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Channel Probing in Opportunistic Communication
Systems

Matthew Johnston, Isaac Keslassy, Eytan Modiano

Abstract—We consider a multi-channel communication sys-
tem in which a transmitter has access to M channels, but
does not know the state of any of the channels. We model the
channel state using an ON/OFF Markov process, and allow
the transmitter to probe a single channel at predetermined
probing intervals to decide over which channel to transmit.
For models in which the transmitter must transmit over the
probed channel, it has been shown that a myopic policy probing
the channel most likely to be ON is optimal. In this work,
we allow the transmitter to select a channel over which to
transmit that is potentially different from the probed channel.
For a system of two channels, we show that the choice of
which channel to probe does not affect the throughput. For
a system with many channels, we show that a probing policy
that probes the channel that is second-most likely to be ON
results in higher throughput. We extend the channel probing
problem to dynamically choose when to probe based on probing
history, and characterize the optimal probing policy for various
scenarios.

I. INTRODUCTION

Consider a communication system in which a transmitter
has access to multiple channels over which to communicate.
The state of each channel evolves independently from all
other channels, and the transmitter does not know the
channel states a priori. The transmitter is allowed to probe
a single channel after a predefined time interval to learn the
current state of that channel. Using the information obtained
from the channel probes and the memory in the channel
state process, the transmitter selects a channel in each time-
slot over which to transmit, with the goal of maximizing
throughput, or the number of successful transmissions.

This framework applies broadly to many opportunistic
communication systems, in which there exists a tradeoff
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between overhead and performance. In many wireless com-
munication systems, knowledge of the instantaneous channel
state can improve the network throughput. For example, in
an LTE network, transmitters can intelligently select subcar-
riers which have a high channel quality [3]. Additionally,
in scenarios in which an adversarial jammer is attempting
to block communication, channel probing may be used to
find the frequency bands that yield the highest throughput.
However, when there is a large number of channels over
which to transmit, or a large number of users to transmit to,
it may be impractical to learn the channel state information
(CSI) of every channel before scheduling a transmission;
consequently, it may be only practical for the transmitter
to obtain partial channel state information, and use that
partial CSI to make a decision. Therefore, the transmitter
must decide how much information to obtain, and which
information is needed in order to make efficient scheduling
decisions.

In the context of channel probing, the decision of what
information to obtain translates to the decision of which
channel to probe. We refer to this decision as the probing
policy. Similarly, the decision of how much information to
acquire translates to deciding how often to probe channels
for CSI. This decision is referred to throughout this work as
the probing interval. We consider both the scenario in which
the probing interval is constant between channel probes, and
the scenario where the probing interval is a function of the
channel probing history, and is allowed to vary from probe
to probe.

Several works have studied channel probing policies in
multichannel communication problems [4]–[10]. Of partic-
ular interest is the work in [11] and [12], in which the
authors assume that after a channel is probed, the transmitter
must transmit over that channel. They show that the optimal
probing policy is a myopic policy, which probes the channel
most likely to be ON. This model is also considered in
[4], which characterizes the capacity region achievable and
solves for the optimal policy as the limit of a sequence of
linear programs in terms of state action frequencies with
increasing state spaces. The work in [13] extends the com-
mon two-state channel model to a multi-state Markov model,
and establishes the optimality of myopic policy in a system
similar to that of [11] and [12], in which the transmitter must
use a probed channel over which to transmit.



The works in [5]–[9] consider a model where the channel
state is independent over time; thus, probing a channel in
the current slot will yield no information about that channel
in the future. Furthermore, these works allow for multiple
channel probes per time slot, and are concerned with finding
the optimal subset of channels. On the other hand, [5]–[7],
[14], [15] consider a sequential channel probing problem. In
this framework, transmitters are able to probe one channel at
a time, and based on the result of that channel probe, decide
whether to probe another channel, use one of the probed
channels for transmission, or use an un-probed channel to
save on the additional overhead of channel probing. These
works are typically modeled as stopping-time stochastic
optimization problems, where the optimization is concerned
with a single time slot. The work in [14] shows the optimal
stopping-time policy obeys a threshold structure, and can be
described by an index policy. The work in [15] considers
independent, Rayleigh faded channels and shows that a 1-
step lookahead policy is optimal for this setting. The work
in [16] also analyzes the sequential probing problem, but
carefully considers the overhead associated with acquiring
channel state information in an 802.11 implementation.
Our paper differs from the above works as we restrict the
transmitter to probing a single channel at each time slot
due to the time and bandwidth associated with the CSI
acquisition.

In [17], the authors consider allocating power to two chan-
nels, with channel states that vary over time according to a
Markov Process. They formulate the rate allocation problem
as a partially observable Markov decision process (POMDP)
and show several properties of the optimal solution. Finally,
the work in [18] assumes the controller has full CSI, but this
information is delayed, in that it takes several time slots for
the controller to learn the channel state of each channel.

In this work, we study the channel probing problem
for wireless opportunistic communication, in which the
transmitter is able to transmit over a channel other than
that which was probed. This model aims to capture the
benefit of opportunistically selecting channels based on a
time-varying channel state. In a system with two channels,
we show that the choice of which channel to probe does
not affect the expected throughput. Additionally, we identify
scenarios such that when the probability distribution of the
channel state differs between the two channels, it is optimal
to always probe one of the channels. For a system with an
asymptotically large number of channels, we show that the
myopic probing policy in [11], [12] is no longer optimal.
Specifically, we prove using renewal theory that a simple
policy, namely the policy which probes the channel that is
second most likely to be ON, has a higher per-slot expected
throughput. We characterize the per-slot throughput for these
policies, and calculate the optimal fixed probing interval as a
function of a fixed probing cost. Furthermore, we prove the
optimality of this policy for a system of three channels, and

conjecture that this policy is in fact optimal for systems with
any number of channels. In the second half of the work, we
extend our model to allow for a dynamic optimization of the
probing intervals based on the results of past channel probes.
We formulate the problem as a Markov decision process, and
introduce a state action frequency approach to solve for the
optimal probing intervals. For the case of an infinite system
of channels, we explicitly characterize the optimal probing
interval for various probing policies.

The remainder of this paper is organized as follows. We
describe the model and problem formulation in detail in
Section II. In Section III, we analyze the channel probing
problem for a system with two channels. In Section IV,
we find the optimal probing policy for a system with three
channels, and conjecture the optimal policy in a general
system. We extend this to an infinite channel system in
Section V, and apply renewal theory to show that the
myopic policy is suboptimal by analytically computing the
expected per-slot throughput of another policy, which is
proven outperform the myopic policy of [11]. In Section
VI, we solve for the optimal probing intervals when a fixed
cost is associated with probing.

II. SYSTEM MODEL

RXTX

S1

S2

SM

Figure 1: System model: transmitter and receiver connected
through M independent channels

Consider a transmitter and a receiver that communicate
using one of M independent channels, as shown in Figure
1. Assume time is slotted and at every time slot, each channel
is either in an OFF state or an ON state. Channels are i.i.d.
with respect to each other, and evolve across time according
to a discrete time Markov process described by Figure 2.

At each time slot, the transmitter chooses a single channel
over which to transmit. If that channel is in the ON state,
then the transmission is successful; otherwise, the trans-
mission fails. We assume the transmitter does not receive
feedback regarding previous transmissions1. The objective
is to maximize the expected sum-rate throughput, equal to
the number of successful transmissions over time.

The transmitter obtains channel state information (CSI)
by explicitly probing channels at predetermined intervals.

1If such feedback exists in the form of higher layer acknowledgements,
it arrives after a significant delay and is not useful for learning the channel
state.
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Figure 2: Markov Chain describing the channel state evolution of
each independent channel. State 0 corresponds to an OFF channel,
while state 1 corresponds to an ON channel.

In particular, the transmitter probes the receiver every k
slots for the state of one of the channels at the current
time. Assume this information is delivered instantaneously,
which is the same assumption made in many previous works
(e.g. [9], [11]). The transmitter uses the history of channel
probes to make a scheduling decision. We emphasize that
the transmitter may use a channel other than that which
was probed for transmission. For example, if the transmitter
probes a channel and it is found to be OFF, the transmitter
can use a different channel for that transmission which is
more likely to be ON.

While some communication systems, such as cognitive
radio and systems that employ sophisticated physical layer
techniques (e.g., beam forming, rate adaptation) do require
probing a channel before transmission, for many wireless
communication systems channel sensing is not a require-
ment. Such systems may not achieve maximum throughput
without sensing when the channel is time varying, but
they are often much simpler to implement. Moreover, in a
multi-channel system, the transmitter can choose a channel
blindly, or acquire CSI of that channel at some overhead
cost. Channel probing could also be used as a defense
against a jammer. The transmitter has the option of guessing
that the selected channel is not being interfered with by
the jammer, or probing the channel to be absolutely sure.
Sensing may not be required in this case, but can be used
to improve throughput and reliability. Therefore, the option
of transmitting without probing is included in our work to
capture the tradeoff between explicitly acquiring CSI, and
using previously acquired CSI (or guessing) to transmit and
cut down on the overhead costs.

A. Notation

Let Si(t) be the state of channel i at time t, where Si(t) =
1 corresponds to a channel that is ON at time t, and Si(t) =
0 corresponds to channel in the OFF state. The transmitter
has an estimate of this state based on previous probes and
the channel state distribution. Define the belief of a channel
to be the probability that a channel is ON given the history
of channel probes. For any channel i that was last probed k
slots ago and was in state si, the belief xi is given by

xi(t) = P
(
Channel i is ON|probing history

)
= P

(
Si(t) = 1|Si(t− k) = si)

(1)

where the second equality follows from the Markov property
of the channel state process. The above probability is com-
puted using the k-step transition probabilities of the Markov
chain in Figure 2:

pk00 =
q + p(1− p− q)k

p+ q
, pk01 =

p− p(1− p− q)k

p+ q

pk10 =
q − q(1− p− q)k

p+ q
, pk11 =

p+ q(1− p− q)k

p+ q
.

(2)

Throughout this work, we assume that 1 − p − q ≥ 0,
corresponding to channels with “positive memory.” The
positive memory property ensures that a channel that was
ON k slots ago is more likely to be ON at the current time,
than a channel that was OFF k slots ago. This allows the
transmitter to make efficient scheduling decisions without
explicitly obtaining CSI at each time slot. Mathematically,
this property is described by the set of inequalities:

pi01 ≤ p
j
01 ≤ pk11 ≤ pl11 ∀i ≤ j ∀l ≤ k. (3)

As the CSI of a channel grows stale, the probability that
the channel is in the ON state approaches π, the stationary
distribution of the chain in Figure 2.

lim
k→∞

pk01 = lim
k→∞

pk11 = π =
p

p+ q
. (4)

Lastly, let τk(·) be the function representing the change
in belief of a channel over k time-slots when no new
information regarding that channel is obtained.

τk(xi) = xip
k
11 + (1− xi)pk01 (5)

This function will be used throughout this paper when
analyzing the state transition properties of the system.

B. Optimal Scheduling

Since the objective is to maximize the expected sum-rate
throughput, the optimal transmission decision at each time
slot is given by the maximum likelihood (ML) rule, which is
to transmit over the channel that is most likely to be ON, i.e.
the channel with the highest belief. The expected throughput
in a time slot is therefore given by

max
i
xi(t). (6)

where xi(t) is the belief of channel i at time t. Following
the linearity of the state transition function τk(xi) in (5),
and the positive memory assumption, the optimal scheduling
decision remains the same in between channel probes, as no
additional CSI is obtained.



III. TWO-CHANNEL SYSTEM

To begin, we consider a two-channel system, and formu-
late the problem of deciding which channel to probe using
dynamic programming (DP), over a finite horizon of length
N . Each index n corresponds to a time slot at which a
probing decision is made. Assume there are k time slots
between channel probes; thus, index n corresponds to time
slot t = kn. The system state at each probing index n is
equal to the vector (x1(n), x2(n)), the belief of channel
1 and channel 2 as defined in (1). Let fk(x1, x2) be the
accumulated throughput over the k slots between channel
probes, when channel 1 is probed. The function fk(x1, x2)
is computed by conditioning on the result of the state of
channel 1. If channel 1 is ON, which occurs with probability
x1, then the transmitter uses that channel for k slots, result-
ing in throughput

∑k−1
i=0 p

i
11. If the probed channel is OFF,

then the other channel is used for transmission over those k
slots, yielding throughput

∑k−1
i=0 τ

i(x2). Consequently, the
expected accumulated throughput is given by

fk(x1, x2) = x1

k−1∑
i=0

pi11 + (1− x1)

k−1∑
i=0

τ i(x2) (7)

Similarly, given the above definition, fk(x2, x1) is the
accumulated throughput over the k slots between channel
probes when channel 2 is probed.

We proceed by developing the DP value function for each
probing decision. Let J i

n be the expected reward after the nth
probe if the choice is made to probe channel i at the current
probing instance, and then follow the optimal probing policy
for all subsequent probes. The expected reward after the last
probe is given by:

JN

(
x1, x2

)
= max

(
J1
N

(
x1, x2

)
, J2

N

(
x1, x2

))
(8)

J1
N

(
x1, x2

)
= fk(x1, x2) (9)

J2
N

(
x1, x2

)
= fk(x2, x1) (10)

Equations (9) and (10) follow since N is the final channel
probe (in a time horizon of length N ), and thus the only
reward is the immediate reward, which is given by (7). At
probing time 0 ≤ n < N , the expected reward function is
defined recursively. If the decision at probe n is to probe
channel 1, then an expected throughput of fk(x1, x2) is
accumulated between probes, and at the next probe, the
belief of channel 1 will be pk11 (pk01) if the probed channel
was ON (OFF), and the belief of channel two, which was
not probed, will be τk(x2). Thus, Jn(x1, x2) is defined
recursively as:

Jn
(
x1, x2

)
= max

(
J1
n

(
x1, x2

)
, J2

n

(
x1, x2

))
(11)

J1
n

(
x1, x2

)
= fk(x1, x2) + x1Jn+1(pk11, τ

k(x2))

+ (1− x1)Jn+1(pk01, τ
k(x2)) (12)

J2
n

(
x1, x2

)
= fk(x2, x1) + x2Jn+1(τk(x1), pk11)

+ (1− x2)Jn+1(τk(x1), pk01) (13)

The dynamic program in (8)-(13) can be solved to compute
the optimal probing policy for the two channel system.
To begin with, we prove the following property of the
immediate reward after probing, fk(x1, x2).

Lemma 1. fk(x1, x2) = fk(x2, x1)

The proof of Lemma 1 is given in the Appendix. Lemma
1 states that the immediate reward for probing channel 1
is the same as that for probing channel 2, for all probing
intervals k. This is a consequence of the ability of the
transmitter to choose over which channel to transmit after a
channel probe, and accounts for the key difference between
the model considered in this paper, and models considered
in previous works [11], [12]. Using this result, we present
the main result of this section.

Theorem 1. For a two-user system with independent chan-
nels evolving over time according to an ON/OFF Markov
chain with transition probabilities p and q, and probing
epochs fixed at intervals of k slots, then for each channel
probe, the total reward from probing channel 1 is equal to
that of probing channel 2.

Corollary 1. The channel probing policy which always
probes channel 1 (2) is optimal in a two-channel system.

The proof of Theorem 1 is given in the Appendix, and
follows using induction based on Lemma 1, and the affinity
of the expected reward function in (8)-(13). Corollary 1
follows directly from Theorem 1. Intuitively, when a channel
is probed, the transmitter receives information about the
optimal channel to use until the next probe. For example,
if the probed channel is ON, it is optimal to transmit over
that channel until the next probe occurs. On the other hand, if
the probed channel is OFF, it is optimal to transmit over the
un-probed channel, because the belief of that channel will
always be higher than that of the OFF channel, based on the
inequalities in (3). Thus, the only information required from
the channel probe is which channel to transmit over until
the subsequent channel probe, and this information can be
obtained through probing either channel.

This result is in contrast to the result in [12], which
proves that the optimal decision is to probe the channel
with the highest belief. However, their model assumed that
a transmission must occur on the probed channel, whereas
our model allows the transmitter to choose the channel
over which to transmit based on the result of the probe.
Consequently, the myopic policy of [12] is not a uniquely
optimal policy in this setting.

Theorem 1 is used to determine the optimal fixed probing
interval. Clearly, probing more frequently yields higher
throughput, but requires more resources as well. To capture
this, we associate a fixed cost c with each probe. The goal
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Figure 3: Optimal fixed probing interval for a two channel system
as a function of state transition probability p = q. In this example,
c = 0.5.

is to determine the probing interval k that maximizes the
difference between throughput earned and cost accumulated.

Theorem 2. Assume a fixed-interval probing scheme with
probing cost c. The optimal probing interval is given by

k∗ = arg max
k

πpk10 − c(p+ q)

k(p+ q)
. (14)

Proof. From Corollary 1, the optimal probing policy is that
which always probes channel 1. Under this policy, the belief
of channel 2 equals the steady state probability of being
in the ON state (π) given in (4). Channel 1 is probed
every time, and will be on a fraction π of the time. When
channel 1 is ON, a throughput of

∑k−1
i=0 p

k
11 is obtained,

and when it is OFF, the throughput is simply πk, the
expected throughput yielded by channel 2 over an interval of
duration k. Consequently, the expected per-slot throughput
accounting for the cost of probing is given by

1

k

(
−c+π

k−1∑
i=0

pi11+(1−π)πk

)
=
−c
k

+π+
πpk10

k(p+ q)
. (15)

The proof follows by maximizing the above expression with
respect to k.

Figure 3 shows the optimal probing interval as a function
of the state transition probability. As the state transition
probability increases, each probe gives less information for
the same cost. Thus, as the transition probability starts
to increase, the optimal probing interval decreases, since
information needs to be obtained more frequently to account
for the reduced information in each probe. As p continues
to grow, the reward from probing becomes so small that the
cost does not justify it, and eventually it becomes optimal
to not probe.

Figure 4 shows the throughput under the optimal probing
interval from Theorem 2 for various transition probabilities.
At the state transition probability increases, throughput de-
creases. Note the optimal throughput does not drop below the
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Figure 4: Throughput under the optimal fixed-interval probing
policy for a two-channel system as a function of the state transition
probability p = q .
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Figure 5: Two asymmetric Markov Chains, where 1− p1 −
q1 ≥ 0, 1− p2 − q2 ≥ 0

.

steady state probability π, because at that point, it is optimal
not to probe due to the high probing cost, and guess which
channel to use.

Theorems 1 and 2 combine to characterize the optimal
fixed-interval probing-policy for a two channel system. How-
ever, when the two channels are not identically distributed,
the optimal probing decision depends on the channel statis-
tics, as shown in Section III-A. Furthermore, if the probing
epochs are not fixed, the decision to probe depends on
the results of the previous probe, yielding an advantage to
probing one channel over the other, as shown in Section VI.

A. Heterogeneous Channels

In this section, we extend the results of the previous
section to the case where the two channels differ statistically,
i.e. channel 1 evolves in time according to the Markov chain
in Figure 5a, and channel 2 evolves according to the chain in
Figure 5b. Denote the k-step transition probability of channel
1 as aki,j and the k-step transition probability of channel 2
as bki,j . Additionally, let π1 and π2 be the steady state ON
probability of channel 1 and channel 2 respectively.



Intuitively, it is optimal to probe the channel with more
memory, as that probe yields more information. For example,
consider a channel that varies rapidly, with p1 = q1 = 1

2−ε,
and a channel which rarely changes state, with p2 = q2 = ε.
Probing the low-memory channel provides accurate infor-
mation for a few time slots, but that information quickly
becomes stale, and the transmitter effectively guesses which
channel is ON until the next probe. On the other hand,
probing the high-memory channel yields information that
remains accurate for many time slots after the probe. This
intuition is confirmed in the following result.

Theorem 3. For a two-user system with channel states
evolving as described above, and probing instances fixed
to intervals of k slots, if p1, p2, q1, q2 satisfy

bi11 ≥ ai11 ∀i, (16)

then, the optimal probing policy is to probe channel 2 at all
probing instances.

The proof of Theorem 3 is given in the Appendix,
and follows by reverse induction over the channel probing
instances. To highlight its significance, we present the fol-
lowing corollaries.

Corollary 2. Assume the two channels satisfy π1 = π2, and
that p1 +q1 ≥ p2 +q2. Then, the optimal policy is to always
probe channel 2.

Proof. We can rewrite the k-step transition probability of
the second chain from (2) as follows.

bi11 =
p2 + q2(1− p2 − q2)i

p2 + q2
= π1 + (1− π1)(1− p2 − q2)i (17)

≥ π1 + (1− π1)(1− p1 − q1)i (18)

= ai11 (19)

where (17) follows from the assumption that π1 = π2, and
(18) follows from the assumption that p1 + q1 ≥ p2 + q2.
Therefore, bi11 ≥ ai11, and applying Theorem 3 concludes
the proof.

Corollary 3. Assume the two channels satisfy p1 + q1 =
p2 + q2, and that π1 ≤ π2. Then, the optimal policy is to
always probe channel 2.

Proof. We can rewrite the k-step transition probability of
the second chain from (2) as follows.

bi10 =
q2(1− (1− p2 − q2)i)

p2 + q2
= (1− π2)(1− (1− p1 − q1)i) (20)

≤ (1− π1)(1− (1− p1 − q1)i) (21)

= ai10 (22)
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Figure 6: Throughput of ’Probe Channel 1’ policy and ’Probe
Channel 2’ policy. In this example, p1 is varied from 0 to 1

2
, and

q1 is chosen so π = 3
4

. The second channel satisfies p2 = 1
4

and
q2 = 1

12
, resulting in π2 = π1

where (20) follows from the assumption that p1 + q1 =
p2 + q2, and the inequality in follows from the assumption
that π1 ≤ π2. Since bi10 ≤ ai10, then bi11 ≥ ai11, and Theorem
3 can be applied to complete the proof.

The above two corollaries describe scenarios where asym-
metries in the channel statistics result in the optimal policy of
always probing one of the two channels. This is in contrast
to Theorem 1 where the channels are homogeneous, and
probing either channel yields the same throughput. Corollary
2 states that if the channels are equally likely to be ON in
steady state, the optimal decision is to probe the channel
with the smaller pi + qi. In this context, pi + qi is related
to the rate at which the channel approaches the steady
state. In particular, the Markov channel state approaches
its stationary distribution exponentially at a rate equal to
the second eigenvalue of the transition probability matrix,
which for a two-state chain is 1− p− q. The channel which
approaches steady state more slowly is the channel with
more memory, thus confirming our intuition that probing
the channel with more memory is always optimal. Corollary
3 applies to a system in which the rate at which the steady
state is reached is the same for both channels, but channel
2 is more likely to be ON in steady state than channel 1. In
this case, it is optimal to probe the channel with the highest
steady state probability of being ON at all probing instances.

Figure 6 plots the throughput obtained by the policy which
always probes channel 1 versus the policy that always probes
channel 2 for a sample set of parameters, measured through
simulation. For the second channel, p2 = 1

4 and q2 = 1
12 ,

so that π2 = 3
4 . Then π1 is fixed at 3

4 , but p1 is varied from
0 to 1

2 . When channel 1 has less memory than channel 2,
probing channel 1 yields much higher throughput than the
alternative. In this example, when p1 is very small, probing
channel 1 results in a 15% throughput improvement over
probing channel 2.

Theorem 1 and Theorem 3 describe scenarios in which



probing one of the two channels at all probing instances
is optimal. The simplicity of the optimal probing policy in
these cases is an artifact of the transmitter only having two-
channels from which to choose. Theorem 1 does not hold
for systems with more than two channels. As the number
of channels increases, a policy always probing one of the
channels is suboptimal. Therefore, additional analysis is
required for a system with more than two channels.

IV. OPTIMAL CHANNEL PROBING OVER FINITELY
MANY CHANNELS

As mentioned above, for systems with more channels, i.e.
M > 2, the policy of always probing one of the channels
is suboptimal. In particular, the optimal probing policy is
a function of the beliefs of the channels. In this section,
we show that the policy which probes the channel with
the second highest belief is optimal for a system of three
channels, and conjecture an extension to a general system
of finitely many channels.

A. Three Channel System

To begin, consider a system of three channels, with chan-
nel states identically distributed according to the Markov
chain in Figure 2. The following result characterizes the
optimal channel probing policy as a function of the beliefs
of the three channels.

Theorem 4. In a system of three channels, where a single
channel is probed every k slots, the optimal probing policy
is to probe the channel with the second-highest belief.

Denote by xi the belief of the channel with the ith largest
belief. Thus, x1 ≥ x2 ≥ x3. The probe second-best policy
probes the channel with belief x2. If that channel is ON, the
transmitter uses that channel to transmit over for the next
k slots. After these k slots, the best channel is the channel
that was last probed, with belief τk(1), where τk is the
information-decay function defined in (5). If on the other
hand, the probed channel is OFF, the transmitter will use
the channel with the highest belief among the remaining
channels, x1. After k slots, that channel will have belief
τk(x1), and the belief of the probed channel will be the
smallest, at τk(0).

Define a function Wn as follows:

Wn(x1,x2, x3)

, fk(x1, x2) + x2Wn+1

(
τk(1), τk(x1), τk(x3)

)
+ (1− x2)Wn+1

(
τk(x1), τk(x3), τk(0)

)
for all 0 ≤ n ≤ N , where fk(·) is the immediate reward
function defined in (7). Let WN+1(x1, x2, x3) = 0 by con-
vention. Note that Wn(x1, x2, x3) is the expected throughput
of the probe second-best policy from time n onwards if and
only if x1 ≥ x2 ≥ x3. Additionally, if x2 ≥ x1 ≥ x3,
then Wn(x1, x2, x3) is the expected reward of the policy

which probes the channel with the highest belief at index n,
and then probes the channel with the second highest belief
at all subsequent times. The following results hold for this
definition of Wn, and is used to prove Theorem 4.

Lemma 2. If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N ,

Wn(x1, x2, x3) ≥Wn(x2, x1, x3) (23)

Lemma 3. If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N ,

Wn(x1, x2, x3) ≥Wn(x1, x3, x2) (24)

The proofs of Lemmas 2 and 3 are given in the Appendix.

Proof of Theorem 4. Without loss of generality, assume the
beliefs of the three channels x1, x2, x3 satisfy x1 ≥
x2 ≥ x3. The proof follows using reverse induction on
the probing index n. For n = N , probing the best
channel yields throughput WN (x2, x1, x3), while prob-
ing the second and third best channels yields through-
put WN (x1, x2, x3) and WN (x1, x3, x2) respectively. By
Lemma 2, WN (x1, x2, x3) ≥ WN (x2, x1, x3), and by
Lemma 3, WN (x1, x2, x3) ≥ WN (x1, x3, x2); therefore,
probing the second-best channel is optimal at n = N .

Now assume it is optimal to probe the second-best channel
at probes n+ 1, . . . , N . At probing instance n, the through-
put of the three potential choices of channels are given
by Wn(x2, x1, x3),Wn(x1, x2, x3), and Wn(x1, x3, x2) for
probing the best, second-best, and third best channels respec-
tively. By Lemma 2, Wn(x1, x2, x3) ≥Wn(x2, x1, x3), and
by Lemma 3, Wn(x1, x2, x3) ≥ Wn(x1, x3, x2); therefore,
probing the second-best channel is optimal at n as well. By
induction, probing the second-best channel is optimal at all
probing times.

This result is exciting as it differs from the previous result
in [11] which stated that the policy which probes the best
channel is optimal for the model in which the transmitter
must use the channel that was probed for transmission. In
our model, the transmitter can collect CSI separately from
the transmission decision, and therefore probing the second-
best channel yields a higher throughput. Further intuition as
to why the probe second-best policy is optimal is presented
in Section V-B.

B. Arbitrary Number of Channels

Theorem 4 shows that the probe second-best policy is
optimal for a system of three channels. In general, for M >
3, we conjecture that the probe second-best policy remains
optimal.

Conjecture 1. The probe second-best policy is optimal
among all channel probing policies for fixed probing inter-
vals k.

The proof used for the M = 3 channel case does not
extend to M ≥ 4. In [11], the authors used a coupling



Simulation 3 Channels 5 Channels 7 Channels 10 Channels
Probe Channel 1 0.6955 0.6959 0.6957 0.6958

Probe Best Channel 0.7455 0.7640 0.7650 0.7659
Probe Second-Best 0.7553 0.7787 0.7799 0.7808
Probe Third Best 0.6849 0.7617 0.7691 0.7706

Probe Worst 0.6860 0.6804 0.6810 0.6806
Round Robin 0.7460 0.7649 0.7658 0.7661

Table I: Comparison of different probing policies for a fixed
probing interval (6) and time horizon 2,000,000. State transition
probability p = q = 0.05

argument to circumvent this issue and prove the optimality
of the myopic policy for their setting for general networks.
However, due to the additional complexity of the probe
second-best policy, this coupling argument does not hold
in our setting. Instead, we believe the general case can be
proven by bounding the maximum difference in expected
reward from being in a better state after probing the kth

best channel for k ≥ 2, and proving that this extra reward
must be less than the gain in the immediate expected reward
that probing the second-best channel offers.

We have performed numerous simulations which support
Conjecture 1. As an example, Table I presents the throughput
obtained by different probing policies over varying numbers
of channels. Observe that the probe second-best policy out-
performs the other probing policies. However, the advantage
of using the probe second-best policy over similar policies,
such as probe best and probe third best, is relatively small.

In Figure 7, we compare the performance of the probe-
best policy, the probe second-best policy, and probe third-
best policy as a function of the number of channels in the
system, for a fixed probing interval. We see that as the
number of channels grows, the gap in performance between
the probe best policy and the probe second-best policy
increases. Furthermore, the probe third best policy becomes
more efficient as the number of channels increase, but does
not reach the level of throughput of the probe second-best
policy.

V. INFINITE-CHANNEL SYSTEM

As the number of channels increases, the state space grows
large and the probing formulation becomes more difficult
to analyze. However, as the number of channels grows
to infinity, we can introduce an assumption which affords
various simplifications to the state space of the system.
Whenever a probed channel is OFF, it is effectively removed
from the system. This is because there always exists a
channel which has not been probed in the previous N slots,
for any finite N , and thus its belief is equal to the steady
state ON probability π, and pk01 ≤ π for all k. Therefore,
since an OFF channel has belief pk01 ≤ π for any finite k,
it will never be optimal to transmit over that channel under
the policies considered in this paper.
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Figure 7: Comparison of the probe best policy, the probe second-
best policy, and the probe third best policy as a function of the
number of channels in the system. This simulation was run over
2 million probes, with each probe being at an interval of 4 time
slots.

In this section, we use the infinite channel assumption to
characterize the average throughput under several probing
policies. We consider the myopic policy which is shown to
be optimal for the model in [11], [12], as well as a round
robin policy which probes channels sequentially. In addition,
we characterize the throughput of the probe second-best
policy, which is conjectured to be the optimal probing policy
for a finite number of channels in Section IV, and prove that
it outperforms the other two policies in this setting.

A. Probe-Best Policy

To begin, consider the probe-best policy, which probes the
channel with the highest belief. This policy is commonly
referred to as a myopic or greedy policy, as it maximizes
the immediate reward without regard to future rewards.
Intuitively, such a policy is advantageous as the channel with
the highest belief is the most likely to be ON at the current
time, yielding the highest expected throughput. Recall that
this policy is shown to be optimal for the model in [11],
[12]. For our model, we have the following results.

Theorem 5. The state of the system is given by an infinite
vector of beliefs for each channel. Without loss of generality,
assume this vector is sorted as x = {x1, x2, . . .} such that
x1 ≥ x2 ≥ x3 . . .. The class of recurrent states under the
probe-best policy satisfy x1 ≥ π, and xi = π for all other
channels i 6= 1.

Proof. The probe best policy probes the channel with belief
x1. If this channel is ON, its belief becomes p111 in the next
slot, and it remains the channel with the highest belief by
the equality in 3. If that channel is OFF, it is removed from
the system as per the infinite channel assumption. Therefore,
the vector consisting of xi = π for all i is reachable from



any state. This state corresponds to the transmitter having
no information about the network. The only other state
reachable from this state is reached when an ON channel is
found, at which point, the state returns to a state satisfying
x1 ≥ π, and xi = π ∀i 6= 1.

Theorem 6. Assume the transmitter makes probing deci-
sions every k slots according to the probe best policy. The
expected per-slot throughput is given by

E[Thpt] = π +
πpk10

k(p+ q)(pk10t+ π)
(25)

Proof. We use renewal theory to compute the average
throughput. Under the probe best policy, Theorem 5 states
that only one channel can have belief greater than π. Define
a renewal to occur immediately prior to probing a channel
with belief π. Therefore, if a channel is probed and if it is
OFF, it is removed from the system and a renewal occurs
k slots later (before the next probe). If the channel is ON,
that channel is probed at all future probing instances until it
is found to be OFF. The expected inter-renewal time X̄B is
given by

X̄B = (1− π)k + π(kE(N) + k) (26)
= k + kπE(N) (27)

where N is a random variable denoting the number of
times an ON channel is probed before it is OFF, and is
geometrically distributed with parameter pk10. Equation (27)
reduces to

X̄B = k +
πk

pk10
. (28)

The expected reward R̄B incurred over a renewal interval
is πk for the interval immediately after the OFF probe,
and

∑k−1
i=0 p

i
11 for each subsequent ON probe. If the first

probe is ON, then there will be N probes until the final
OFF probe. Thus, the expected accumulated reward over a
renewal interval is expressed as

R̄B = (1− π)πk + π(πk + E[N ]

k∑
i=1

pi11) (29)

= πk + πE
[
N
] k−1∑
i=0

pi11 = πk +
π
∑k−1

i=0 p
i
11

pk10
(30)

Using results from renewal-reward theory [19], the average
per-slot reward is given by the ratio of the expected reward
over the renewal interval divided by the expected length of
that interval.

R̄B

X̄B
=
πkpk10 + π

∑k−1
i=0 p

i
11

kpk10 + πk
= π +

πpk10
k(p+ q)(pk10 + π)

(31)

Observe that the per-slot throughput is always larger
than π, and decreases toward π as k increases. The probe

best policy maximizes the immediate reward; however, the
drawback of this policy is that when the probed channel is
OFF, the transmitter has no knowledge of the state of the
other channels as it searches for an ON channel, as described
by Theorem 5. Consequently, transmitter probes channels
with belief π until an ON channel is found, resulting in a
low expected reward.

B. Probe Second-Best Policy

Now, consider a simple alternative policy, the probe
second-best policy, which at each time slot probes the
channel with the second-highest belief, and transmits on
the channel with the highest belief after the channel probe.
Consider channel state beliefs x1, x2, x3, . . . where x1 ≥
x2 . . . ≥ xi . . . ≥ π. The probe-best policy of the Section
V-A probes the channel with belief x1. If it is ON, the
transmitter uses that channel (resulting in throughput equal
to 1 for the next slot) and if it is OFF, the transmitter uses the
channel with the next highest belief x2. Thus, the expected
immediate reward of probing the best channel is given by

x1 + (1− x1)x2 = x1 + x2 − x1x2, (32)

The probe second-best policy instead probes the channel
with belief equal to x2. If this channel is ON, it transmits
over that channel (resulting in throughput equal to 1) and
otherwise transmits over the channel with highest belief, x1.
The expected immediate reward of probing the second-best
channel is therefore equal to

x2 + (1− x2)x1 = x1 + x2 − x1x2. (33)

Hence, the probe second-best policy has the same immediate
reward as the probe best policy. To understand how the
probe second-best policy outperforms the probe-best policy,
consider the following result, analogous to Theorem 5 for
the probe best policy.

Theorem 7. The state of the system is given by an infinite
vector of beliefs for each channel. Without loss of generality,
assume this vector is sorted as x = {x1, x2, . . .} such that
x1 ≥ x2 ≥ x3 . . .. The class of recurrent states under the
probe second-best policy satisfy x1 ≥ x2 ≥ π, and xi = π
for all other channels i 6= 1, 2.

Proof. The probe second-best policy probes the channel with
belief x2. If this channel is ON, its belief becomes pk11 iat
the next probe, and it becomes the channel with the highest
belief, while x1 becomes the second highest belief. If the
channel is OFF instead, it is removed from the system as
per the infintie channel assumption. Therefore, the vector
consisting of x1 ≥ π and xi = π for all i 6= 1 is reachable
from any state. This state corresponds to the transmitter
having information of only one channel. From this state, by
probing an ON channel, the system transitions into a state
with two channels having belief greater than π; however,



the system can never have more than two channels with
xi > π.

By Theorem 7, since two channels can have belief greater
than π under the probe second-best policy, when the probe
second-best policy probes an OFF channel, the transmitter
uses the channel with the next highest belief, while probing
new channels to find another ON channel. This approach
results in a higher expected throughput over that interval than
under the probe best policy, which transmits on a channel
with belief equal to the steady state probability π. It is
this intuition that leads us to consider the probe second-
best policy. The following theorem confirms our intuition,
by showing that the probe second-best policy yields a higher
throughput than the probe best policy.

0 0 0 1 1 1 1 0 011100011

Renewal Interval i Renewal Interval i+ 1

Phase 1 Phase 2 Phase 1 Phase 2

Figure 8: Illustration of renewal process. Points represent prob-
ing instances, and labels represent probing results. Each renewal
interval consists of phase 1, and phase 2.

Theorem 8. The average reward of the probe second-best
policy is greater than that of the probe best policy, for all
fixed probing intervals k.

Proof. Theorem 8 is proved using renewal theory to compute
the average throughput of the probe second-best policy, and
comparing it to that of the probe best policy. The key
to the proof is in the definition of the renewal interval.
We define a renewal to occur when the best channel has
belief p2k11 , and the second-best channel (and every other
channel) has belief π. A renewal interval is divided into
two phases: Phase 1 includes all the channel probes until a
probe results in an ON channel, and phase 2 the subsequent
probes until an OFF channel is probed. The division of
renewal intervals into phases is illustrated in Figure 8. In
Phase 1, the transmitter probes channels with belief π until
an ON channel is probed, and in phase 2, the transmitter
probes the second-best channel with belief greater than π
until an OFF channel is probed. This definition ensures that
the inter-renewal periods are i.i.d. The state evolution during
an sample renewal interval is shown in Table II.

The expected inter-renewal time is given by kE(N1 +
N2), where N1 is the number of probes required to find
an ON channel in phase 1, and is geometrically distributed
with parameter π, and N2 is the number of probes required
until the next OFF probe in phase 2. The distribution of
N2 is dependent on N1, and has the following distribution

Time 0 k 2k 3k 4k 5k 6k

Best Channel Belief p2k11 p3k11 p4k11 pk11 pk11 pk11 p2k11
Second-Best Belief π π π p5k11 p2k11 p2k11 π

Probe Result 0 0 1 1 1 0 -

Table II: Example renewal interval starting at time 0 and renewing
at time 6k. At each probing interval, the second-best channel is
probed.

function.

N2 =

{
1 w.p. p(N1+2)k

10

i w.p. p(N1+2)k
11 p2k10(p2k11)i−2 i ≥ 2

(34)

Therefore,

X̄SB = kE(N1 +N2) = k

(
1

π
+ 1 +

E[p
(2+N1)k
11 ]

p2k10

)
(35)

During phase 1 of a renewal, the expected reward accumu-
lated is given by

R̄1
SB = E

[ (N1−1)k−1∑
i=0

pi+2k
11 +

k−1∑
i=0

pi11

]
. (36)

The first term is the throughput obtained from transmitting
over the best channel while looking for an ON channel,
which starts with belief p2k11 and decays until an ON channel
is found, as shown in Table II. In phase 2, the expected
reward is given by

R̄2
SB = E

[
(N2 − 1)

k−1∑
i=0

pi11 +

k−1∑
i=0

pk+i
11

]
. (37)

For N2 − 1 intervals of length k, the transmitter will
transmit over a channel that was ON, yielding throughput∑k

i=0 p
i
11. Then, for the last interval prior to the renewal, the

best channel has belief pk11, and the expected accumulated
throughput over that interval is

∑k
i=0 p

k+i
11 . The average

reward per time slot is given by

R̄1
SB + R̄2

SB

X̄SB
=

π +
πpk10(π + p2k10)

(p+ q)k[π2 + p2k10(1− (1− p− q)k + π)]

(38)

We can compute the difference between (38) and (25)
from Theorem 6 as

R̄1
SB + R̄2

SB

X̄SB
− R̄B

X̄B
=

((1− p− q)kπpk10)2

k(p+ q)(π + pk10)(π2 + p2k10(π + 1− (1− p− q)k))

(39)

Since p ≤ 1
2 and q ≤ 1

2 , we have 0 ≤ (1−p−q)k ≤ 1 for all
k. Therefore, the expression in (39) is positive, completing
the proof.

Theorem 8 asserts that probing the channel with the



Figure 9: Comparison of the probe best policy and the probe
2nd best policy for varying probing intervals k. In this example,
p = q = 0.05.

Figure 10: Comparison of the probe best policy and the probe
2nd best policy for varying state transition probabilities p = q.. In
this example, k = 1.

second highest belief is a better policy than probing the
channel with the highest belief under fixed-interval probing
policies. A numerical comparison between these two policies
is shown in Figure 9. This result is in sharp contrast to
the result in [11] that shows that probing the channel with
the highest belief is optimal. In our model, when a probed
channel is OFF, the transmitter uses its knowledge of the
system to transmit over another channel believed to be ON.
In the model of [11], when an OFF channel is probed, the
transmitter cannot schedule a packet in that slot. This differ-
ence in reward after probing leads to significantly different
probing policies. This result also supports Conjecture 1,
claiming that the probe second-best policy is optimal among
all policies.

C. Round Robin Policy

It is of additional interest to consider a min-max policy,
the round robin policy, which probes the channel for which
the transmitter has the least knowledge. In a system with
finitely many channels, the round robin policy probes all of

the channels sequentially, always probing the channel which
was probed longest ago. When the number of channels grows
to infinity, the transmitter always probes a channel that has
previously never been probed. Consider channel state beliefs
x1, x2, x3, . . . where x1 ≥ x2 . . . ≥ xi . . . ≥ π. Under the
round robin policy, a channel with belief π is probed; if that
channel is ON it will be used by the transmitter (earning
throughput 1) and otherwise the channel with the highest
belief will be used (earning throughput x1, the belief of the
best channel). Thus, the immediate reward of round robin is
given by:

π + (1− π)x1 = π + x1 − πx1. (40)

By comparing (40) to (32), it is clear the immediate reward
of the round robin policy is less than that of the probe best
and the probe second-best policy. Interestingly, the following
Theorem shows that the average per-slot throughput is the
same for the round robin policy as the myopic probe best
policy.

Theorem 9. For all fixed k, the round robin policy has a
per-slot average throughput of

E[Thpt] = π +
πpk10

k(p+ q)(pk10 + π)
, (41)

the same as the probe best policy.

Proof. Let a renewal occur every time a new channel is
probed and found to be ON. Since the result of each probe is
an i.i.d. random variable with parameter π, the inter-renewal
intervals are i.i.d.. The inter-renewal time XRR = k · N ,
where k is the time between probes, and N is a geometric
random variable with parameter π, as defined in (4). Over
that interval, the transmitter transmits over the last channel
known to be ON, until a new ON channel is found. The
expected reward earned over each renewal period is given
by

R̄RR = E
[N∗k−1∑

i=0

pi11

]
(42)

= E
[
πNk +

pNk
10

p+ q

]
(43)

= k +
pk10

p+ q − q(1− p− q)k
. (44)

Thus, the time-average reward is given by

R̄RR

X̄RR
= π +

πpk10
k(p+ q)(π + pk10)

, (45)

which is the same as the reward of the probe best policy in
Theorem 6.

Recall from Theorem 5, that under the probe best policy,
at most one channel can have belief greater than π. In
contrast, under the round robin policy many channels can



have belief greater than π. Thus, Theorem 9 is surprising,
since the round robin policy trades off immediate reward
for increasing knowledge of the channel states, but yields
the same average throughput as the probe best policy.

VI. DYNAMIC OPTIMIZATION OF PROBING INTERVALS

Until this point, we’ve assumed the transmitter chooses
channels to probe at predetermined probing intervals. How-
ever, an alternate approach is to optimize the time until the
next channel probe dynamically, as a function of the col-
lected CSI. For example, after an ON probe, the transmitter
has knowledge of a channel which yields high throughput,
and therefore may not need to probe a new channel immedi-
ately. On the other hand, if that probed channel is OFF, the
transmitter may benefit from probing a new channel in the
near future to make up for lost throughput. In this section, the
optimal dynamic probing policy is modeled as a stochastic
control problem, where at each time slot, a decision is made
whether to probe a channel or not, and if so, which channel
to probe.

A. Two-Channel System

To begin with, consider a system with only two channels.
The optimal channel probing problem is formulated as a
Markov Decision Process (MDP) or a Dynamic Program-
ming problem (DP) over a finite horizon of length T . At
each time slot, the system state is the vector consisting of
the belief of each channel’s state. After observing the system
state at time t, the transmitter selects an action from a set
of possible actions: probe channel 1, probe channel 2, probe
neither channel. Thus, the expected reward function at time
slot t is given by

Jt(x1, x2) = max{J0
t (x1, x2), J1

t (x1, x2), J2
t (x1, x2)},

(46)
where J0

t is the expected reward given that neither channel
is probed at the current slot, and J1

t and J2
t are the expected

reward functions given that channel 1 or channel 2 is probed
respectively. When the transmitter chooses to not probe
either channel, the throughput obtained is given by the
maximum of the channel beliefs, since the transmitter will
transmit on the better of the two channels. Assume channel
probes incur a cost of c, representing for example the time
or bandwidth required to execute a channel probe. When
a channel is probed and is ON, the transmitter uses that
channel and a reward (throughput) of 1 is earned. On the
other hand, if the probed channel is OFF, a unit throughput
is earned only if the second channel is ON. Therefore, the
terminal cost at time t = T is given by

J0
T (x1, x2) = max(x1, x2), (47)

J1
T (x1, x2) = −c+ x1 + (1− x1)x2, (48)

J2
T (x1, x2) = −c+ x2 + (1− x2)x1 (49)

For t < T , the reward function includes the expected future
reward, based on the result of the channel probe. If the
transmitter does not probe a channel, the state at the next
slot is given by (τ(x1), τ(x2)), where τ(·) = τ1(·) is the
information decay function in (5). If a channel is probed,
then the belief of that channel in the following slot is either
p or 1−q depending on whether the probe results in an OFF
channel or an ON channel respectively. Thus, the recursive
expected reward DP equations are given by

J0
t (x1, x2) = max(x1, x2) + Jt+1

(
τ(x1), τ(x2)

)
(50)

J1
t (x1, x2) = −c+ x1 + x2 − x1x2

+ x1Jt+1

(
1− q, τ(x2)

)
+ (1− x1)Jt+1

(
p, τ(x2)

)
(51)

J2
t (x1, x2) = −c+ x1 + x2 − x1x2

+ x2Jt+1

(
τ(x1), 1− q

)
+ (1− x2)Jt+1

(
τ(x1), p

)
(52)

The maximizer of (46) is the optimal probing policy at time
slot t as a function of the current state. Note that the state
space is countably infinite, as each belief xi has a one-to-
one mapping to an (S, k) pair, where S is the state at the
last channel probe, and k is the time since the last probe.

The following result states that this expected reward
function is convex, which is used to characterize the region
in which probing is optimal.

Theorem 10 (Convexity). For all t, Jt(x1, x2) is convex in
x1 for fixed x2, and is convex in x2 for fixed x1.

The proof of Theorem 10 is given in the appendix.
Using the convexity of the expected reward function, we

can find sufficient conditions for probing optimality for a
given state.

Theorem 11. If for any time slot t, the system state
(x1(t), x2(t)) satisfies

c ≤ min(x1(t), x2(t))
(
1−max(x1(t), x2(t))

)
(53)

Then it is optimal to probe at slot t.

Proof.

J0
t (x1, x2) = max(x1, x2) + Jt+1

(
τ(x1), τ(x2)

)
(54)

≤ max(x1, x2) + x1Jt+1

(
1− q, τ(x2)

)
+ (1− x1)Jt+1

(
p, τ(x2)

)
(55)

= max(x1, x2) + J1
t (x1, x2)

+ c− x1 − x2 + x1x2 (56)

Where (55) follows from Theorem 10. Therefore,
J0
t (x1, x2)− J1

t (x1, x2) ≤ 0 if

c− x1 − x2 + x1x2 + max(x1, x2) ≤ 0 (57)

c ≤ min(x1, x2)
(
1−max(x1, x2)

)
(58)



Theorem 11 can be interpreted as when the belief of the
two channels are sufficiently close together, it is optimal to
probe (subject to probing cost). While the convexity bound
yields sufficient conditions for probing optimality, necessary
conditions do not follow directly from this analysis. Addi-
tionally, the convexity bound used in (55) is loose, and thus
probing is often optimal even in states which do not satisfy
the conditions of Theorem 11.

An alternate approach is to model the channel probing
MDP as an infinite horizon, average cost problem, and can
be formulated as a linear program (LP) in terms of state ac-
tion frequencies (SAFs). A vector of SAFs corresponds to a
random policy, in which the probability that a specific action
is taken from each state is given by the SAF corresponding
to that state-action pair. In [2], we showed that there exists
a solution to the state action frequency LP that corresponds
to a deterministic stationary policy, and used that solution
to illustrate the structure of the optimal probing policy..

B. Infinite-Channel System

For a system with more than two channels, a similar
approach can be used to formulate the problem of finding
the optimal probing intervals. The drawback of the above
approaches is that the state space grows exponentially with
the number of channels, and it becomes impractical to solve
the MDP. However, in the asymptotic limit of the number
of channels, the infinite channel assumption in Section V
can be applied to greatly simplify the state space, and new
approaches can be developed to characterize the optimal
probing intervals. Clearly, these intervals are related to the
underlying probing policy used to select the channels to
probe. In this section, we consider two of the channel
probing policies from Section V: the probe best policy and
the round robin policy, and characterize the optimal intervals
at which to probe.

To begin, assume the decision of which channel to probe
is given by the probe-best policy. The optimal decision as to
whether to probe is a function of the state, and is described
by the following Theorem.

Theorem 12. For a system in which the transmitter only
probes the channel with the highest belief, the optimal
probing decision is to probe immediately after probing an
OFF channel, and to probe k∗ slots after probing an ON
channel, where k∗ is given by

k∗ = arg max
k

1

kπ + pk10

(
πpk10

(p+ q)
− c(π + pk10)

)
(59)

Theorem 12 characterizes the optimal probing interval
under the probe best policy. If the probing policy changes,
the optimal interval changes as well. However, the following
result shows that under the round-robin policy, the optimal
probing interval has a similar structure.

Theorem 13. For a system in which the transmitter probes
channels according to the round robin policy, the optimal
decision is to probe a new channel immediately after probing
an OFF channel, and to probe k′ slots after probing an ON
channel, where k′ is given by

k′ = arg max
k

−c(p+ q) + pEN [
∑k+N−2

i=0 pi11]

p(k − 1) + p+ q
(60)

where N is a geometrically distributed random variable with
parameter π.

Note that the optimal time to wait to probe after an
ON probe under round robin (k′) in (60) differs from the
optimal k∗ under the probe best policy in (59). Figure 12
plots the average reward of round robin and probe best
for different values of k. Recall that under fixed probing
intervals, Theorem 9 states that both policies have the same
average reward. However, under dynamic probing intervals,
the probe best policy outperforms the round robin policy.
Figure 11 shows a comparison between expected throughput
of the optimal fixed-interval probing policy and the optimal
dynamic-interval policy under probe best and round robin.
By looking at the maxima in these graphs, we observe that
for the chosen parameters, introducing a dynamic probing-
interval optimization yields an 8% gain in throughput under
probe best, and a 5% gain in throughput under probe best.

A natural extension to the above analysis is to consider
the probe second-best policy, which was conjectured to be
the optimal probing policy under fixed probing intervals. In
contrast to probe best and round robin, the optimal time until
the next probe under the probe second-best policy depends
on the belief of the best channel after an ON channel is
probed, and consequently, probe second-best does not have
a single solution for the optimal probing interval after an ON
channel has been probed. Thus, characterizing the optimal
probing intervals is a more challenging problem in this
context. It is an interesting and open problem to determine if
the probe second-best policy is still optimal under dynamic
probing intervals.

VII. CONCLUSION

This paper focuses on channel probing as a means of
acquiring network state information, and optimizes the ac-
quisition of this information in terms of which channels to
probe and how often to probe these channels. In contrast
to the work in [11], [12] that established the optimality
of the myopic probe best policy, we showed that for a
slightly modified model, these results no longer hold. Under
a two channel system, we proved that probing either chan-
nel results in the same throughput, and under an infinite
channel system, we proved that a simple alternative, the
probe second-best policy, outperforms the probe best policy
in terms of average throughput. We proved the optimality
of the probe second-best policy in three channel systems,



(a) Probe Best Probing Policy

(b) Round Robin Probing Policy

Figure 11: Comparison of the expected throughput of the
probe best policy and the round robin policy under fixed
intervals and under dynamic intervals. The x-axis plots k, the
length of the interval. The maxima of each graph represents
the optimal policy in each regime. In this example, p = q =
0.05 and c = 0.5.

and conjecture that probing the second-best channel is the
optimal decision in a general multi-channel system. Proving
this conjecture is interesting, and remains an open problem.

Additionally, we showed that dynamically optimizing the
probing intervals based on the results of the channel probe
can additionally increase system throughput. We character-
ized the optimal probing intervals in a two channel system
by formulating a markov decision problem, and using a state
action frequency approach to solve the dynamic program.
For the infinite channel case, we characterized the optimal
probing intervals subject to a fixed probing policy, namely
the probe best policy and the round robin probing policy.
An extension to general probing polices, as well as a joint
optimization over the probing decisions and the probing

Figure 12: Comparison of the probe best policy and round robin
for varying values of k, the minimum interval between probes. In
this example, p = q = 0.1, and c = 0.5.

intervals is an interesting extension to this work.

VIII. APPENDIX

A. Proof of Lemma 1

Lemma 1: fk(x1, x2) = fk(x2, x1)

Proof of Lemma 1.

fk(x1, x2) = x2

k−1∑
i=0

pi11 + (1− x2)

k−1∑
i=0

τ i(x1) (61)

=

k−1∑
i=0

(
x2p

i
11 + (1− x2)τ i(x1)

)
(62)

=

k−1∑
i=0

(
x2p

i
11 + (1− x2)(τk(x1) = xip

i
11 + (1− x1)pi01)

)
(63)

=

k−1∑
i=0

(
x1p

i
11 + (1− x1)(τk(x2) = xip

i
11 + (1− x2)pi01)

)
(64)

=

k−1∑
i=0

(
x1p

i
11 + (1− x1)τ i(x2)

)
= fk(x2, x1) (65)

B. Proof of Theorem 1

Proof of Theorem 1. This proof uses reverse induction on
the probing index n. As a base case, consider n = N − 1.

J1
N−1(x1, x2) = fk(x1, x2) = fk(x2, x1) = J2

N−1(x1, x2)
(66)

Now assume J1
n+1(x1, x2) = J2

n+1(x1, x2), and we prove
this holds for index n.



First, we note that the function f(x1, x2) is affine in both
x1 and x2. To see this, consider 0 ≤ λ ≤ 1.

λfk(a, x2) + (1− λ)fk(b, x2)

=

k−1∑
i=0

(
λapi11 + λ(1− a)τ j(x2)

+ (1− λ)bpi11 + (1− λ)(1− b)τ i(x2)

)
(67)

=

k−1∑
i=0

(
pi11(λa+ (1− λ)b) + τ j(τk(x2))

(
λ(1− a)

+ (1− λ)(1− b)
))

(68)

= fk(λa+ (1− λ)b, x2) (69)

As a consequence of Lemma 1, it also follows that

λfk(x2, a)+(1−λ)fk(x1, b) = fk(x1, λa+(1−λ)b) (70)

Using the above fact, we can show that both J1
n+1 and J2

n+1

are affine as well.

λJ1
n+1(a, x2) + (1− λ)J1

n+1(b, x2)

= λfk(a, x2) + λ

(
aJn+2(pk11, τ

k(x2))

+ (1− a)Jn+2(pk01, τ
k(x2))

)
+ (1− λ)fk(b, x2) + (1− λ)

(
bJn+2(pk11, τ

k(x2))

+ (1− b)Jn+2(pk01, τ
k(x2))

)
(71)

= fk(λa+ (1− λ)b, x2)

+ (λa+ (1− λ)b)Jn+2(pk11, τ
k(x2))

+ (1− λa− (1− λ)b)(pk01, τ
k(x2)) (72)

= J1
n+1(λa+ (1− λ)b, x2) (73)

Similarly, since J1
n(x1, x2) = J2

n(x2, x1), it is easy to show
that J2

n+1 is affine in x2 as well.

Using the results above, J1
n(x1, x2) is written as

J1
n(x1, x2) = fk(x1, x2) + x1Jn+1(pk11, τ

k(x2))

+ (1− x1)Jn+1(pk01, τ
k(x2)) (74)

= fk(x1, x2) + x1J
1
n+1(pk11, τ

k(x2))

+ (1− x1)J1
n+1(pk01, τ

k(x2)) (75)

= fk(x1, x2) + J1
n+1(τk(x1), τk(x2)) (76)

= fk(x1, x2) + J2
n+1(τk(x1), τk(x2)) (77)

= fk(x2, x1) + x2J
2
n+1(τk(x1), pk11)

+ (1− x2)J2
n+1(τk(x1), pk01) (78)

= fk(x2, x1) + x2Jn+1(τk(x1), pk11)

+ (1− x2)Jn+1(τk(x1), pk01) (79)

= J2
n(x1, x2) (80)

where equations (75), (77), and (79) follow from the induc-
tion hypothesis, and equations (76) and (78) use the affinity
of J i

n+1, and Lemma 1.

C. Proof of Theorem 3
Theorem 3: For a two-user system with channel states

evolving as described above, and probing instances fixed to
intervals of k slots, if p1, p2, q1, q2 satisfy

bi11 ≥ ai11 ∀i, (81)

then, the optimal probing strategy is to probe channel 2 at
all probing instances.

Proof of Theorem 3. This proof will use induction on the
horizon length of the corresponding DP problem.

Define state transition functions

τ i1(x) = ai11x+ (1− x)ai01 (82)

τ i2(x) = bi11x+ (1− x)bi01 (83)

Base Case: Assume n = N . For this immediate-reward
problem, the expected reward functions simplify to the
following:

J1
N (x1, x2)

=

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2)) + (1− x1)max(ai01, τ

i
2(x2))

)
(84)

J2
N (x1, x2)

=

k−1∑
i=0

(
x2 max(bi11, τ

i
1(x1)) + (1− x2)max(bi01, τ

i
1(x1))

)
(85)

Since we have assumed that bi11 ≥ ai11, the following
inequalities hold:

bi1,1 ≥ ai1,1 ≥ τ i1(x1)

bi0,1 ≤ ai0,1 ≤ τ i1(x1)
(86)



Consequently, we can rewrite (85) as

J2
n(s1, k1, s2, k2) =

k−1∑
i=0

(
x2b

i
11 + (1− x2)τ i1(x1)

)
=

k−1∑
i=0

(
x2b

i
11 + (1− x2)x1a

i
11 + (1− x2)(1− x1)ai01

)
(87)

The proof of the base case differs slightly depending on
the realization of s2, so we will present two cases for each
realization.

Case 1: x2 ≥ π2. Equation (84) simplifies to

J1
N (x1, x2)

=

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2)) + (1− x1)τ

i
2(x2)

)

=

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2))

+ (1− x1)x2b
i
1,1 + (1− x1)x2b

i
0,1

)
(88)

=

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2)) + x2b

i
1,1 − x1x2b

i
1,1

+ (1− x1)(1− x2)b
i
0,1

)
(89)

= J2
N (x1, x2) +

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2))− x1x2b

i
1,1

+ (1− x1)(1− x2)b
i
0,1

− (1− x2)x1a
i
11 − (1− x2)(1− x1)a

i
01

)
(90)

≤ J2
N (x1, x2) +

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2))− x1x2b

i
1,1

− x1(1− x2)a
i
11

)
(91)

= J2
N (x1, x2) +

k−1∑
i=0

max

(
x1a

i
11 − (1− x2)x1a

i
11,

x1τ
i
2(x2)− (1− x2)x1a

i
11

)
− x1x2b

i
11 (92)

= J2
N (x1, x2) +

k−1∑
i=0

max

(
x1x2(a

i
11 − bi1,1),

x1(1− x2)(b
i
01 − ai11)

)
(93)

≤ J2
N (x1, x2) (94)

In the above, (91) and (94) follow from bi11 ≥ ai11. Case 2: x2 ≤
π2. Equation (84) simplifies to

J1
N (x1, x2)

=

k−1∑
i=0

(
x1a

i
11 + (1− x1) max(ai01, τ

i
2(x2))

)

=

k−1∑
i=0

(
x1a

i
11 + (1− x1) max(ai01, τ

i
2(x2))

+ (1− x2)x1a
i
11 − (1− x2)x1a

i
11

)
(95)

=

k−1∑
i=0

(
x1x2a

i
11 + (1− x1) max(ai01, τ

i
2(x2))

+ (1− x2)x1a
i
11

)
(96)

= J2
N (x1, x2) +

k−1∑
i=0

(
(1− x1) max(ai01, τ

i
2(x2))

+ x1a
i
11x2 − x2bi11 − (1− x2)(1− x1)pi01

)
(97)

= J2
N (x1, x2) +

k−1∑
i=0

max

(
x2(x1a

i
11 + (1− x1)ai01)

− x2bi11,

x1x2(ai11 − bi11) + (1− x1)(1− x2)(bi01 − ai01)

)
(98)

≤ J2
N (x1, x2) (99)

Where (97) results from applying (87), and (99) comes
from the assumption that ai11 ≤ bi11.

Inductive Step: Assume that J1
l (x1, x2) ≤ J2

l (x1, x2),
for all n + 1 ≤ l ≤ N , we now prove that
J1
n(x1, x2) ≤ J2

n(x1, x2). Therefore, the optimal cost to go
Jn+1(x1, x2) = J2

n+1(x1, x2). By looking at expressions
(84) and (85) from the analysis in the base case portion of
the proof, we know that

k−1∑
i=0

(
x1 max(ai11, τ

i
2(x2)) + (1− x1) max(ai01, τ

i
2(x2))

)

≤
k−1∑
i=0

(
x2 max(bi11, τ

i
1(x1)) + (1− x2) max(bi01, τ

i
1(x1))

)
(100)

To conclude the proof:

x1J
2
n+1(ak11, τ

k
2 (x2)) + (1− x1)J2

n+1(ak01, τ
k
2 (x2)) (101)

= J2
n+1(τk1 (x1), τk2 (x2)) (102)

= x2J
2
n+1(τk1 (x1), ak11) + (1− x2)J2

n+1(τk1 (x1), ak01)
(103)

Where the above comes from the affinity of the function



Jn(x1, x2), shown in (71)-(71).

D. Proof of Lemmas 2 and 3

Lemma 4. Let g(x, y) be any function satisfying g(x, y) =
ax+ by + cxy + d for some constants a, b, c, d. Then,

g(x, y)− g(y, x) = (x− y)(g(1, 0)− g(0, 1)) (104)

Proof.

g(x, y)− g(y, x) = ax+ by + cxy + d− ay − bx− cyx− d
= (x− y)(a− b)
= (x− y)(g(1, 0)− g(0, 1))

Lemma 2: If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N ,

Wn(x1, x2, x3) ≥Wn(x2, x1, x3)

Proof of Lemma 2. The proof follows by reverse induction
on the probing index n. For time n = N ,

WN (x1, x2, x3)−WN (x2, x1, x3)

= fk(x1, x2)− fk(x2, x1) = 0
(105)

The last equality follows from Lemma 1. Assume the
inductive hypothesis holds for n+ 1:

Wn(x1, x2, x3)−Wn(x2, x1, x3)

= (x1 − x2)(Wn(1, 0, x3)−Wn(0, 1, x3)) (106)

= (x1 − x2)(fk(1, 0) +Wn+1

(
τk(1), τk(x3), τk(0)

)
− fk(0, 1)−Wn+1

(
τk(1), τk(0), τk(x3)

)
(107)

= (x1 − x2)(Wn+1

(
τk(1), τk(x3), τk(0)

)
−Wn+1

(
τk(1), τk(0), τk(x3)

)
(108)

≥ (x1 − x2)(Wn+1

(
τk(1), τk(0), τk(x3)

)
−Wn+1

(
τk(1), τk(0), τk(x3)

)
= 0 (109)

The inequality in (109) holds by the induction hypothesis of
Lemma 3.

Lemma 3: If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N ,

Wn(x1, x2, x3) ≥Wn(x1, x3, x2)

Proof of Lemma 3. The proof follows by reverse induction
on the probing index n. For time n = N ,

WN (x1, x2, x3)

≥WN (x1, x3, x2) = fk(x1, x2)− fk(x1, x3) (110)

= (x2 − x3)

k−1∑
i=0

(
pi11 − τ i(x1)

)
(111)

= (x2 − x3)(1− x1)

k−1∑
i=0

(pi11 − pi01) ≥ 0 (112)

where the inequality follows from the positive memory
assumption on the channel. Now we assume the inductive
hypothesis for Lemmas 2 and 3 hold for times at and after
n.

Wn(x1, x2, x3)−Wn(x1, x3, x2)

= (x2 − x3)
(
Wn(x1, 1, 0)−Wn(x1, 0, 1)

)
(113)

= (x2 − x3)(f j(x1, 1) +Wn+1

(
τk(1), τk(x1), τk(0)

)
− r(x1, 0)−Wn+1

(
τk(x1), τk(1), τk(0)

)
(114)

≥ (x2 − x3)

(
Wn+1

(
τk(1), τk(x1), τk(0)

)
−Wn+1

(
τk(x1), τk(1), τk(0)

))
(115)

≥ (x2 − x3)

(
Wn+1

(
τk(1), τk(x1), τk(0)

)
−Wn+1

(
τk(1), τk(x1), τk(0)

))
= 0 (116)

The inequality in (115) follows from (110) - (112). The
inequality in (116) follows from the inductive hypothesis
of Lemma 2.

E. Proof of Theorem 10

Theorem 10: For all t, Jt(x1, x2) is convex in x1 for fixed
x2, and is convex in x2 for fixed x1.

Proof. In order to prove convexity, a number of supporting
results are required.

Lemma 5 (Linearity). J1
t (x1, x2) is linear in x1 for fixed

x2, and similarly, J2
t (x1, x2) is linear in x2 for fixed x1.

Proof. We will prove the first half of this lemma here,
and the other half follows using exactly the same steps but
switching channel 1 and 2. Let 0 ≤ λ ≤ 1.

J1
t (λx1 + (1− λ)y1, x2)

= −c+ λx1 + (1− λ)y1 + x2 − (λx1 + (1− λ)y1)x2

+ (λx1 + (1− λ)y1)Jt+1

(
1− q, τ(x2)

)
+ (1− (λx1 + (1− λ)y1))Jt+1

(
p, τ(x2)

)
(117)

= λ(−c+ x1− x1x2) + (1− λ)(−c+ y1 − y1x2)

+ λ

(
x1Jt+1

(
1− q, τ(x2)

)
+ (1− x1)Jt+1

(
p, τ(x2)

))
+ (1− λ)

(
y1Jt+1

(
1− q, τ(x2)

)
+ (1− y1)Jt+1

(
p, τ(x2)

))
(118)

= λJ1
t (x1, x2) + (1− λ)J1

t (y1, x2) (119)

Lemma 6 (Commutativity).

Jt(x1, x2) = Jt(x2, x1) (120)



Proof. This proof is by reverse induction on t. For T , we
have

JT (x1, x2) = max

{
max(x1, x2),−c+ x1

+ x2 − x1x2,−c+ x2 + x1 − x2x1
}

(121)

= max

{
max(x2, x1),−c+ x2

+ x1 − x2x1,−c+ x1 + x2 − x1x2
}

(122)
= JT (x2, x1) (123)

Now assume (120) holds for time t+ 1. Then we have

J1
t (x1, x2) = −c+ x1 + x2 − x1x2 + x1Jt+1

(
1− q, τ(x2)

)
+ (1− x1)Jt+1

(
p, τ(x2)

)
(124)

= −c+ x2 + x1 − x2x1 + x1Jt+1

(
τ(x2), 1− q

)
+ (1− x1)Jt+1

(
τ(x2), p

)
(125)

= J2
t (x2, x1) (126)

Additionally, we have

J0
t (x1, x2) = max(x1, x2) + Jt+1

(
τ(x1), τ(x2)

)
(127)

= max(x2, x1) + Jt+1

(
τ(x2), τ(x1)

)
(128)

= J0
t (x2, x1) (129)

Finally, we can use these two results to show that

Jt(x1, x2) = max
{
J0
t (x1, x2), J1

t (x1, x2), J2
t (x1, x2)

}
(130)

= max
{
J0
t (x2, x1), J2

t (x2, x1), J1
t (x2, x1)

}
(131)

= Jt(x2, x1) (132)

The proof follows by induction.

Let Φt(0), Φt(1), Φt(2) be the sets of (x1, x2) such that it
is optimal to not probe, probe channel 1, and probe channel
2 respectively at time t.

Lemma 7 (Probe Symmetry). If (x1, x2) ∈ Φt(1), then
(x2, x1) ∈ Φt(2).

Proof. If (x1, x2) ∈ Φ(1)t, then J1
t (x1, x2) ≥ J2

t (x1, x2)
and J1

t (x1, x2) ≥ J0
t (x1, x2). Using Lemma 6, we can

then say that J2
t (x2, x1) ≥ J1

t (x2, x1) and J2
t (x2, x1) ≥

J0
t (x2, x1) which implies (x2, x1) ∈ Φt(2).

Lemma 8 (No-Probe Symmetry). If (x1, x2) ∈ Φt(0), then
(x2, x1) ∈ Φt(0).

Proof. If (x1, x2) ∈ Φt(0), then J0
t (x1, x2) ≥ J1

t (x1, x2)
and J0

t (x1, x2) ≥ J2
t (x1, x2). It follows from Lemma 6

that J0
t (x1, x2) = J0

t (x2, x1) and J1
t (x1, x2) = J1

t (x2, x1)

which implies J0
t (x2, x1) ≥ J1

t (x2, x1). By a similar argu-
ment, we can show J0

t (x2, x1) ≥ J2
t (x2, x1), and therefore

(x2, x1) ∈ Φt(0).

Lemmas (5)-(8) combine to prove a convexity result on
the expected reward function. The proof follows by reverse
induction over t. For t = T ,

JT (x1, x2) = max

{
max(x1, x2),−c+ x1 + x2 − x1x2,

− c+ x2 + x1 − x2x1
}

(133)

is convex in each element since each argument to the
maximum is convex (or affine) and the maximum of convex
functions is also convex. Now consider t < T , and we
assume that Jt+1(x1, x2) is convex in x1 for fixed x2. To
begin with, we note that

τ(λx1 + (1− λ)y1)

= (1− q)(λx1 + (1− λ)y1)

+ p(1− λx1 − (1− λ)y1) (134)
= (1− q)λx1 + pλ(1− x1)

+ (1− q)(1− λ)y1 + p(1− λ)(1− y1) (135)
= λτ(x1) + (1− λ)τ(y1) (136)

First we consider the expected throughput after not probing.

J0
t (λx1 + (1− λ)y1, x2)

= max(λx1 + (1− λ)y1, x2)

+ Jt+1

(
τ(λx1 + (1− λ)y1), τ(x2)

)
(137)

≤ λ(max(x1, x2)) + (1− λ)(max(y1, x2))

+ Jt+1

(
λτ(x1) + (1− λ)τ(y1), τ(x2)

)
(138)

≤ λ(max(x1, x2)) + (1− λ)(max(y1, x2))

+ λJt+1

(
τ(x1), τ(x2)

)
+ (1− λ)Jt+1

(
τ(y1), τ(x2)

)
(139)

= λ(J0
t (x1, x2)) + (1− λ)(J0

t (y1, x2)) (140)

where (138) holds by the convexity of max(x, ·) and linear-
ity of τ(·), and (139) holds from the induction hypothesis.
Additionally, J1

t (x1, x2) is convex in x1 by lemma 5. For
J2
t (x1, x2), we have:

J2
t (λx1 + (1− λ)y1, x2)

= −c+ λx1 + (1− λ)y1 + x2 − (λx1 + (1− λ)y1)x2

+ x2Jt+1

(
τ(λx1 + (1− λ)y1), 1− q

)
+ (1− x2)Jt+1

(
τ(λx1 + (1− λ)y1), p

)
(141)

= λ(−c+ x1 + x2 − x1x2)

+ (1− λ)(−c+ y1 + x2 − y1x2)

+ x2Jt+1

(
λτ(x1) + (1− λ)τ(y1), 1− q

)
+ (1− x2)Jt+1

(
λτ(x1) + (1− λ)τ(y1), p

)
(142)



≤ λ(−c+ x1 + x2 − x1x2)

+ (1− λ)(−c+ y1 + x2 − y1x2)

+ λ

(
x2Jt+1

(
τ(x1), 1− q

)
+ (1− x2)Jt+1

(
τ(x1), p

))
+ (1− λ)

(
x2Jt+1

(
τ(y1), 1− q

)
+ (1− x2)Jt+1

(
τ(y1), p

))
(143)

= λ(J2
t (x1, x2)) + (1− λ)(J2

t (y1, x2)) (144)

Each of J0
t (x1, x2), J1

t (x1, x2), and J2
t (x1, x2) is convex in

x1 for fixed x2, and Jt(x1, x2) is convex in x1 as well. The
second half of the proof statement holds by symmetry.

F. Proof of Theorem 12

Theorem 12: For a system in which the transmitter only
probes the channel with the highest belief, the optimal
probing decision is to probe immediately after probing an
OFF channel, and to probe k∗ slots after probing an ON
channel, where k∗ is given by

k∗ = arg max
k

1

kπ + pk10

(
πpk10

(p+ q)
− c(π + pk10)

)
(145)

Proof. As a result of Theorem 5, under the probe best policy,
the belief of the best channel x1 at every slot satisfies x1 ≥
π, and the belief of every other channel equals π. When a
probed channel is OFF, it is removed from the system, and
the belief of every channel is π, representing a state in which
the transmitter has no knowledge of the system. The system
remains in this state until an ON channel is found, as each
OFF channel which is probed is removed from the system
by the infinite channel assumption. If the optimal decision in
this state is to not probe, then the transmitter never probes,
since the state never changes. Thus, if it is optimal to probe
in the state where the transmitter has no knowledge, then
it is optimal to probe immediately after an OFF channel is
probed. When a probed channel is ON, the highest belief is
always 1− q in the next slot, and decays until that channel
is probed again, as it will always remain the channel with
the highest belief. Hence, there exists a threshold k∗ after
an ON probe such that after that time, it becomes optimal
to probe.

Assume a probe occurs in the slot immediately after
probing an OFF channel, and let k denote the number of
slots after probing an ON channel until the best channel is
probed again. Define a renewal to occur when the transmitter
probes an OFF channel. It follows that the inter-renewal time
is one slot if the next probed channel is OFF, and 1 + kN
if the probed channel is ON, where N is a random variable
equal to the number of times the ON channel is probed until
it turns OFF. Thus, the expected inter-renewal time is given

by

X̄B = (1− π) + π(1 + kE[N ]) (146)
= 1 + πkE[N ], (147)

The random variable N is is geometrically distributed with
parameter pk10. The reward accumulated over this interval is
π if the probed channel is OFF, and N times

∑k−1
i=0 p

i
11 if

the channel is ON, plus an additional π after the final OFF
probe. A cost of c is incurred for each channel probe within
this interval. The expected reward is given by

R̄B = (1− π)(π − c) + π

(
E[N ](

i∑
i=0

−c) + π − c
)
(148)

= (π − c) + πE[N ](

k−1∑
i=0

pi11 − c). (149)

Therefore, the average per-time slot reward is given by
the ratio of expected reward over a renewal interval to the
expected length of the renewal interval:

R̄B

X̄B
=
pk10(π − c) + π(

∑k−1
i=0 p

i
11 − c)

pk10 + kπ
(150)

= π − c
(
π + pk10
kπ + pk10

)
+

πpk10
(p+ q)(kπ + pk10)

(151)

The maximizing value of k in equation (151) is the optimal
time k∗ to wait after an ON probe.

G. Proof of Theorem 13

Theorem 13: For a system in which the transmitter probes
channels according to the round robin policy, the optimal
decision is to probe a new channel immediately after probing
an OFF channel, and to probe k′ slots after probing an ON
channel, where k′ is given by

k′ = arg max
k

−c(p+ q) + pEN [
∑k+N−2

i=0 pi11]

p(k − 1) + p+ q
(152)

where N is a geometrically distributed random variable with
parameter π.

Proof. In contrast to Theorem 12, there is no analog to
Theorem 5 for round robin probing. Thus, we first prove the
optimal form of the policy is a threshold policy, by proving
the monotonicity of the expected reward function. Given the
structure of the optimal policy, renewal theory is applied to
characterize the optimal interval. To begin, we can write the
expected reward as a function of k over a finite horizon.



JT (k) = max

(
pk11,−c+ π + (1− π)pk11

)
(153)

Jt(k) = max

(
pk11 + Jt+1(k + 1),−c+ π

(
1 + Jt+1(1)

)
+ (1− π)

(
pk11 + Jt+1(k + 1)

))
(154)

where the left argument to the max(·, ·) function repre-
sents the expected reward from not probing, and the right
argument represents the expected reward from probing an
unknown channel.

Under round robin probing, Jt is monotonically decreas-
ing in k for all t. To see this, assume t = T , then assume k
satisfies πpk10 ≥ c, then

JT (k) = max

(
pk11,−c+ π + (1− π)pk11

)
= pk11 + max(0,−c+ πpk10) (155)

= pk11 − c+ π(1− pk11) = pk11(1− π) + π − c
(156)

which is monotonically decreasing in k, since pk11 is a
monotonically decreasing function of k. If on the other
hand πpk10 ≤ c, then JT (k) = pk11 which is monotonically
decreasing in k.

Now assume t ≤ T , and the hypothesis holds for
t + 1, . . . , T , we will show using induction that it holds
for t. Let g(k) = pk11 + Jt+1(k + 1). By induction, g(k) is
monotonically decreasing in k, and using the analysis from
the base case, the expression

Jn(k) = max

(
g(k),−c+ π

(
1 + Jn+1(1)

)
+ (1− π)g(k)

)
(157)

is also monotonically decreasing in k.
The remaining proof of Theorem 13 follows by reverse

induction over the time horizon. Assume there is a k′ such
that it is optimal to probe at time T . Consider k ≥ k′. It is
optimal to probe if c ≤ πpk10. However, c ≤ πpk′10 since it is
optimal to probe at k′, and pk10 ≥ pk

′

10. Therefore, it is also
optimal to probe at k.

Now consider t ≤ T , and assume our induction hypothesis
holds for t+ 1. The difference in the arguments to max(·, ·)
in (154) can be bounded as follows

−c+ π(1 + Jt+1(1))

+ (1− π)(pk11 + Jt+1(k + 1))− pk11 − Jt+1(k + 1)
(158)

= −c+ π(1 + Jt+1(1)) +−π(pk11 + Jt+1(k + 1))
(159)

≥ −c+ π(1 + Jt+1(1)) +−π(pk
∗

11 + Jt+1(k∗ + 1))
(160)

≥ 0. (161)

where the first inequality holds from the monotonic property
of the J function, and the second inequality holds from the
assumption that it is optimal to probe for k′. Therefore, it
is optimal to probe at t, and by induction, it is optimal to
probe k′ slots after an ON probe for some value of k′.

To characterize the optimal value of k′, we introduce
renewal theory using the renewals defined in Section V-C.
Recall, a renewal occurs upon probing a channel which is
ON. The expected time until the next renewal is the k′ slots
until the next probe, plus the number of slots it takes to find
a new ON channel. Let N be the number of probes until
an ON channel is found, which is geometrically distributed
with parameter π. The expected inter-renewal time is given
by

X̄R = EN [k +N − 1]. (162)

Over this interval, a cost of c is incurred for each of the N
channel probes, and at each time slot the transmitter uses the
last known ON channel for transmission. Thus, the expected
reward is given by

R̄R = EN

[
1−Nc+

k+N−2∑
i=0

pi11

]
. (163)

To determine the optimal k′, we maximize the ratio of
the expected reward to the expected length of the renewal
interval, thus concluding the proof.
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