}. Therefore 
the conditions CA>RA and CR>RA are sufficient for the stability 
of queue A and thus the proof is complete.  ■ 

From now on we deal only with the stability of queue B. In 
contrast with EPRR where we know buffer B gets service after 
every packet that is transmitted from buffer A, here buffer B 
gets service only once queue A becomes empty. This 
difference makes it very difficult to find the exact stability 
conditions for queue B. Therefore for cases (2a) and (3) below 
we only find sufficient conditions for instability of queue B. 
However we give approximated stability conditions for the 
case where the creation process of packets in queue A is 
Poisson. We assume the necessary stability conditions are 
fulfilled. 

Case (1): CA + CB ≤ CR. 
Theorem 12: For CA + CB ≤ CR, the necessary stability 

conditions are also sufficient for the stability of queue B. 
Proof: Note that for this case both buffers will hold no more 

than one flit (the proof is the same as the one of Theorem 1). 
The proof is then completed similar to the proof of Theorem 2. 
■ 

Case (2a): CA ≥ CR and CB < CR. In this case, the router 
output link transmits flits slower than higher priority link A 
but faster than lower priority link B. We show the necessary 
stability conditions may not be sufficient for queue B. 

Theorem 13: Queue B is unstable whenever  
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+

1

B
B

B
A

R B

R
C

BLr
C C

<
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

 
(17) 

Proof: Note that for case (2a) and when packets from A 
have higher priority, the Priority arbitration is almost the same 
as EPPR. The only difference is that the transmission of 
packets from buffer A doesn't end when the transmission of a 
packet end but when buffer A becomes empty, which 
necessarily implies that queue A becomes empty. Therefore in 
Priority as opposed to EPRR link B will be able to fill its 
buffer only for some of the packets that node A transmits, and 
the maximum utilization of link B is even lower than we had 
in EPRR. Therefore as in Theorem 4-Theorem 6, we can show 
that Equation (17) is sufficient for the instability of queue B 
(however it is not necessary).  ■ 

In the last proof we assume buffer B empties after every 
transmission of a packet from node A which is obviously not 
true in many cases. We denote by EQA the expected number of 
flits in queue A. The following theorem estimates the stability 
conditions for queue B. 

Theorem 14: For case (2a) the stability region queue B is 
modeled by 
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(18) 

Proof: The proof relies on an approximation of UB. Once 
buffer A is not empty, the router will transmit about EQA flits 
from it before it gets empty and only then buffer B gets 
service. The time it takes to send EQA flits on link R is 
EQA/CR, and the time it takes to fill buffer B is BB/CB. 
Therefore if EQA/CR≤BB/CB, then the maximum utilization of 
link B may be 100%. Otherwise, the maximum utilization 
cannot be 100% and for every EQA flits that are transmitted 
from buffer A link B will not work for EQA/CR-BB/CB. Thus 
the part of the time link B cannot work is approximately 
(RA/EQA)(EQA/CR-BB/CB)+. From the definition of stability the 
theorem follows.  ■ 

The problem with the last theorem is that it requires the 
knowledge of EQA which sometimes is unknown. We cannot 
tell EQA for the general case, but when the creation process of 
packets in queue A is Poisson, then since packets from A have 
higher priority it can be modeled as an M/D/1 queue and we 
can find EQA using the Pollaczek-Khinchine formula and 
Little's law. The service rate of packets from A is 
µA=min{CA,CR}/L=CR/L. According to the Pollaczek-
Khinchine formula the average waiting time of a packet in 
queue A is 

 ( )2
A

A A A

r
EW

rµ µ
=

−
 (19) 

And according to little's law EQA=L·rA(EW+1/µA), which yield 

 ( )
2

2
A A A

A
A A A

r r
EQ L

r
µ

µ µ
−

=
−

 (20) 

Since in our simulations the creation process is Poisson we use 
Equation (20) to verify the results, section  V.A shows that the 

model is close to simulation results. 
Case (2b): CA < CR and CB ≥ CR. In this case, the router 

output link transmits flits faster than higher priority link A but 
slower than lower priority link B. We show the necessary 
stability conditions are also sufficient for queue B. 

Theorem 15: For case (2b) necessary stability conditions are 
also sufficient for queue B. 

Proof: Exactly as the proof of Theorem 3.  ■ 
Case (3): CA,CB < CR and CA + CB ≥ CR. 
As in case (3) of EPRR it is very hard to find the exact 

maximum utilization of link B, and the fact that buffer B gets 
service only when buffer A is empty makes it even harder. 
Therefore to find sufficient conditions for instability we use 
more or less the same approach as in case (3) of EPRR, and 
assume that between every two consecutive packets that are 
sent from A, buffer B is getting emptied and then refilled. 

As earlier, tif  denotes the time to fill buffer i when it is 
initially empty and not being serviced. As before 
 tif = Bi/Ci (21)

We denote by t i
p  the time it takes to transmit a packet on 

link i, obviously 
 t i

p = L/Ci (22)
Theorem 16: Queue B is unstable whenever  

 ( )1 A B A R R
p f p p A B B

B

C
t t t t r C R

C

+⎡ ⎤⎛ ⎞
⎢ ⎥− − − − ≤⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (23) 

Proof: The amount of time it takes link R to transmit a 
packet is tRp , but since link A is slower, it will take link R      
tAp >tRp  to transmit the packet from A. Therefore, for every 
packet from A, buffer B gets service for tAp -tRp . During this 
time link R sends (tAp -tRp )CR flits from buffer B, and link B can 
send other flits instead. Therefore for every packet sent from 
A, link B can work for [(tAp -tRp )CR]/CB. In addition, to find the 
maximum utilization possible, for every packet sent from A 
link B can also fill buffer B. Combining it all together we get 
that the maximum utilization of link B fulfills 

( )1 A B A R R
B p f p p A

B

C
U t t t t r

C

+
⎛ ⎞

≤ − − − −⎜ ⎟
⎝ ⎠

 

By definition of stability queue B is unstable iff UBCB≤RB 
which yield Equation (23) and the proof is complete.  ■ 

Again, the last theorem only presents a sufficient condition 
for instability since we assume buffer B is emptied after every 
transmission of a packet from node A. As in case (2a) we want 
to give a more accurate condition for stability. 

Theorem 17: For case (3), the stability region queue B is 
modeled by 

 ( )1
B
fA A R R

p p p A B B
A B

L t C
t t t r C R

EQ C

+⎡ ⎤⎛ ⎞⋅⎢ ⎥− − − − >⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (24) 

Proof: The proof is similar to the previous one with the 
difference that buffer B empties only once every EQA flits that 
are sent from buffer A.  ■ 
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Again, given a Poisson packet creation process we can 
model queue A as an M/D/1 queue with service rate 
µA=min{CA,CR}/L=CA/L, and the expression for EQA is given 
in Equation (20). 

Case (4): CA,CB ≥ CR. 
Theorem 18: The necessary conditions in Case (4) are also 

sufficient for stability of the network. 
Proof: It can be shown that queue B is stable, using 

arguments similar to the proof of Theorem 3. ■ 

E. Stability of RRPF  
The CAP phenomenon can also be shown to exist when 

RRPF arbitration is employed. The following analysis 
assumes a buffer size of one flit – although similar results are 
obtained for larger buffers as illustrated in the simulation 
results of Section  V. The dependency between queues A and B 
is neglected and thus this is an approximated model. However, 
we note that if one of the queues is not stable then there is no 
dependency between the two queues. Therefore when we 
model the stability of the network it is reasonable to neglect 
the dependency between queues A and B. 

We use Pi
0  to denote the probability that queue i is empty. 

For (i,j)=(A,B) or (i,j)=(B,A), Ci
e  (resp. Ci

f ) is the capacity 
seen by node i when queue j is empty (resp. not empty). 
Finally, ECi denotes the average capacity seen by node i. The 
round-robin arbitration can be approximated as giving equal 
services rates to both flows, yielding  
 Ci

e  = min{Ci,CR} (25)
 Ci

f  = min{Ci, max{CR/2, CR – Cj}} (26)
 ECi = Pj

0 ·Ci
e +(1-Pj

0 )·C
i
f  (27)

The creation rate of flits in queue i is given by L·ri=Ri and 
by Little’s law. If both queues are stable then 

 ( )0
0 0

1 1
1

i i i
j i j i

i e f

R R
P

EC P C P C
= − = −

⋅ + −
 (28) 

Theorem 19: When the dependency between queues A and 
B is neglected, the network is stable iff there is a solution for 
the following set of equations yielding 0<PA

0 ,PB
0 ≤1: 

 ( )0
0 0

1
1

A A
B A B A

e f

R
P

P C P C
= −

⋅ + −
 (29) 

 ( )0
0 0

1
1

B B
A B A B

e f

R
P

P C P C
= −

⋅ + −
 (30) 

Proof: Assume the network is stable and there is no solution 
for Equations (28) and (29) yielding 0<PA

0 ,PB
0 ≤1. Since Pi

0 ≤1 
there must exist Pi

0 ≤0 for i=A or i=B (or both), therefore: 

00 1i i
i i

i

R
P EC R

EC
≥ = − ⇔ ≤  

which means that the network is not stable, in contradiction 
with our assumption. 

Now assume there is a solution to the set of equations 
yielding 0<PA

0 ,PB
0 ≤1, and that the network is unstable. Since 

there exists a solution, 0< Pi
0 ≤1 for both i=A and i=B, 

therefore, 

00 1i i
i i

i

R
P EC R

EC
< = − ⇔ >  

Thus the network is stable in contradiction with our 
assumption. By that the proof is complete.  ■ 

This theorem, as also confirmed by simulations, shows that 
the CAP phenomenon may exist when using RRPF arbitration. 
Note that the necessary stability conditions imply Ci

e >Ri and 
therefore if Ci

f >Ri then Ci>Pj
0 ·Ri+(1-Pj

0 )·Ri=Ri, namely queue 
i is stable. Note further that if RA=RB=R then CR>RA+RB=2R.  
Thus, Ci

f ≥min{Ci,CR/2}≥Ri and as noted above the network is 
stable. In other words, if flits arrive from all inputs at the same 
rate, the network is stable. This might explain why the CAP 
phenomenon has eluded most previous research works, since 
wormhole networks have typically been analyzed assuming 
uniform traffic. 

F. Stability of GPS  
We now show that networks using flit-level GPS are stable. 

Using the definition, the router output bandwidth is divided 
between the two flows according to their respective flit rates, 
namely CRRA/(RA+RB) and CRRB/(RA+RB), and priority is 
assigned dynamically according to the flit completion time in 
bit-by-bit GPS. 

To show that the necessary conditions are sufficient for 
stability when GPS is used we consider a baseline network 
which fulfills only the necessary condition, namely CA=RA+ε, 
CB=RB+ε, CR=RA+RB+2ε for some small ε. We show this 
network is stable and that adding capacity to this network 
cannot destabilize it. 

Theorem 20: For the baseline flit-level GPS network all 
links can be fully utilized, and the network is stable. 

Proof: As in Theorem 1 we can show that the buffers will 
hold no more than one flit and thus all links can be fully 
utilized. The proof of stability is similar to the proof of 
Theorem 2. ■ 

We now show that increasing either CA, CB or CR in respect 
with the baseline network but without changing the 
proportions that determine how the router output bandwidth is 
divided between the two flows cannot destabilizes the 
network. 

Theorem 21: Increasing the capacity of link R in respect to 
the baseline capacity allocation cannot destabilize the 
network. 

Proof: When we increase CR there still exists CR≥CA+CB 
and therefore the buffers will hold no more than one flit 
(Theorem 1), link A and B can be fully utilized, and obviously 
the network is stable (Theorem 2). ■ 

Theorem 22: Increasing CA or CB in respect with the 
baseline capacity allocation cannot destabilize the network. 

Proof: We prove the theorem for increasing CA, the proof 
for increasing CB is obviously similar. Consider the stable 
baseline network, which according to Theorem 20 is stable, 
and increase CA. The capacity that queue B sees is limited by 
CB which is still RB+ε, and by the output of buffer B. In the 
baseline network buffer B got a share of CRRB/(RA+RB) on link 
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R and since none of these parameters changed queue B is still 
stable, and even further, buffer B will hold no more than one 
flit. Obviously we can use the same arguments for queue A 
and show it is stable. However, note that if we increase CA so 
that CA+CB>CR link A cannot be fully utilized because buffer 
A may get full. Still, the capacity seen by buffer A doesn't 
change and therefore the maximum utilization of link A 
fulfills UACA≥CRRA/(RA+RB)>RA. Thus, queue A is stable. ■ 

Theorem 23: Under GPS arbitration, the necessary 
conditions are also sufficient for the stability of the network. 

Proof: Consider some capacity allocation ,A BC C  and RC  
which fulfills necessary conditions. We start with the baseline 
configuration and increase CR to RC , from Theorem 21 we 
know that the network remains stable. Now we increase CA to 

AC  and using the same arguments as in the proof of Theorem 

22 we can see it is stable. Finally we increase CB to BC  and 
show the network remains stable. If link i can be fully utilized 
then obviously queue i remains stable. On the other hand, if 
link i cannot be fully utilized then its utilization is limited by 
the capacity that buffer i sees and since CR, RA, and RB were 
not changed, UiCi≥CRRi/(RA+RB)>Ri, thus the network is 
stable. Therefore the necessary conditions are also sufficient 
for the stability of the network.  ■ 

To summarize GPS arbitration, we saw that a baseline 
network which fulfills only the minimum capacity demands is 
stable and that adding capacity to this network cannot 
destabilizes the network and thus the necessary conditions are 
also sufficient for the stability of the network. 

G. Summary of Conditions in Wormhole Switching 
Table 1 summarizes the conditions for stability for the three 

arbitration schemes. It assumes that the necessary stability 
conditions are fulfilled. 

IV. CAP IN STORE AND FORWARD NETWORKS 
We now show that the CAP phenomenon may also happen 

in a store and forward network in which all packets must 
eventually arrive at their destinations. As shown for wormhole 
networks, the CAP phenomenon occurs when buffers become 
full, limiting the maximum utilization of a link. In store and 
forward networks that employ finite buffers, when buffers 
become full some of the packets are lost and the source nodes 
need to retransmit them, increasing the packet creation rates. 
In such cases the necessary conditions may not be sufficient 
for stability. In other words, the maximum effective utilization 
of a link cannot reach 100% in certain cases. For the sake of 
brevity we analyze only a specific case in this Section and 
illustrate it using simulations (Section  V.B). 

A. Notations and Assumptions 
Time is slotted and TS stands for Time-Slot. The packet 

creation process is Bernoulli distributed with parameters 
pA,pB≤0.5 and qi=1-pi. The rates of links R and B are 
CR=1pckt/TS, CB=0.5pckt/TS. They fulfill the necessary 
stability conditions, namely CR≥pA+pB, and CB≥pB. Pi

j  denotes 
the probability that queue i∈{A,B} has j packets. We assume 
that all packets must eventually arrive at their destination: if a 
packet arrives at a full buffer and is dropped, the source 
retransmits the packet. Buffer size is one packet. Also assume 
that packets from A have higher priority than packets from B. 
Finally, as we shall see in the proof of Theorem 26 the results 
we obtain are approximated, although simulations show that 
they are very close to the real conditions. We define queue i to 
be stable iff its service rate is greater than its arrival rate. 

We show that there are arrival rates for which the network 
is stable when CA=0.5pckt/TS and is unstable when 
CA=1pckt/TS. Thus, one can increase capacity and 
consequently destabilize the network. 

TABLE 1 SUMARY OF WORMHOLE STABILITY CONDITIONS (IN ADDITION TO THE NECESSARY CONDITIONS) 

Arbitration Conditions 
CA+CB≤CR NONE 

CA≥CR, CB<CR [1-(L·rA)/CR]·CB + BB·rA>RB 
CA<CR, CB≥CR [1-(L·rB)/CR]·CA + BA·rB>RA 

CA ,CB < CR 
and 

CA + CB ≥ CR 
For both (i=A, j=B) and (i=B, j=A): ( )1 i j

e f i j ji
e R

Lt t r C R
t C

+⎛ ⎞
− − >⎜ ⎟

⎝ ⎠
 (model) 

EPRR 

CA , CB ≥ CR NONE 
CA+CB≤CR NONE 

CA≥CR, CB<CR 
+

1 A A B
B B

A R B

R EQ B C R
EQ C C

⎡ ⎤⎛ ⎞
⎢ ⎥− − >⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (model ) 

CA<CR, CB≥CR NONE 
CA ,CB < CR 

and 
CA + CB ≥ CR 

( ), , ,1
B
f R

p A p A p R A B B
A B

L t Ct t t r C R
EQ C

+⎡ ⎤⎛ ⎞⋅⎢ ⎥− − − − >⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (model ) 

Priority 
(when A has 

higher 
priority) 

CA , CB ≥ CR NONE 

RRPF 

There exist 0<PA
0 , PB

0 ≤1  that solve the equations: 

( ) ( )0 0
0 0 0 0

1 , 1
1 1

A BA B
B e B f A e A f

A A B B

R RP P
P C P C P C P C

= − = −
⋅ + − ⋅ + −

 (model) 

GPS NONE 
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B. Store and Forward: Low Capacity Network 
Assuming CA=0.5pckt/TS, we prove that the network is 

stable for any arrival rates pA,pB≤0.5.  
Theorem 24: For CA=0.5pckt/TS every packet arriving at the 

router finds an empty buffer. 
Proof: Since packets from A have higher priority, and since 

it takes two TSs to transmit a packet on link A and only one 
TS on link C it is obvious that every packet that arrives from 
A sees an empty buffer. Now we deal with buffer B. Let's 
assume that at TS #1 a packet from B arrived to the router. 
The next packet from B will arrive to the router no sooner than 
TS #3 and we need to prove it will find an empty buffer. There 
are two options; first one is that there is no packet in buffer A 
in TS #1. In this case buffer B will get service and obviously 
at TS #3 the buffer will be empty. The second option is that a 
packet from A arrived to the router at TS #1 (with the first 
packet from B). In this case the packet in buffer A will get 
service during TS #2 and the packet in buffer B will need to 
wait. The next packet from A cannot arrive before TS #3 since 
it takes two TS's to transmit a packet on link A. Therefore in 
TS #3 the packet in buffer B will get service and the new 
packet that arrived from B will find an empty buffer. This 
completes the proof. ■ 

Theorem 25: The network is stable for CA=0.5pckt/TS. 
Proof: Following Theorem 24, queues A and B sees an 

infinite buffer, i.e. their buffer is never full, and therefore both 
achieve the service rates of links A and B respectively. That 
service rate is greater than the arrival rate and therefore both 
queues are stable and so is the entire network.  ■ 

C. Store and Forward: High Capacity Network 
Assuming CA=1pckt/TS, we now show that there are pairs of 

pA,pB≤0.5 for which the network is unstable. We assume a 
packet is created in the end of a TS, and that packets are sent 
in the beginning of it. 

Theorem 26: For CA=1pckt/TS, the probability that buffer A 
is full at the beginning of a given TS (before services) is pA. 

Proof: Since packets from A have higher priority those 
packets don't wait in the buffer and every packet that arrives 
from queue A finds an empty buffer. Therefore, queue A gets 
service rate of CA=1 packet per TS and PA

0 =1-pA, PA
1 =pA. 

Since link A sends one packet every TS, the state of queue A 
in the ith TS is the state of buffer A in TS i+1. Therefore the 
probability to find buffer A full is pA. ■ 

Theorem 27: For CA=1pckt/TS the probability that a packet 
arrives and finds buffer B full is modeled by 

( )
( )

2

0

0 0

1

2 1 2

B
A

B B
A A

p P

P p p P

⎡ ⎤−⎣ ⎦
− + −

 

Proof: Consider the Markov Chain in Figure 3 with the 
following states: 
State 0:  Buffer B is empty and there is no pending packet. 

This is also the initial state. 
State 1:  Buffer B is empty but a new packet will arrive in the 

next TS. 
State 2:  Buffer B stores a packet and no packet will arrive in 

the next TS (there is no pending packet). 
State 3:  Buffer B stores a packet and a new packet will arrive 

in the next TS. 
Let's explain the transitions: From state 0, if queue B is 

empty then we stay in this state, this happens with probability 
PB

0 . Otherwise, a packet will be sent and we move to state 1. 
From state 1 we continue to state 2 since the buffer is empty. 
From state 2, when queue B is empty no packet will depart 
from it and therefore we can either stay in state 2 or go to state 
0. If buffer A is empty, link C will serve buffer B and it will 
become empty, therefore we go to state 0 with probability 
qA·PB

0 . On the other hand, if buffer A is full, then the packet in 
buffer B will need to wait and we stay in state 2 with 
probability pA·PB

0 . When queue B is not empty a packet will 
depart from it and we move to state 1 or state 3. If buffer A is 
empty, link C will serve buffer B and it will become empty, 
and therefore we go to state 1 with probability qA·(1-PB

0 ). On 
the other hand, if buffer A is full, then the packet in buffer B 
will need to wait and we go to state 3 with probability pA·(1-
PB

0 ). Finally, when in state 3, since there is currently a packet 
on the way there will be no packet on the way in the next time 
slot. If buffer B gets service, then the packet on the way will 
enter the buffer, so it will remain full, and we go to state 2. If 
buffer B doesn't get service then the packet on the way will be 
thrown but obviously buffer B will remain full with the old 
packet and again we go to state 2. Therefore from state 3 we 
only go to state 2.  

Note that in the Markov chain we use PB
0 . We recognize 

that this is sometimes inaccurate and we should have used the 
probability that queue B is empty given that there was a 
departure two or more TSs previously. However, since the 
latter probability is unknown, we use PB

0  as an approximation. 
We later justify this approximation which as demonstrated by 
the simulations, yields satisfactory results. 

We now solve the Markov chain. We define iπ  to be the 

probability of state { }0,1, 2,3i ∈ . The steady state equations 
give: 
 (1-PB

0 )·π0 = qA·PB
0 ·π2 (31) 

 π1 = (1-PB
0 )·π0+qA· (1-PB

0 )·π2 (32) 
 π3 = pA· (1-PB

0 )·π2 (33) 
In addition, 

 π0+π1+π2+π3 = 1 (34) 

 

2 2’10

101 BP−

1

( )01 B
Ap P−

0
B

Aq P

( )01 B
Aq P−

0
BP 0

B
Ap P

 
Figure 3: Markov Chain for Buffer B 
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Inserting Equations (31)-(33) in Equation (34) yields 

( ) ( )

( ) ( )

( )( )
( )

( )

0
2 2 2 0 2

0

0
2 0

0

0 0 0
2

0

0
2

0 0

1 1
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1 1 1
1

2 1
1

1

1
2 1 2

B
BA

A AB

B
BA

A AB

B B B
A A

B

B

B B
A A

q P
q p P

P

q P
q p P

P

q P p P P

P

P
P p p P

π π π π

π

π

π

+ + + − =
−

⎛ ⎞
⎜ ⎟⇒ + + + − =
⎜ ⎟−⎝ ⎠
⎛ ⎞+ − −
⎜ ⎟⇒ =
⎜ ⎟−⎝ ⎠

−
⇒ =

− + −

 

Finally, in order for a packet to arrive to buffer B and to 
find a full buffer two things need to happen: first, the chain is 
in state 3, and at the same time, buffer A is not empty. The 
probability for that to happen is 

( ) ( )
( )

2

02
3 0 2

0 0

1
1

2 1 2

B
AB

A A B B
A A

p P
p p P

P p p P
π π

⎡ ⎤−⎣ ⎦= − =
− + −

. ■ 

Theorem 28: For CA=1pckt/TS queue B is stable iff 
pB+pAπ3<0.5. 

Proof: The probability for a packet to arrive and to find 
buffer B full is pAπ3. Since all packets must arrive at their 
destinations, queue B will need to resend those packets. 
Therefore the probability that a packet will be added to queue 
B is pB+pAπ3. Since the service rate of queue B is 1 packet per 
2 timeslots, by definition queue B is stable iff pB+pAπ3<0.5.  

Note that we could use an alternative proof, rather than 
increasing the arrival probability, we treat link B as if some of 
the work done by it is lost. The probability that work done by 
queue B is lost is pAπ3, where each time work is lost queue B 
loses two TSs. Therefore the maximum effective utilization of 
link B is 1-2pAπ3 and for stability the arrival rate must be 
smaller than the service rate, namely pB<(1-2pAπ3)/2, i.e. 
pB+pAπ3<0.5.  ■ 

Theorem 29: There exist arrival rates pA,pB for which the 
network with is stable CA=0.5pckt/TS but unstable for 
CA=1pckt/TS. Therefore, the CAP phenomenon also appears in 
store and forward networks, since one can add capacity and 
destabilize the network. 

Proof: By example. Consider pA=pB=0.48. Theorem 25 
shows that the network with CA=0.5pckt/TS is stable for these 
arrival rates, and Theorem 28 shows that the condition for 
stability when CA=1pckt/TS is pB+pAπ3 <0.5, which in this case 
reduces to π3 <0.0417. It can also be seen that π3 is decreasing 
when PB

0  increases. Clearly, PB
0 ≤1-2pB=0.04. Therefore 

π3≥0.11>0.04 and the network is unstable.  ■ 
Thus, we have proven that one can destabilize a store and 

forward network by adding capacity. We can also identify the 
conditions for stability when CA=1pckt/TS. Define: 

( )
( )

( )

3

3 2

,   
4 , 2 4 ,   

1 2 , 1

B B A

A A A B

A B B A

B B B B

p p p
a p b p p p

c p p d p p

f p a p b p c p d

π+

− +

− − − −

⋅ + ⋅ + ⋅ +

 

Then the network is stable iff 1
2Bp < , and we show that 

Bp  is given by the solution of the equation ( ) 0Bf p =  and 
thus f can tell when does the network is stable. 

Theorem 30: When pB>0 , there is only one solution to the 
equation ( ) 0Bf p = in [ ],1B Bp p∈ , and the solution is in 

[ ], 0.5Bp  iff 21 1
2 2B Ap p+ < . 

Proof: Obviously f is continuous and also, 
( ) ( )

( )

3 2 2

2

2 2 2

4 2 4

      2

4 4 0

B B A B B A B A B

B A B B B A B

A B B A B A B

f p p p p p p p p p

p p p p p p p

p p p p p p p

= = + − +

+ − − − +

= − − = − <

. 

Therefore to show there is only one solution we prove that 
( )Bf p  is increasing in [pB,1] and that ( )1 0Bf p = > . First, 

( ) ( ) ( )2

1 0.75 1.5

1 4 3 3 3 3 0B A B A Bf p p p p p
≤ ≥ ≥

= = − + − + − >  

To prove f is increasing in [pB,1] we show that in B Bp p=  
the first derivative of f is positive, and that in [pB,1] the second 
derivative is also positive. 

( )

( ) ( )

( )

2

2

2 2

2 0

' 3 2

' 12 2 2 4 1 2

4 2 8 1 0

B B B
B

B A B A A B B A B

A B A B A

dff p a p b p c
dp

f p p p p p p p p p

p p p p p
≤ >

= ⋅ + ⋅ +

= + − + + − −⎡ ⎤⎣ ⎦
⎛ ⎞

= + − + − >⎜ ⎟⎜ ⎟
⎝ ⎠

 

The second derivative of f is ( )
2

2'' 6 2B B
B

d ff p a p b
dp

= = ⋅ + , 

and since 6a>0 it is a linearly increasing function. Therefore, 
to prove it is positive for any [ ],1B Bp p∈  it is sufficient to 

show that it is positive when B Bp p= . 

( ) ( )
2

2

'' 24 2 2 4

4 16 8 2
B A B A A B

A B A

f p p p p p p

p p p
≤

= + − +⎡ ⎤⎣ ⎦
= + − ≥  

This proves there is only one solution to the equation 
( ) 0Bf p = in [ ],1B Bp p∈ . 

To complete the proof we show that ( )0.5 0Bf p = >  iff 

21 1
2 2B Ap p+ < . 
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( )

( ) ( )
2

2

0 0.5
1 1 1 1  1
2 2 2 2

  1 2
1 1
2 2

B

A A A B A B B A

A B

B A

f p

p p p p p p p p

p p

p p

< = =

= + − + + − − − −

= − −

⇔ + <

 

By that the proof of the theorem is complete.  ■ 
Theorem 31: When CA=1pckt/TS queue B is stable iff 

21 1
2 2B Ap p+ < . 

Proof: From Theorem 28 we know that the network is 

stable iff 1
2Bp < . From queuing theory we know that for a 

stable network PB
0 =1-λ/µ, where λ is the average arrival rate 

and µ is the average service rate. In our case Bpλ = , µ=0.5 
and therefore PB

0 =max{1-2 Bp , 0}. Let's assume the network 
is stable and place PB

0  in the definition of Bp : 
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p p
p

p p p p

p p
p
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f p p p

p p p p

p p p
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−

 

If there is a solution for the equation ( ) 0Bf p =  in the 

interval [ ],0.5B Bp p∈  then our assumption was correct and 
the network is stable, otherwise our assumption was wrong 
and the network is not stable. In Theorem 30 we saw that such 

solution exists iff 21 1
2 2B Ap p+ <  and therefore the proof is 

complete.  ■ 
The last result is actually intuitive. Note that if we consider 

queue B to be unstable, namely take PB
0 =0 in the Markov 

chain in Figure 3, then it is easy to see that we get π2=0.5, and 

π3=0.5·pA. Therefore the arrival rate to queue B is 21
2B Ap p+ , 

and if it is smaller than 0.5 then indeed queue B is unstable 
and PB

0 =0. 
As said, it is not accurate to use PB

0  in the Markov chain 
and in some cases we should have used the probability that 
queue B is empty given that there was a departure two or more 
TSs ago. However, since the last probability is not known to 
us we take 0

BP  as an approximation. A better approximation 
can be to take the probability that queue B is empty when 

there was a departure two TSs ago, namely ( )2
1 1B

BP p− , 

where 1
BP  is the probability that there was exactly one packet 

in the queue given that it is not empty (because a packet just 
left). However, this better approximation will not be much 
more accurate since 

( )
( ) ( )

( )

1

1

0

1 | 1

1 | 1 1
1 1

B
B B

B
B B B

B
B

P P Q Q

P Q Q P Q P
P Q P

= = ≥ =

≥ = =
= =

≥ −

. 

and since we are concerned in the case where the load is high 
then PB

0 ,PB
1 <<1 and PB

0 ≈PB
1  (if we consider an M/M/1 model 

for example), therefore ( ) ( )2 2
1 1 01 1B B B

B BP p P p P− ≈ − < . If 
we take a look at the Markov chain we see that taking higher 
value for PB

0  should help the stability of the chain. And 
therefore we actually found sufficient conditions for the 
instability of the network. However as simulations suggest the 
analysis is accurate and the conditions are also necessary. 

V. SIMULATIONS RESULTS 
We now present simulations results that demonstrate the 

existence of the CAP phenomenon and confirm the foregoing 
analysis. 

A. Wormhole Networks 
An OPNET-based wormhole simulator  [19] [21] [25]  was 

used to verify our results. Each run simulates 1000 seconds, 
divided into 20 intervals. To show stability or instability of a 
network we consider the average queue length on each 
interval. In a stable network, the average queue length is 
bounded, where in an unstable network the average queue 
length typically increases near-linearly. 
1) Simulations for example 1 – EPRR only 
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Figure 4: Wormhole results for RA=RB=100Kflit/sec. Unstable (black) and 
stable (gray) configurations according to analysis are compared to unstable 
(squares) and stable (crosses) configurations according to simulations. The 
arbitration used is EPRR. The numbers represent the different cases. 



TECHNICAL REPORT TR08-02, COMNET, TECHNION, ISRAEL 
 

First we show the existence of the phenomenon in a 
symmetric network which uses the EPRR arbitration. We use 
the same parameters as in Example 1, namely L=1000 flit/pckt, 
N=10 bit/flit, rA=rB=100 pckt/sec, implying RA=RB=100 
Kflit/sec. In addition Bi=16 flit and CR=272 Kflit/sec. Note that 
for those parameters both RRPF and GPS yield a stable 
network. 

Figure 4 shows simulation results on areas where the 
necessary stability conditions are fulfilled. The numbers in this 
figure represent the case that fits the configuration as defined 
in section  III.C; the white lines are used as delimiters between 
the cases. All links capacities and rates are in Kflit/sec. 

Let's take a look in Figure 4 at the lowest horizontal line of 
simulations, where CB=105. On this line we start with CA=105, 
and change it until it reaches 300. Therefore we start with case 
(1) where CA+CB≤CR. When CA satisfies the equation: 
CA+CB=CR, namely CA=167 we move to case (3). It can be 
seen that for case (1) the network is stable and that at some 
point in case (3) the network becomes unstable. When CA 
satisfies the equation CA=CR, namely CA=272 we move to case 
(2) where the network remains unstable. 

In order to stabilize the network without changing capacity 
we can use RRPF arbitration or increase the size of the buffers 
so they will never get full. 

We may also stabilize the network by changing capacity. 
Obviously each suggested solution must also satisfy the 
necessary conditions. One option is to assign equal capacities 
to all links. This will lead us to case (4) which is always 
stable. Another option is to decrease CA below ~180, which 
leads to stable region in case (3). We can also increase only 
the capacity CR to 405 and move to case (1), or increase both 
CA and CR to 1590 and stay in case (2), but note that link R 
should only transmit 200. 

The last option would be to increase CB to capacity greater 
than ~155 and also remain in case (2), this option is 
represented in Figure 4 by the vertical line of simulations at 
the right. We found earlier that for this configuration when we 
are in case (2) the demand for stability is CB>155 and as can 
be seen in the picture when CB>155 the network is still not 
stable where for CB=160 it is stable. 
2) Simulations of all arbitrations 

Now we consider asymmetric traffic requirements and 
simulate all the arbitrations we proposed. We use the 
following parameters, L=1000 flit/pckt, N=10 bit/flit, rA=500 
pckt/sec, rB=100 pckt/sec, implying RA=500 Kflit/sec and 
RB=100 Kflit/sec. In addition Bi=16 flit and CR=636 Kflit/sec. 
Since RB=5RA, when using the GPS arbitration and both 
buffers are not empty the router transmit 5 flits from A for 
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Figure 5: Unstable (black) and stable (gray) configurations according to wormhole analysis when RA=500Kflit/sec, and RB=100Kflit/sec. The figures refer 
(from left to right) to EPRR, RRPF, GPS, Priority (A has higher priority), Priority (B has higher priority) 
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Figure 6: Wormhole results for RA=500Kflit/sec, RB=100Kflit/sec. Unstable (black) and stable (gray) configurations according to analysis are compared to 
unstable (squares) and stable (crosses) configurations according to simulations. The figures refer (from left to right) to EPRR, RRPF, GPS, Priority (A has 
higher priority), Priority (B has higher priority) 
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every 1 packet it transmits from B. 
Figure 5 shows wormhole configurations in which the 

mathematical analysis yields a stable or unstable network 
(colored gray or black, respectively). For priority we used the 

approximated model (Theorem 14 and Theorem 17) and not 
only the sufficient conditions (Theorem 13 and Theorem 16). 
Figure 6 zooms in on areas where the necessary stability 
conditions are fulfilled. Crosses and squares represent 
simulated stable and unstable configurations, respectively. As 
can be seen, our analysis predicts the stability condition well, 
and the CAP phenomenon appears for both EPRR and RRPF 
but not for GPS. 

One interesting note for EPRR is that for stability of the 
network when CA≥CR=636 Kflit/sec we need CB>450 Kflit/sec, 
when in fact link B should only transmit RB=100 Kflit/sec. 
Furthermore, one can see that for EPRR there is a narrow tube 
in the stability region. In this case, any small deviation from 
the optimal CA, either upwards or downwards, will make the 
network unstable. Note also that for RRPF when CB increases 
the network becomes unstable due to queue A. This is 
characteristic of the stability condition for RRPF: only the 
node with the higher packet generation rate may become 
unstable as a result of increased link capacity. In contrast, for 
EPRR either one of the queues may become unstable as a 
result of increased capacity. 
3) Simulations for a mesh network – EPRR only 

In this example we consider a more complex network with 
the EPRR arbitration and show the existence of the 
phenomenon is not limited to the simple network we 
presented.  

 Figure 7(a) shows the 4x4 mesh network we are dealing 
with. Suppose the network uses XY routing and that we 
number the links and the nodes as shown in Figure 7(a). We 
define one traffic unit with the following parameters: L=500 
flit/pckt, r=100 pckt/sec, thus R=50 Kflit/sec, and assume that 
the traffic matrix is a permutation as shown in Table 2. 
Finally, assume that in each link a VC is always available, 
namely the number of VC's on each link is equal to the 
number of flows going through the link.  

Figure 7(b) shows the capacity demands for the network (in 
traffic units). On each vertical link the number on the right 
(respectively left) specifies the amount of bandwidth that 
should travel on it from bottom up (up to bottom). In the same 
manner on each horizontal link the number above it 
(respectively below it) specifies the amount of bandwidth that 
should travel on it from left to right (right to left). 

We simulated the network for 100 seconds which were 
divided to 20 intervals.  

Figure 8 shows the average queue length as a function of 
the interval for each one of the nodes when the capacity 
allocation for each link is 1.1 of the bandwidth that needs to 
cross it. As can be seen, the average queue size stays bounded 
which means the network is stable. 

Now we decide that traffic from nodes 16 and 9 doesn't 
arrive fast enough to nodes 7 and 5 respectively. Therefore we 
increase the capacity of the links along the path of those flows 
to 2.2 (which was the maximum capacity given to a link 
earlier).  

Figure 9 shows simulation results for the last capacity 
allocation and as can be seen the network is now unstable. The 
queue lengths of nodes 9 and 16 are very small now. However, 
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Figure 7: (a) Mesh network. (b) Necessary link capacity requirements when 
using XY routing. 

TABLE 2 TRAFFIC MATRIX FOR MESH NETWORK 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Destination 6 14 12 16 9 8 15 4 5 1 2 11 10 3 13 7 
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Figure 8: Mesh simulation results before increasing the capacity (average queue 
size as a function of the interval) 
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Figure 9: Mesh simulation results after increasing the capacity (average queue 
size as a function of the interval) 
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queue 10 is not stable because the utilization of the link 
between router 10 and router 9 may not be 100% due to traffic 
that travels from node 9 to node 5 and therefore this link 
cannot transmit all the traffic from node 10. The problem is 
exactly as the one we presented in case (2) of EPRR (Section 
 III.C), only that link R is replaced by the link between routers 
9 and 5, link B is replaced by the link between routers 9 and 
10, and finally link A is replaced by the link between node 9 
to router 9. The same problem also occurs for node 14, where 
the utilization of the link between router 14 and router 15 may 
not be 100% because of the traffic that travels from node 16 to 
node 7. 
4) All nodes can suffer from increased capacity- EPRR 

In our last wormhole example, we show how all nodes in a 
network can suffer from an increased capacity.  

Figure 10 presents a network with 3 nodes and 2 routers and 
with the EPRR arbitration. For the links, we use the notations 
as they appear on Figure 10. Assume packet size is much 
longer than buffer size and that nodes A and B create packets 
with respective rates 1 and 2, all to be sent to node C. All flits 

from A traverse the same route (Node A, Router 1, Router 2, 
Node C), whereas every even flit created in node B is routed 
through link B1, and every odd packet is routed through link 
B2. Therefore node B creates packets with rate 1 to either one 
of the links B1 and B2. Finally assume queue B has two 
reading ports so it can send two packets to Node C at the same 
time in two different paths, and that a VC is always available. 

Figure 11 shows the low-capacity allocation we start with. 
For this capacity allocation we give each link 1.05 times its 
bandwidth requirements. It is easy to see that for this capacity 
allocation the network is stable (similar to case (1) in  III.C). 

Figure 12 shows the high capacity allocation where we add 
capacity to links B1 and R1 and allocate a capacity of 3.15 
(instead of 1.05 and 2.1 respectively). Due to the increased 
capacity, the path (B1, R1, R2) is busy for approximately a 
third of the time transmitting traffic (even numbered packets) 
from node B. Therefore, as in case (2) in  III.C, links A and B2 
may not work for about a third of the time and they cannot 
transmit all the traffic presented to them. 

B. Store and Forward Networks 
Figure 13 presents the simulation results for the analysis of 

Section  IV. We used Matlab for those simulations. Each 
square represents one simulation run, where black and gray 
squares represent stable and unstable simulations, 
respectively. For CA=1pckt/TS the black line represents the 
limit between stable (below the line) and unstable (above) 
configurations according to Theorem 31. It can be seen that 
the analysis is accurate. For CA=0.5pckt/TS the network is 
always stable, whereas for CA=1pckt/TS it is not always stable. 

Figure 14 shows four additional simulations, performed 
using OPNET. The following arbitrations have been used in 
the router:  

Priority: The router gives packets from A higher priority. 
Thus, the router always tries to serve buffer A and only is it is 
empty it serves buffer B. 

Round Robin: When both buffers are not empty the router 
transmits one packet from each queue in a round robin 
fashion. 

Exhaustive: Once a buffer is being served, it is served until 
it becomes empty. 

Table 3 summarizes the parameters for each simulation. It 
can be seen that the CAP phenomenon appears in all 
configurations and the comments made above about wormhole 
simulations apply here as well. 

VI. CONCLUSIONS 
In this paper, we introduced the Capacity Allocation 

Paradox (CAP), and showed how a stable finite-buffer 
network can become unstable when a link capacity is 
increased.  We demonstrated it in a basic 2x1 network 
topology, and showed how it applies to fluid, wormhole and 
packet-switched networks, using various common scheduling 
algorithms.  
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Figure 10: 3 nodes and 2 routers network. Nodes A and B create traffic to be 
sent to node C in rates 1 and 2 respectively. 
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Figure 11: First (low) capacity allocation. The network is stable. 
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Figure 12: Second (high) capacity allocation. All nodes are unstable and the 
network is unstable. 
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In addition, we proved that in some stable networks, the 
CAP phenomenon might be so strong that increasing a link 
capacity to infinity makes the network unstable, and cannot 
restore stability anymore. Thus CAP prevents any natural 
capacity allocation algorithm, because there is no point in 
arbitrarily increasing link capacity until the stable point is 
found. 

Further, we proved that in some stable networks, any small 
deviation from an optimal link capacity, either upwards or 
downwards, will make the network unstable. This also makes 
capacity allocation extremely hard, because the stable region 
might be too small to find by optimization algorithms. 

Finally, we showed that network designers can actually find 
solutions to the CAP phenomenon. For instance, they can use 
flit-level GPS arbitration, or force router output links to have 
larger capacity than the sum of the input link capacities. 
However, these solutions are not necessarily practical, 
emphasizing how much the CAP phenomenon might be hard 
to avoid in capacity allocation algorithms.  
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Figure 13: Store and Forward simulation results. Each square represent a 
simulation. Gray (Black) squares represent stable (unstable) simulations. (a) 
CA=1, analysis suggests that every configuration above the black line is 
unstable. (b) CA=0.5, analysis suggests every configuration is stable 
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Figure 14: Simulations results for Store and Forward. Parameters can be seen 
in Table 3. Crosses (Squares) represent stable (unstable) configurations 
according to simulations. Adding capacity may destabilize the network. 
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