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Abstract—Most common network protocols transmit variable size packets, whereas contemporary switches still operate with fixed-

size cells, which are easier to transmit and buffer. This necessitates packet segmentation and reassembly modules, resulting in

significant computation and communication overhead that might be too costly as switches become faster and bigger. It is, therefore,

imperative to investigate an alternative mode of scheduling in which packets are scheduled contiguously over the switch fabric. This

paper investigates the cost of packet-mode scheduling for the combined input-output-queued (CIOQ) switch architecture. We devise

frame-based schedulers that allow a packet-mode CIOQ switch with small speedup to mimic an ideal output-queued switch, with

bounded relative queuing delay. The schedulers are pipelined and based on matrix decomposition. Our schedulers demonstrate a

trade-off between the switch speedup and the relative queuing delay incurred while mimicking an output-queued switch. When the

switch is allowed to incur high relative queuing delay, a speedup arbitrarily close to two suffices to mimic an ideal output-queued

switch. This implies that packet-mode scheduling does not require higher speedup than a cell-based scheduler. The relative queuing

delay can be significantly reduced with just a doubling of the speedup. We further show that it is impossible to achieve zero relative

queuing delay (that is, a perfect emulation), regardless of the switch speedup. In addition, simpler algorithms can mimic an output-

queued switch with a bounded buffer size, using speedup arbitrarily close to one. Simulations confirm that packet-mode emulation with

reasonable relative queuing delay can be achieved with moderate speedup. Furthermore, a simple and practical heuristic is shown by

simulations to also provide effective packet-mode emulation.

Index Terms—Internetworking, packet-switching networks, routers, sequencing and scheduling.
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1 INTRODUCTION

IN many network protocols, from very large Wide Area
Networks (WANs) to small Networks on Chips (NoCs),

traffic consists of variable-size packets. A prime example is
provided by IP datagrams whose sizes typically vary from
40 to 1,500 bytes [1].

Real-life routers, however, operate with fixed-size cells,

which are easier to buffer and schedule synchronously. For

instance, cell-based Combined Input-Output-Queued (CIOQ)

architectures with a crossbar switch fabric (Fig. 1) are

widely used today as the core of contemporary routers [2],

[3]. These switches operate at a rate close to the external line

rate, and therefore, can scale with an increasing number of

ports. In addition, cell-based CIOQ switches are well known

for providing strong performance guarantees. In fact, with a

small speedup1 of two, they can exactly emulate an ideal

Output-Queued (OQ) switch [4], [5], [6], [7], [8], [9].

Nevertheless, while they are apparently simpler, cell-
based switches with fixed-size cells can actually cause many
significant problems in practice:

Transmitting packets over cell-based switches requires the
use of packet segmentation and reassembly modules,
resulting in a significant computation and communication
overhead [10]. Specifically, in order to provide contiguous
packet delivery from the switch, all the cells of a packet
should be stored in a designated buffer until such a successful
delivery is certain (in most cases, until all the cells arrive at the
output port). Moreover, each output port should be able to
reassemble simultaneously and separately many packets
coming from many input ports.

Cell-based scheduling is expected to turn into an even
more crucial problem as the use of optics becomes wide-
spread, since future switches could deal with packets in
the optical domain and might be unable to afford their
segmentation and reassembly.

An even more intricate problem arises in congestion
time, when cells need to be dropped. Cell-based schedulers,
unaware of packet boundaries, may drop cells from many
different packets, thus causing many packets to be dropped,
which results in a significant performance degradation. In
contrast, packet-aware switches can ensure that drops are
localized at a few packets, thus confining the performance
degradation and the number of retransmissions needed
(cf. [11, Page 44]).

Packet-mode schedulers [12], [13] provide an attractive
middle ground by delivering packets contiguously over
the switch fabric, implying that until a packet is fully
transmitted, neither its originating port nor its destination
port can handle different packets.
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1. The speedup of a switch is the ratio between the rate at which the
switch fabric operates and the external rate.
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However, while packet-mode schedulers seem more
attractive than cell-based switches, it is unknown whether
they can provide the same strong performance guarantees.
In particular, the objective of our paper is to determine
whether they can emulate or mimic OQ switches with a
speedup of two, or, for that matter, with any speedup.

We answer this question in the affirmative by presenting
packet-mode schedulers for CIOQ switches that mimic an
OQ switch. We further investigate the trade-off between the
speedup of the CIOQ switch and its relative queuing delay.

This paper only considers “strong” deterministic perfor-
mance guarantees. In particular, OQ switch mimicking with
relative queuing delay R allows the CIOQ switch to deliver
packets at most R time slots after they would have been
delivered by an ideal OQ switch. This holds for arbitrary
traffic patterns, including adversarial traffic. Therefore, this
performance measure is entirely deterministic and worst
case in nature. It is not subject to probabilistic or empirical
assumptions on the incoming traffic that could become
unsubstantiated.

1.1 Background

Previous work [12], [13] considers packet-mode scheduling
in an input-queued (IQ) switch with crossbar fabric whose
speedup is 1 and proves analytically that packet-mode
IQ switches can achieve 100% throughput, provided that
the input-traffic is well behaved; this matches earlier results
on cell-based scheduling [14]. Ajmone Marsan et al. [12]
also show that under low load and small packet size
variance, packet-mode schedulers may achieve better
average packet delay than cell-based schedulers. A different
line of research used competitive analysis to evaluate
packet-mode scheduling, when each packet has a weight
representing its importance and a deadline until which it
should be delivered from the switch [15].

The ability of a cell-based CIOQ switch to emulate an
output-queued switch has been extensively investigated
(e.g., [4], [5], [6], [7], [8], [9]). Chuang et al. [5] introduce the
critical cells first (CCF) algorithm, which allows a CIOQ
switch with speedup 2 to emulate (exactly) an output-queued

switch. They also show that a CIOQ switch needs speedup of
at least 2� 1

N in order to emulate an output-queued switch.
To our knowledge, the ability of packet-mode CIOQ switches
to emulate OQ switches was not investigated before.

Recently, Turner [16] studied packet-mode emulation in
buffered crossbar switches. Essentially, these are CIOQ
switches with additional buffers in the crosspoints: a cell
arriving at input port i and destined for output port j is first
buffered at input port i’s buffer, then it is sent to an
ði; jÞ crosspoint buffer, and finally, it is forwarded from the
crosspoint buffer to output port j’s buffer. Turner shows that
a buffered crossbar switch with speedup 2 and crosspoint
buffers of size 5Lmax can mimic an output-queued switch
with relative queuing delay of ð7=2ÞLmax time slots. The
algorithms rely on the fact that, unlike in CIOQ switches, the
buffers at the crosspoints introduce orthogonality between
the operations of input ports and output ports. This strong
property simplifies the design of both cell-based schedulers
[17] and packet-mode schedulers [16]. The algorithms
proposed in [16] do not apply to the unbuffered switch
fabric we study.

Our schedulers and their analysis rely on matrix
decomposition techniques. Birkhoff von-Neumann matrix
decomposition is used for scheduling when the arrival rate
can be estimated [18], [19], [20]. Other matrix decomposi-
tion heuristics are employed in frame-based schedulers for
optical switching and in satellite-switched time-division
multiple-access (SS/TDMA) schedulers [21], [22], [23], [24].
These decompositions are not packet aware and may
violate the contiguous delivery of cells corresponding to
the same packet.

Weller and Hajek [24] show that a decomposition using
maximal matchings requires at most twice as many
scheduling decisions as a Birkhoff von-Neumann decom-
position. This property forms the basis for the analysis of
one of our algorithms (described in Theorem 8).

1.2 Our Results

We devise pipelined frame-based schedulers in which
scheduling decisions are done at the frame boundaries. At
each frame, a demand matrix, representing the total size of
packets between each input-output pair, is decomposed
into permutations that dictate the scheduling decisions in
the next frame.

We show that, unlike a cell-based CIOQ switch, a packet-
mode CIOQ switch cannot exactly emulate an OQ switch, or
even achieve relative queuing delay smaller than Lmax=2� 3
(where Lmax is the maximum packet size2) whatever the
speedup is (Theorem 1). However, once we allow for a
bounded additional relative queuing delay, we find that a
packet-mode CIOQ switch does not require a fundamen-
tally higher speedup than a cell-based CIOQ switch.
Moreover, we provide tradeoffs between the speedup of
the switch and its relative queuing delay.

Specifically, a packet-mode CIOQ switch can mimic an
OQ switch with a speedup 2Lmax and relative queuing
delay of only Lmax � 1 time slots (Theorem 2). However,
note that such a speedup is prohibitive in real-life switches.

We further show (Theorem 8) that a smaller speedup
of 4þOð 1

RÞ suffices to ensure that a packet-mode CIOQ
switch mimics an OQ switch with relative queuing delay
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Fig. 1. Combined Input-Output-Queued Switch with Virtual Output

Queuing. The switch fabric operates at rate S � R, where S is the

speedup of the switch.

2. The size of a packet is measured by the number of time slots it takes to
transmit the packet over the switch fabric.



of R ¼ OðNLmaxÞ time slots, where N is the number of
input (output) ports.

Finally, a speedup of 2þOð 1
RÞ suffices to ensure that a

packet-mode CIOQ switch mimics an OQ switch with
relative queuing delay R ¼ OðNLmaxÞ time slots. The
relative queuing delay introduced by this algorithm is
larger by a constant factor than the relative queuing delay
incurred by the algorithm described in Theorem 8.

It is important to note that these algorithms rely on an
underlying cell-mode OQ emulation algorithm (e.g., CCF).

We also consider mimicking an output-queued switch
with a bounded buffer size B at each output port. Extending
the matrix decomposition techniques, we show (Corol-
lary 12) that with a smaller speedup of 1þOð 1

RÞ and relative
queuing delay R ¼ OðBþNLmaxÞ, a packet-mode CIOQ
mimics an OQ switch with buffer size B. The algorithm that
provides this mimicking does not rely on an underlying
cell-mode OQ emulation algorithm, and thus, may be more
practical to implement in real-life switches.

We evaluate the performance of our schedulers through
simulations, both under real-life traffic traces and under
various stochastic traffic models. These simulations verify
that, in practice, our schedulers perform significantly better
than their theoretical bounds. Furthermore, we offer a
simple heuristic that can be directly implemented in
practice; our simulations show that this heuristic provides
packet-mode emulation with small relative queuing delay
and speedup less than 2.

2 PRELIMINARIES

2.1 Packet-Mode CIOQ Switch

We consider an N �N packet switch that routes packets
arriving at N input ports at rate R and destined for
N output ports working at the same rate R (see Fig. 1).
Packets of variable size arrive at the input ports and leave
the output ports in a time-slotted manner; namely, all the
switch external lines are synchronized (as typically
assumed in the literature [5], [14], [25]). For convenience,
we refer to each part of a packet that is transmitted during a
single slot as a fixed-size cell. Note that packets are not
really segmented into cells, and the cell abstraction is used
solely to simplify the description.

The packet size is measured in cell units, where the
minimal packet size is one cell and the maximum packet
size is Lmax cells. All cells of the same packet arrive at the
switch contiguously on the same input port and are
destined for the same output port. Therefore, we refer to a
packet simply as a sequence of cells and assume that its size
is known upon arrival of its first cell (e.g., the total size is
written in the header).

For every cell c, we denote by origðcÞ and destðcÞ the
input port at which c arrives and the output port for which c
is destined. In addition, packetðcÞ denotes the packet that
corresponds to cell c; firstðpÞ, lastðpÞ are the first and last
cells of packet p.

In a CIOQ switch with speedup S, packets arriving at
rate R are first buffered in the input side and then
forwarded over the switch fabric to the output side as
dictated by a scheduling algorithm. Packets that arrive at
input port i and are destined for output port j are stored in
the input side of the switch in a separate buffer VOQij,
which is called virtual output queue.

The switch fabric operates at rate S � R, where S is the
speedup of the switch, implying that the switch has S
scheduling opportunities (or scheduling decisions) every
time slot.3 When S > 1, some buffering should be done also
in the output side of the switch.

A packet-mode CIOQ switch ensures that if a packetp from
input port i to output port j consists of the cells ðc1; . . . ; c‘Þ,
then after cell c1 is transmitted across the switch fabric, no
cells of packets other than p are transmitted from input port i
or to output port j until cell c‘ is transmitted. Naturally, cells
of the same packet are transmitted in order.

It is possible that some input port i starts transmitting
cells of a packet p before all the cells of packet p arrived at
the switch. Since the speedup of the switch is typically
greater than 1, this may cause the switch to underutilize its
speedup. For example, suppose that the first cell c1 of a
packet p ¼ ðc1; c2; . . . ; c‘Þ arrives at input port i at time slot t
and is immediately sent to output port j in the first
scheduling opportunity of time slot t. Since cell c2 arrives at
the switch only at time slot tþ 1, no cells can be sent from
input port i or to output port j for the next S � 1 scheduling
opportunities (even if there are cells of other packets in one
of the relevant buffers).

2.2 Mimicking a Packet-Mode OQ Switch

The first requirement from a packet-mode OQ switch is to
ensure that cells of the same packet are contiguous, that is,
cells of the same packet should leave the switch one after
the other with no interleaving of cells from other packets.
We denote by tOQðcÞ the time slot at which cell c is delivered
by the output-queued switch. Therefore, for any packet
p ¼ ðc1; . . . c‘Þ, tOQðciÞ ¼ tOQðcjÞ þ ði� jÞ for 1 � j � i � ‘.

As in the previous works on OQ switch mimicking (e.g.,
[5], [17], [26]), a packet-mode OQ switch should also
provide a relaxed notion of a first-come-first-serve (FCFS)
discipline. If the last cell of packet p arrives at the switch
before the first cell of packet p0 and both packets share the
same output port, then all cells of packet p should leave the
switch before the cells of packet p0. We denote this partial
order of packets by p � p0.

Finally, (packet-mode) OQ switches should also be work-
conserving: Namely, if a cell is pending for output port j at
time slot t, then some cell leaves the switch from output
port j at time slot t [5], [6], [27].

We now define the stability criterion used in this paper
as follows:

Definition 1 (OUTPUT-QUEUED SWITCH MIMICKING [26]).
A switch mimics an output-queued switch with relative
queuing delay R if, under identical input traffic, every cell
leaves the switch at most R time slots after it would have left
the output-queued switch, where R is a constant independent
of the elapsed time.

We say that a switch emulates an OQ switch if it mimics it
without relative queuing delay (i.e., R ¼ 0) [5]. Since an
output-queued switch is work-conserving, it implies that
any switch that emulates an output-queued switch is also
work-conserving.
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3 SIMPLE UPPER AND LOWER BOUNDS ON THE

RELATIVE QUEUING DELAY

3.1 The Lower Bound

We show that a packet-mode CIOQ switch cannot mimic with
small relative queuing delay an OQ switch, regardless of the
CIOQ switch speedup. In particular, this result implies that a
packet-mode CIOQ cannot exactly emulate an OQ switch,
whatever the speedup used. This runs against the conventional
wisdom that “speedup N solves every problem.”

Theorem 1. For any speedup S, a packet-mode CIOQ switch
with speedup S cannot mimic an OQ switch with relative
queuing delay R < Lmax=2� 3 time slots.

Proof. Assume toward a contradiction that the CIOQ switch
mimics an OQ switch with relative queuing delay
R < Lmax=2� 3, and consider the following traffic, con-
sisting of only three packets: At time slot 1, packet p1 of
size Lmax arrives at input port 1, destined for output
port 1. At time slot Rþ 2, packet p2 of size 1 arrives at
input port 2, destined for output port 1. At time slotRþ 3,
packet p3 of size Lmax arrives at input port 2, destined for
output port 2.

At time slot 1, packet p1 is the only packet destined for
output port 1; since the OQ switch is work-conserving, the
first cell of p1 is delivered by the OQ switch at time slot 1,
implying that it must be delivered by the CIOQ switch by
time slot Rþ 1. Packet scheduling restricts the switch
from delivering cells of other packets to output port 1 until
the last cell of packet p1 is delivered. Since the last cell of
packet p1 arrives at the switch at time slot Lmax, output
port 1 is busy handling p1 at least until time slot Lmax.

The same argument shows that the first cell of
packet p3 is delivered to output port 2 at time slot
Rþ 3, and input port 2 is busy handling p3 at least until
time slot Lmax þRþ 2.

Since Lmax > Rþ 3, packet p2 cannot be delivered to
output port 1 until time slot Lmax þRþ 2. However,
packet p2 is delivered by the OQ switch in time slot
Lmax þ 1, implying that its relative queuing delay is at
least Rþ 1, contradicting the assumption. tu

This result holds since the CIOQ switch waits for the cells
of the different packets to arrive, and in this situation, the
switch degrades to work at the external line rate (i.e., with
S ¼ 1), as an IQ switch. Theorem 1 is, therefore, consistent
with the known result that IQ switches with speedup 1
cannot emulate output-queued switches [5].

3.2 The Upper Bound

We now show that a CIOQ switch can mimic an OQ switch
with relative queuing delay of Lmax � 1 time slots provided
it has speedup 2Lmax. The algorithm closely follows the CCF
algorithm [5], which emulates (precisely) a cell-based OQ
switch with speedup S ¼ 2.

Intuitively, multiplying the speedup by the maximum
packet size Lmax reduces the problem of packet-mode
switching to cell-based switching: each cell-based scheduling
decision can be mapped to Lmax contiguous packet-mode
scheduling decisions, implying that a packet can be trans-
mitted contiguously. In addition, a relative queuing delay of

Lmax � 1 time slots allows the scheduler to wait until a packet
fully arrives at the switch before it is scheduled. The
following theorem captures this simple result:

Theorem 2. A packet-mode CIOQ switch with speedup S ¼
2Lmax can mimic an OQ switch with relative queuing delay of
Lmax � 1 time slots.

Proof. For each time slot t, let traffic T ðtÞ be the collection of
cells that arrive at the switch by time slot t and let T 0ðtÞ �
T ðtÞ be a traffic consisting only of cells in T ðtÞ that are
the first cells of their corresponding packets. Denote by
CCF0ðcÞ the time slot in which the CCF algorithm with
speedup S ¼ 2 schedules a cell c of traffic T 0ðtÞ over the
switch fabric, and let t0OQðcÞ be the time slot in which c
leaves a cell-based OQ switch that handles traffic T 0.

The packet-mode CCF algorithm (PM-CCF) simulates
the behavior of a cell-based CCF: For each packet p
of traffic T ðtÞ, PM-CCF forwards the entire packet p
contiguously over the switch fabric in time slot
tPM-CCF ¼ CCF0ðfirstðpÞÞ þ Lmax � 1.

Since the cell-based CCF works with speedup S ¼ 2,
for each time slot t, there are at most two cells that share
the same input or output port and are forwarded over
the switch fabric by the cell-based CCF in time slot t.
PM-CCF works correctly since it has 2Lmax scheduling
opportunities at each time slot, and therefore, can
schedule the packets corresponding to these two cells
entirely in the same time slot t. In addition, the
contiguous arrival of packets at the input ports ensures
that packet p has fully arrived to the switch by time slot
CCF0ðfirstðpÞÞ þ Lmax � 1.

For each cell c of traffic T , tOQðcÞ denotes the time slot
in which c leaves the packet-mode OQ switch. Note that
tOQðcÞ � tOQðfirstðpacketðcÞÞÞ � t0OQðfirstðpacketðcÞÞÞ be-
cause cells corresponding to the same packet are
delivered in order and traffic T 0 is a subset of traffic T .
Since the cell-based CCF emulates cell-based OQ switch,
it follows that for each cell c of traffic T :

tOQðcÞ � t0OQðfirstðpacketðcÞÞÞ
� CCF0ðfirstðpacketðcÞÞÞ
¼ tPM-CCF ðcÞ � Lmax � 1ð Þ:

This implies that every cell c can be delivered from a
CIOQ switch with packet-mode CCF at time slot
tOQðcÞ þ Lmax � 1, and the claim follows. tu

This result only demonstrates the possibility of OQ
mimicking with bounded delay, since speedup 2Lmax is
unreasonable in practical switches. Note that had it been a
cell-mode emulation algorithm with better speedup S < 2,
OQ mimicking could have been obtained with speedupSLmax

by following the proof of Theorem 2. The rest of the paper
shows how to mimic an OQ switch with significantly smaller
speedup.

4 TOWARD TRADE-OFFS BETWEEN SPEEDUP AND

RELATIVE QUEUING DELAY

Our scheduling algorithms operate in a frame-based
pipelined manner, with scheduling decisions done only at
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the frame boundaries. At each frame boundary, the
algorithms first construct demand matrices, and then decom-
pose these matrices into permutations (or subpermutations).
The algorithms satisfy the demands by scheduling the cells
in the next frame according to the resulting permutations.

The algorithms and their analysis rely on some results
of matrix theory, which are presented in the following
section. Then, we give some general results, which lay the
groundwork for our scheduling algorithms described in
Sections 5 and 6.

4.1 Matrix Decomposition

Definition 2. A permutation P is a 0-1 matrix such that the
sum of each row and the sum of each column are exactly 1. A
subpermutation P is a 0-1 matrix such that the sum of each
row and the sum of each column are at most 1.

For simplicity, we refer to subpermutations as permuta-
tions in the rest of the paper. The following definition
captures the fact that the number of cells that should be
scheduled from a single input port or to a single output port
is bounded:

Definition 3. A matrix A 2 NNN�N is C-bounded if the sum of
each row and each column in A is at most C.

A classical result says that anyC-bounded matrixA can be
decomposed into C permutations, whose sum dominates A:

Theorem 3 (BIRKHOFF VON-NEUMANN DECOMPOSI-

TION [28], [29], [30]). If a matrix A2NNN�N is C-bounded,

for some integer C, then there are C permutations P1; . . . ; PC
such that A �

PC
i¼1 Pi.

The Birkhoff von-Neumann decomposition implies that
every C-bounded demand matrix can be scheduled, cell by
cell, in C scheduling opportunities (or equivalently, in
C=Sd e time slots) when permutation Pi dictates the

scheduling in opportunity i. However, such a scheduling
may violate the packet-mode restrictions, since there is no
relation between adjacent permutations in the sequence.

4.2 Common Properties of Our Scheduling
Algorithms

Our schedulers operate by constructing a demand matrix at
each frame boundary and then decomposing this matrix in
order to determine the scheduling decisions for the next
frame. The relative queuing delay of the schedulers corre-
sponds to the size of the frame, while the speedup of the
switch is determined by the ratio between the frame size and
the number of permutations obtained in the decomposition.

A key insight is that packet-mode OQ switches can be
implemented by a push-in-first-out (PIFO) cell-based OQ
switch. In such OQ switches, arriving cells are placed in an
arbitrary location in their destination’s buffer, and the switch
always outputs the cells at the head of its buffers [5]. The
PIFO policy is an extension of the first-in-first-out (FIFO)
policy that can also implement Quality-of-Service–aware
(QoS-aware) algorithms, such as WFQ and strict priority:

Lemma 4. A packet-mode OQ switch can be implemented by a
PIFO cell-based OQ switch.

Proof. Consider the following PIFO cell-based OQ schedu-
ler: The first cell of a packet p arriving at the switch is
placed at the end of the relevant OQ switch buffer. Each
consecutive cell ci of packet p is placed immediately after
cell ci�1; in each time slot, the cell at the head of the
buffer departs from the switch.

Since cells of the same packet are placed one after the
other in the buffer, they leave the OQ switch con-
tiguously. In addition, if p � p0, then the last cell of
packet p is placed in the buffer before the first cell of
packet p0, implying that packet p is served before packet
p0. Thus, this is a valid packet-mode OQ scheduler and
the claim follows. tu

Note that, using the CCF algorithm, a cell-based CIOQ
switch with speedup S ¼ 2 can emulate cell-based OQ
switch with any PIFO discipline [5], and in particular, the
above-mentioned discipline. Our algorithms use CCF in
order to construct the demand matrix of each frame. It is
important to note that we could use any other algorithm
that provides PIFO cell-based emulation.

Let CCFðcÞ be the time slot in which a cell c is forwarded
over the switch fabric by the CCF algorithm. Clearly,
CCFðcÞ � tOQðcÞ. We have the next lemma:

Lemma 5. If a scheduling algorithm ALG schedules the cell

lastðpÞ of every packet p by time slot CCFðlastðpÞÞ þ �, then

the maximum relative queuing delay of ALG is at most

� þ Lmax � 1, where Lmax is the maximum packet size.

Proof. Consider a cell c, let k be its place in packetðcÞ and ‘

be the size of packetðcÞ. The contiguous packet delivery
in the output-queued switch dictates that tOQðcÞ ¼
tOQðlastðpacketðcÞÞ � ð‘� kÞ. Let tALGðcÞ be the time slot
in which ALG forwards cell c over the switch fabric.
Since both ALG and CCF forward the cells of packetðcÞ in
their order within the packet,

tALGðcÞ � tALGðlastðpacketðcÞÞ
� CCFðlastðpacketðcÞÞ þ �
� tOQðlastðpacketðcÞÞ þ �
¼ tOQðcÞ þ � þ ‘� k
� tOQðcÞ þ � þ ‘� 1

� tOQðcÞ þ � þ Lmax � 1:

Therefore, every cell c is in the output side of the
switch by time slot tOQðcÞ þ � þ Lmax � 1, and therefore,
ALG can output cell c from the CIOQ switch at time slot
tOQðcÞ þ � þ Lmax � 1. Note that ALG does not transmit
two cells c; c0 at the same time slot from the same output
port, since tOQðcÞ þ � þ Lmax � 1 ¼ tOQðc0Þ þ � þ Lmax � 1
implies that tOQðcÞ ¼ tOQðc0Þ, contradicting the definition
of an output-queued switch. tu
We devise a frame-based scheduler in which the demand

matrix in each frame is built according to the times at which
the underlying CCF algorithm forwards cells over the
switch fabric. Packets that are not fully forwarded by the
CCF algorithm until the frame boundary are queued in the
input side of the switch until the next frame, as captured by
the next definition given below.
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Definition 4. For every input port i, output port j, frame size T ,
and frame number k > 0, the set of eligible cells of frame k,
denoted by aijðT; kÞ, includes all cells c 62

S
k0<k aijðT; k0Þ

such that CCFðlastðpacketðcÞÞÞ � kT . By convention,
aijðT; 0Þ ¼ ;.
Note that by definition, all the cells of a packet p are in

the same set of eligible cells.
The following lemma bounds the number of cells,

sharing an input port or an output port, which should be
scheduled within the same frame:

Lemma 6. For every input port i, output port j, frame size T , and
frame number k > 0,

XN
j0¼1

aij0 ðT; kÞ
�� �� � 2T þN Lmax � 1ð Þ and

XN
i0¼1

jai0jðT; kÞj � 2T þN Lmax � 1ð Þ:

Proof. Since CCF works with CIOQ switch with speedup 2,
the number of cells c that share the same input port
(output port) and have been forwarded by CCF within
frame k (namely ðk� 1ÞT < CCFðcÞ � kT ) is at most 2T .

Since in each virtual output queue VOQi;j, all cells of
the same packet p are stored one after the other, there is
no cell of a different packet that is forwarded by CCF
between cells of packet p. Therefore, only cells of one
packet are in aijðT; kÞ and were forwarded by CCF
before time slot ðk� 1ÞT ; we next bound the number of
such cells.

Because the maximum packet size is Lmax and the last
cell of each packet was forwarded by the CCF after time
slot ðk� 1ÞT , at most Lmax � 1 such cells share the same
input port and the same output port. Thus, the number
of such cells that share an input port (output port) is at
most NðLmax � 1Þ. This implies that both

XN
j0¼1

aij0 ðT; kÞ
�� �� and

XN
i0¼1

jai0jðT; kÞj

are bounded by 2T þNðLmax � 1Þ. tu
Lemma 6 and Theorem 3 imply that the eligible cells of

each frame can be scheduled within 2T þNðLmax � 1Þ
scheduling opportunities. Unfortunately, the Birkhoff-von
Neuman decomposition does not ensure that the packet-
mode scheduling constraints are satisfied, and therefore,
cannot be used directly. For example, consider the matrix

A ¼ ½aij	 ¼

3 1 2 0
0 2 2 2
1 2 2 1
2 1 0 3

0
BB@

1
CCA

in which, for example, element a1;1 represents a single packet
of size 3 and elements a2;2,a2;3,a2;4 represent packets of size
two. The following decomposition ofA into six permutations

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCAþ

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0
BB@

1
CCAþ

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

0
BB@

1
CCAþ

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

0
BB@

1
CCAþ

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

0
BB@

1
CCAþ

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

0
BB@

1
CCA

violates the packet-mode constraints: Contiguous transmis-
sion of packet a1;1 requires that the first three permutations
be scheduled contiguously. On the other hand, each
permutation i (i 2 f1; 2; 3g) must also be adjacent to
permutation iþ 3 in order to ensure contiguous transmis-
sion of packet a2;iþ1. These requirements cannot be satisfied
simultaneously, since it implies that at least one permuta-
tion must be adjacent to three permutations.

5 MIMICKING AN OUTPUT-QUEUED SWITCH WITH

SPEEDUP S 
 4

Our first algorithm decomposes the matrix of eligible cells
differently, guaranteeing contiguous packet delivery but
requiring twice as many scheduling opportunities. It uses
the following class of permutations:

Definition 5. A maximal matching for a matrix A ¼ ½aij	 is a
permutation matrix P ¼ ½pij	 � A such that if pij ¼ 0 and
aij > 0, then there exist i0 such that pi0j ¼ 1 or j0 such that
pij0 ¼ 1.

Intuitively, a permutation P � A is a maximal matching
for a matrix A if no element can be added to P , resulting in
a matrix that is still a permutation and is dominated by A.
Note that using maximal matching does not necessarily
guarantee contiguous packet delivery.

The next theorem shows that if a matrix is decomposed
by any sequence of maximal matchings, then the number of
permutations needed is at most twice the number needed in
Theorem 3. The decomposition procedure of a C-bounded
matrix A works iteratively: In each iteration m, a maximal
matching P ðmÞ for the matrix Aðm� 1Þ is found and then
subtracted from Aðm� 1Þ to form AðmÞ (negative values
are treated as zeros). The procedure stops when AðmÞ ¼ 0.
By Theorem 7, this happens after at most 2C � 1 iterations,
regardless of the choice of the maximal matching in each
iteration, implying that the matrix A is decomposed into
less than 2C permutations.

Theorem 7 ([24, THEOREM 2.2]). For every C-bounded
matrix A 2 NNN�N , the decomposition procedure described
above stops after at most 2C � 1 iterations.

Our decomposition algorithm works as follows: At each
frame boundary, the algorithm counts the number of cells in
each set aijðT; kÞ and constructs a matrix BðkÞ ¼ ½bij	 accord-
ingly (namely bij ¼ jaijðT; kÞj). Then, the algorithm repeat-
edly builds maximal matchings for matrix BðkÞ and keeps
contiguous packet delivery by keeping the matching between
input port i and output port j for another iteration, if
additional cells are pending from i to j. (This procedure is
sometimes called exhaustive service matching [31].) Example 1
demonstrates the behavior of this algorithm under a specific
traffic pattern.

Since the algorithm uses only maximal matchings,
Theorem 7 implies that the algorithm needs twice as many
iterations as Birkhoff von-Newmann decomposition. In
particular, for every frame size T , the algorithm needs at
most 4T þ 2NðLmax � 1Þ iterations to complete. This implies
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that it can mimic an output-queued switch with a speedup
arbitrarily close to 4, while attaining a relative queuing
delay of OðNLmaxÞ.
Theorem 8. A packet-mode CIOQ switch with speedup

S ¼ 4þ 2NðLmax � 1Þ � 1

T

can mimic an OQ switch with a relative queuing delay of
2T þ Lmax � 2 time slots.

Proof. Fix a frame size T and let BðkÞ ¼ ½bij	 be the N �N
matrix such that bij ¼ jaijðT; kÞj. Lemma 6 implies that
the sum of each row and each column of BðkÞ is at most
2T þNðLmax � 1Þ.

Algorithm 1 works by repeatedly constructing max-
imal matchings P for matrix BðkÞ. If a cell in the set
aijðT; kÞ is forwarded in some iteration of the algorithm,
and there are more cells in aijðT; kÞ to be forwarded, the
algorithm keeps the matching between input port i and
output port j for the next iteration. Therefore, cells of a
specific set are forwarded contiguously. Definition 4
implies that Algorithm 1 forwards all the cells corre-
sponding to a specific packet contiguously.

Algorithm 1. Coarse-Grained Maximal Matchings

Local Variables:

B: matrix of values in NN, initially B ¼ BðkÞ
P : matrix of values in f0; 1g, initially 0

1: procedure SCHEDULE(matrix B)

2: while B 6¼ 0 do

3: for all P ½i	½j	 do

4: if P ½i	½j	 ¼ 1 and B½i	½j	 ¼ 0 then

5: P ½i	½j	 ¼ 0

6: end if

7: end for

8: P :¼ MAX-MATCHðB;P Þ
. returns a maximal matching

of B that dominates P

9: for all P ½i	½j	 do

10: if P ½i	½j	 ¼ 1 and B½i	½j	 > 0 then

11: forward a cell from input i to output j

12: end if

13: end for

14: B :¼ B� P
15: for all B½i	½j	 do . avoid negative values in B

16: B½i	½j	 :¼ maxfB½i	½j	; 0g
17: end for

18: end while

19: end procedure

20: matrix procedure MAX-MATCH(matrix B, matrix P )

21: while there are i; j such that B½i	½j	 ¼ 1 andPN
j0¼1 P ½i	½j0	 ¼ 0 and

PN
i0¼1 P ½i0	½j	 ¼ 0 do

22: P ½i	½j	 ¼ 1

23: end while

24: return P

25: end procedure

All matchings used by Algorithm 1 are maximal and
the sum of each column and each row in BðkÞ is at
most 2T þNðLmax � 1Þ. By Theorem 7, Algorithm 1
needs at most

2 � ð2T þNðLmax � 1ÞÞ � 1 ¼ 4T þ 2NðLmax � 1Þ � 1

iterations to complete. Thus, with speedup

4þ 2NðLmax � 1Þ � 1

T
;

the algorithm schedules all cells corresponding to BðkÞ
within the next frame, that is, by time slot ðkþ 1ÞT .

Consider some packet p. Definition 4 implies that if the
last cell of p is in aijðT; kÞ, then CCF ðlastðpÞÞ > ðk� 1ÞT .

Since Algorithm 1 schedules lastðpÞby time slot ðkþ 1ÞT , it

follows that the relative queuing delay of lastðpÞ is at most

2T � 1. By Lemma 5, the relative queuing delay is at most

2T þ Lmax � 2. tu
The following example demonstrates Algorithm 1 under

a specific traffic pattern:

Example 1. Consider a 5� 5 switch with maximum packet

length Lmax ¼ 3 and frame size T ¼ 60, and consider the

following arrival traffic pattern (depicted in Fig. 2a):
Input ports 1 and 4 receive continuously packets of

size 3 destined for output 1, input port 2 receives
alternately one packet of size 1 destined for output 1
and one packet of size 2 destined for output 2, input port 3
receives alternately one packet of size 1 destined for
output 2 and one packet of size 2 destined for output 1,
and input port 5 receives alternately 10 packets of size 3
destined for output 1 and 10 packets of size 3 destined for
output 2.

The total demand matrix of the first frame (that is,
time interval ½0; 59	) is

60 0 0 0 0
20 40 0 0 0
40 20 0 0 0
60 0 0 0 0
30 30 0 0 0

0
BBBB@

1
CCCCA:

However, the demand matrix of eligible cells (that is,
cells c with CCFðlastðpacketðcÞÞÞ < 60) is

30 0 0 0 0
10 40 0 0 0
20 19 0 0 0
30 0 0 0 0
30 30 0 0 0

0
BBBB@

1
CCCCA:

Suppose that Algorithm 1 picks the following max-
imal matching in time slot 60:
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1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA;

then, this matching is kept for 30 scheduling decisions
until there are no more cells to forward from input port 1
to output port 1. Because at this time, there are still
10 cells to forward from input port 2 to output port 2, the
next matching must keep this pair of nodes matched for
the next 10 scheduling decisions, for example,

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA:

The rest of the decomposition is as follows (see
illustration in Fig. 2b):

20

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0
BBBBBB@

1
CCCCCCA
þ 10

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0
BBBBBB@

1
CCCCCCA
þ

19

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1 0 0 0 0

0
BBBBBB@

1
CCCCCCA
þ 11

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0
BBBBBB@

1
CCCCCCA
þ

20

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

Note that Theorem 8 implies that the switch may need

a speedup of S ¼ 4þ 2NðLmax�1Þ�1
T ¼ 4þ 19

60 ¼ 4:32 in order

to deal with all possible traffic patterns; the specific traffic

pattern in this example is scheduled within 120 schedul-

ing decisions, thus, requiring a speedup of only two.

6 MIMICKING AN OUTPUT-QUEUED SWITCH WITH

SPEEDUP S 
 2

Using a more fine-grained scheduler and the Birkhoff von-
Neumann decomposition, we now show that a smaller
speedup suffices, albeit with larger relative queuing delay.

The scheduler described in Theorem 8 schedules within
each frame all eligible cells with the same origin and the
same destination contiguously, namely it considers them as
a single packet.

Algorithm 2 also works in a frame-based manner and
deals only with eligible packets of each frame (see Defini-
tion 4). The algorithm starts by greedily concatenating packets
from the same input port to the same output port into
megapackets of size ð�þ 1ÞLmax; � is a function of the frame
size T that will be determined later. The concatenation

ensures that no original packet spans over multiple mega-
packets. This yields a demand matrix of megapackets of size
ð�þ 1ÞLmax, such that for every input-output pair, all except
one megapacket have at least �Lmax bits (otherwise, an
additional packet of size ‘ � Lmax would have been added to
the matrix).

Algorithm 2. Fine-Grained Decomposition

Local Variables:

B: matrix of values in NN, initially B ¼ BðkÞ
P ½	: vector of matrices of values in f0; 1g, initially all 0
M: matrix of values in NN, initially 0

�: integer

1: procedure SCHEDULE(matrix B, int T )

2: � ¼
ffiffiffiffiffiffiffiffiffiffi
T

NLmax

ql m

3: for all A½i	½j	 do

4: M½i	½j	 ¼ B½i	½j	
�Lmax

l m
5: end for

6: P ½	 :¼ BVN-DECOMPOSITION (M)

. returns a sequence of permutation

which is a Birkhoff von-Neumann

decomposition of M

7: for x ¼ 0;x < P:size;x :¼ xþ 1 do

.P:size is the size of the vector P ½	
8: SCHED-PERMUTATIONðP ½x	; �Þ

. Each invocation of SCHED-PERMUTATION

takes ð�þ 1ÞLmax time slots

9: end for

10: end procedure

11: procedure SCHED-PERMUTATION(permutation Q,

int �)
12: for y ¼ 0; y < ð�þ 1ÞLmax; y :¼ yþ 1 do

. Each iteration corresponds to a single

time slot

13: for all Q½i	½j	 do

14: c :¼ The cell at the head of V OQij

. NULL if VOQij is empty

15: if c 6¼ NULL and Q½i	½j	 ¼ 1 then

16: iffirstðpacketðcÞÞ¼c and packetðcÞ:size>
ð�þ 1ÞLmax � y then

17: Q½i	½j	 :¼ 0

. Packet cannot be fully

scheduled

18: else

19: forward cell c from input i to output j

20: end if

21: end if

22: end for

23: end for

24: end procedure

Finally, the demand matrix of megapackets is optimally
decomposed, using Birkhoff von-Neumann. Each permuta-
tion is held for ð�þ 1ÞLmax consecutive scheduling deci-
sions, to ensure contiguous packet delivery.
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The next theorem describes this algorithm in detail and
proves that it works with speedup S 
 2 and relative
queuing delay OðNLmaxÞ, by taking

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

NLmax

r� �
:

A detailed example of this algorithm under a specific traffic
pattern follows.

Theorem 9. A packet-mode CIOQ switch with speedup

S ¼ 2þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLmax

T

r
;

where T � NLmax, can mimic an OQ switch with relative
queuing delay of 2T þ Lmax � 2 time slots.

Proof. Fix a frame size T � NLmax and focus on a frame k.
Let the matrix Bðð�þ 1ÞLmax; kÞ ¼ ½bðð�þ 1ÞLmax; kÞij	
count the number of megapackets. Because the concate-
nation is greedy,

½bð�þ 1ÞLmax; kÞij	 ¼
jaðT; kÞijj
�Lmax

� �
:

We first bound the sum of each row and each column
of the matrix Bðð�þ 1ÞLmax; kÞ. Consider some row i of
the matrix (the proof for a column is analogous):

XN
j¼1

b ð�þ 1ÞLmax; kð Þij ¼
XN
j¼1

jaðT; kÞijj
�Lmax

� �

�
XN
j¼1

jaðT; kÞijj
�Lmax

þ 1

� �

¼ N þ
XN
j¼1

jaðT; kÞijj
�Lmax

¼ N þ 1

�Lmax

XN
j¼1

jaðT; kÞijj

� N þ 2T þNðLmax � 1Þ
�Lmax

;

where the last inequality follows by Lemma 6.

Theorem 3 implies that the matrix Bððð�þ 1ÞLmax; kÞ
can be decomposed into at most

N þ 2T þNðLmax � 1Þ
�Lmax

permutations. The algorithm forwards contiguously all
the megapackets (and thus, all the packets) by holding
each permutation for ð�þ 1ÞLmax consecutive scheduling
decisions. The number of scheduling decisions needed is
therefore bounded by

ð�þ 1ÞLmax N þ 2T þNðLmax � 1Þ
�Lmax

� �

¼ ð�þ 1ÞLmaxN þ ð1þ 1=�Þð2T þNðLmax � 1ÞÞ

¼ 2T þ 2T

�
þ ð�þ 1ÞLmaxN þNðLmax � 1Þ þ

þNðLmax � 1Þ
�

� 2T þ 2T

�
þ 2�LmaxN;

where the last inequality holds when � � 1þ
ffiffiffi
2
p

.

Thus, with a speedup of 2þ 2
�þ

2�LmaxN
T , the algorithm

schedules all cells corresponding to framekwithin the next
frame. This implies that for each packet p, the maximum
relative queuing delay of cell lastðpÞ is less than two frame
sizes, namely at most 2T � 1 time slots. By Lemma 5, the
maximum relative queuing delay is at most 2T þ Lmax � 2.

Taking

�ðT Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

NLmax

r� �

yields a speedup of at most

2þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLmax

T

r
þ 2

NLmax

T
� 2þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLmax

T

r

with relative queuing delay of at most 2T þ Lmax � 2. tu
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Fig. 2. Outline of Examples 1 and 2. Each row represents an input port. White packets are destined for output port 1, and gray packets are destined
for output port 2. (a) The arrival pattern described in Examples 1 and 2; the numbers denote time-slots. (b) The scheduling decisions, within the
corresponding frame, of Algorithm 1 as a response to the traffic depicted in (a); the numbers denote scheduling decisions (in this example, there are
four scheduling decisions within each time slot). (c) The scheduling decisions, within the corresponding frame, of Algorithm 2 as a response to the
traffic depicted in (a); the numbers denote scheduling decisions.



Note that this algorithm works with speedup smaller
than Algorithm 1 when the frame size T is larger than

2
7�3

ffiffi
5
p NLmax ¼ 6:85NLmax time slots.

We next demonstrate the behavior of Algorithm 2.

Example 2. Consider a 5� 5 switch with maximum packet
length Lmax ¼ 3 and frame size T ¼ 60, and the arrival
traffic pattern used in Example 1 (depicted in Fig. 2a).
Recall that the demand matrix of eligible cells is

30 0 0 0 0
10 40 0 0 0
20 19 0 0 0
30 0 0 0 0
30 30 0 0 0

0
BBBB@

1
CCCCA:

For � ¼
ffiffiffiffiffiffiffiffiffiffi
T

NLmax

q
¼

ffiffiffiffiffi
60
5�3

q
¼ 2, the megapacket size is

ð�þ 1ÞLmax ¼ 9. Thus, the demand matrix in terms of

megapackets is

4 0 0 0 0
2 5 0 0 0
3 3 0 0 0
4 0 0 0 0
4 4 0 0 0

0
BBBB@

1
CCCCA:

This matrix is decomposed to the following permu-
tations yielding the scheduling decisions described in
Fig. 2c:

4

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
þ 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0
BBBBBB@

1
CCCCCCA
þ

3

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1 0 0 0 0

0
BBBBBB@

1
CCCCCCA
þ 2

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
þ

3

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
þ 1

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

For this specific example, a speedup S ¼ 153=60 ¼ 2:55
suffices for the switch to handle the incoming traffic.
However, under these settings, in order to handle any
traffic pattern, the switch needs a speedup S ¼ 2 þ 2

�þ2�LmaxN
T ¼ 4; one can reduce the speedup of the switch by

taking a larger frame size. Furthermore, it is important to
note that although in this specific example Algorithm 1
outperforms this algorithm, this is not the case in a worst-
case traffic and larger frame size.

7 MIMICKING AN OQ SWITCH WITH BOUNDED

BUFFERS

We next show that smaller speedup suffices for mimicking
an OQ switch with bounded output bufferB. Intuitively, the

reason for this better performance is that an OQ switch with
bounded buffers cannot handle all incoming traffic patterns
without dropping cells. Therefore, by using the extra
information about the legal incoming traffic patterns, the
CIOQ switch can optimize its scheduling decisions, result-
ing in a simpler and more efficient scheduling algorithm.

Unlike the previous algorithms, algorithms for bounded
mimicking do not rely on the CCF algorithm, and use the
following definition and lemma, which are adapted from
Definition 4 and Lemma 6:

Definition 6. For every input port i, output port j, frame size T ,
and frame number k > 0, the set of eligible cells of frame k,
denoted by aijðT; kÞ, is the set of cells c that is delivered
successfully by the output-queued switch, c 62

S
k0<k aijðT; k0Þ,

and all cells c0 2 packetðcÞ arrive at the switch before time
slot kT . By convention, aijðT; 0Þ ¼ ;.
As in Definition 4, all the cells of each packet p are in the

same set of eligible cells. The next lemma bounds the size of
these sets, showing that the incoming traffic does not
oversubscribe any output port by more than a bounded
number of eligible cells.

Lemma 10. For every input port i, output port j, frame size T ,
and frame number k > 0,

XN
j0¼1

aij0 ðT; kÞ
�� �� � T þBþN Lmax � 1ð Þ and

XN
i0¼1

jai0jðT; kÞj � T þBþN Lmax � 1ð Þ:

Proof. Clearly, at most T cells arrive at each input port
between time slots ðk� 1ÞT and kT . We next show that at
most T þB cells arrive between time slots ðk� 1ÞT and
kT , destined for a single output port j, and are
successfully delivered by the OQ switch.

Assume toward a contradiction that ‘1 > T þB cells
destined for output port j arrive at the switch within
frame k and are not dropped by the OQ switch. Let ‘2 �
0 be the number of cells stored in the buffer of output
port j in time slot ðk� 1ÞT . At most T cells are delivered
from output port j between time slots ðk� 1ÞT and kT ;
hence, the number of cells that are stored in the buffer by
the end of frame k is at least ‘1 þ ‘2 � T > B cells,
contradicting the fact that the buffer size is B.

Since all cells of the same packet p arrive at the switch
contiguously, only cells of one packet are in aijðT; kÞ and
arrived at the switch before time slot ðk� 1ÞT . Since the
maximum packet size is Lmax and the last cell of each
packet arrives after time slot ðk� 1ÞT , the number of
such cells that share the same input port and the same
output port is bounded by Lmax � 1. Thus, the number of
such cells that share the same input port (output port) is
bounded by NðLmax � 1Þ, and the sum is, therefore,
bounded by T þBþNðLmax � 1Þ. tu
In order to mimic an output-queued switch, the CIOQ

switch drops all cells that are dropped by the OQ switch. By
employing Lemma 10 in the proofs of Theorems 8 and 9, we
get the following results:

Corollary 11. A packet-mode CIOQ switch with speedup

S ¼ 2þ 2Bþ 2NðLmax � 1Þ � 1

T
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can mimic an OQ switch with buffer size B with a relative
queuing delay of 2T þ Lmax � 2 time slots.

Corollary 12. A packet-mode CIOQ switch with speedup

S ¼ 1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLmax

T

r
þ 2B

T

can mimic an OQ switch with buffer size B with a relative
queuing delay of 2T þ Lmax � 2 time slots, where T � NLmax.

8 SIMULATION RESULTS

In this section, we show that, in practice, Algorithm 1
outperforms its analytical worst-case bounds and achieves
small relative queuing delay with small speedup. We also
show that Algorithm 1 outperforms Algorithm 2 for
practical frame sizes. Note that analytically Algorithm 2 is
superior to Algorithm 1 only when the frame size T is larger
than 6:85NLmax, and therefore, its importance—showing
that packet-mode emulation does not need additional
speedup to cell-mode emulation—is mainly theoretical.

The results are obtained by conducting simulations
under various synthetic and trace-driven traffic patterns.

8.1 Simulation Settings

Recall that when our algorithms work with a frame of
size T , their relative queuing delay is bounded by
2T þ Lmax � 2. Thus, in order to demonstrate the trade-off
between the speedup and the relative queuing delay, we
measure the loss ratio of packets, for fixed incoming traffic
characteristics, under various speedup and frame-size
values. In this way, for each frame-size value, we find the
minimal speedup in which no loss is observed.

Specifically, for each traffic pattern, we fix a certain
speedup S and a frame size T . For each frame k, our
algorithms construct a demand matrix BðkÞ and then
decompose the demand matrix Bðk� 1Þ of the previous
frame into a sequence of scheduling decisions. Under the
fixed speedup S, the algorithms schedule at most S � T of
these scheduling decisions and drop all packets with cells in
the remaining scheduling decisions. Finally, for each frame
size, we compute the corresponding relative queuing delay
upper bound and present the minimal speedup in which no
packet drop is observed.

8.2 Simulations Based on Stochastic Traffic
Patterns

We study the following three stochastic traffic patterns.
These patterns were also used by Ajmone Marsan et al. [12]
in order to investigate the performance of a packet-mode
Input-Queued switch (with no speedup). It is important
to note that our results are even stronger than real-life
performance, since some of the traffic patterns are especially
constructed in order to reflect starvation and unfairness due
to the contiguous forwarding of large packets:

1. Uniform traffic: In this traffic pattern, packet sizes
are chosen uniformly at random in the range ½1; 192	.
For each packet, its destination is chosen uniformly
at random among all output ports. This uniform
traffic setting is frequently used in simulations and
stochastic analysis of switch performance.

2. Spotted traffic: Packet sizes are 100 cells with
probability 0.5 and 3 cells with probability 0.5;

packet destination is chosen according to the
following 8� 8 matrix; each input port i chooses a
destination uniformly at random among all destina-
tions with entry 1 in row i:

1 1 1 0 1 0 1 0
0 1 0 1 1 1 0 1
1 0 1 0 1 1 1 0
1 1 0 1 0 1 0 1
1 0 1 0 1 0 1 1
0 1 0 1 0 1 1 1
1 0 1 1 1 0 1 0
0 1 1 1 0 1 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

Since the matrix is doubly stochastic and the sum of
each row (column) is five, it implies that each input
port sends packets to five output ports, and each
output port receives packets from five input ports.
This specific traffic matrix aims to highlight starva-
tion and loss of throughput due to the contiguous
forwarding of large packets [12].

3. Diagonal traffic: Packet destinations are chosen
uniformly at random. For every cell c, if origðcÞ ¼
destðcÞ, then the packet size is 100; otherwise, the
packet size is 1. In this traffic pattern, the flows on
the diagonal of the switching matrix consist only of
long packets, while the flows that are not on the
diagonal of the switching matrix consist only of
short packets. Like the spotted traffic setting, this
traffic pattern stresses the effects of contiguously
delivering packets of variable sizes [12].

These stochastic traffic patterns are modeled as ON-OFF
processes: The ON period length is chosen according to a
specific packet size distribution (that is, each ON period
models an arrival of a single packet), while the OFF period
is distributed geometrically with some probability p; the
parameter p is chosen so that a certain load is achieved.

All simulations were run for 100,000 time slots, and they
were performed on a 16� 16 switch (except the spotted
traffic simulations that were performed on an 8� 8 switch,
to compare with [12]).

Figs. 3, 4, and 5 present the minimal speedup in which
no packet drop was observed. As expected, the results
demonstrate that Algorithm 1 needs smaller speedup to
achieve smaller relative queuing delay. Moreover, the
results show that as the load of the traffic increases, the
speedup required by Algorithm 1 also increases.

These results show that, even in extreme situations, a
speedup of less than two suffices to achieve ideal switch
mimicking with frame size of only 8Lmax time slots. This
can be explained by carefully investigating the reasons
behind the upper bound of Theorem 8: A speedup S � 4 is
required due to frames at which the underlying CCF
algorithm forwards 2T cells from the same input port or to
the same output port; moreover, the additional factor of
two is caused by a poor selection of maximal matchings
resulting in an inefficient contiguous decomposition as
captured by Theorem 7. Under nonadversarial traffic, these
two situations rarely occur in practice, certainly not
simultaneously. A relative queuing delay of 2NðLmax�1Þ�1

S�4 þ
Lmax � 2 time slots occurs in even more extreme situation
when there is a frame k and an input port i (or an output
port j) such that from any flow traversing this input port
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(output port) there is a packet p whose first cell is sent by
the underlying CCF algorithm before time slot ðk� 1ÞT and
its last cell is sent by the CCF between time slots ðk� 1ÞT
and k � T . Clearly, this situation hardly ever happens.

Finally, our simulations show that the speedup required
by Algorithm 2 significantly exceeds the speedup required by
Algorithm 1. The prime reason is that the frame sizes used
are too small for Algorithm 2 to perform well: Recall that
Algorithm 2 theoretically outperforms Algorithm 1 only
when the frame size is larger than 6:85NLmax, which is
21,043 time slots for the uniform traffic setting, 5,480 time
slots for the spotted traffic setting, and 10,960 time slots for
the diagonal traffic setting. Yet, as evident by our simulations,
frame sizes of less than 1,600 suffice for packet emulation
with small speedup (using Algorithm 1). The differences
between Algorithm 2 and Algorithm 1 are highlighted under
the diagonal traffic for which Algorithm 2 scales according to
the maximum packet size (100 cells), although packets with
this size are very rare (most of the packets are of size one and
the average packet size is 7.185 cells).

8.3 Trace-Driven Simulations

We also conducted trace-driven simulation using trace data
of TCP-dominated Internet traffic over OC-48 links, taken

from CAIDA [32]. We show that, also in this nonsynthetic
case, Algorithm 1 performs better than its theoretical upper
bounds. To the best of our knowledge, these are the first
trace-driven simulations of packet-mode CIOQ switches.

Fig. 6 presents the performance of Algorithms 1 and 2 in
the trace-driven experiments. We conducted these experi-
ments in granularity of 30 bytes (that is, the cell unit size is
30 bytes) yielding a maximum packet size of 50 cells (i.e.,
1,500 bytes). Furthermore, we compressed the traffic, so
each input port is fully utilized (that is, 100 percent load).
Compressing the traces to 100 percent load intuitively
represents the worst-case traffic that should be handled by
the switch; this intuition is further confirmed by our previous
experiments, which show that as the traffic load increases, the
required speedup also increases. As in the previous synthetic
traffic patterns, these trace-driven simulations also show that
Algorithm 1 performs better than its theoretical bounds and
better than Algorithm 2 under reasonable frame sizes.

Finally, we compare the performance of Algorithm 1 to
the following more practical heuristic, which we call the
store and forward greedy algorithm: The algorithm gets a
certain relative queuing delayR as a parameter and ensures
that each packet either attains relative queuing delay less
than R or is dropped. The algorithm chooses randomly a
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Fig. 3. Simulation results for a 16� 16 switch under uniform traffic

pattern and different input loads.

Fig. 4. Simulation results for a 8� 8 switch under spotted traffic pattern
and different input loads.

Fig. 5. Simulation results for a 16� 16 switch under diagonal traffic

pattern and different input loads.

Fig. 6. Trace-driven simulation results for a 16� 16 switch under
100 percent input loads.



maximal matching over all fully arrived packets at the input
side of the switch, and like Algorithm 1, keeps an input-
output pair matched until the corresponding packet is fully
transmitted. Before a packet is selected for transmission, a
packet is dropped if its relative queuing delay is above the
threshold R.

Our trace-driven simulations indicate that this heuristic
converges quickly until no packet drop is observed, and in
fact, it outperforms Algorithm 1. It is important to note that
the store and forward greedy algorithm and Algorithm 1
behave in a very similar manner, except that the store and
forward greedy algorithm does not run an underlying CCF
algorithm and does not operate in a frame-based manner.
However, there are no worst-case upper bounds for the
store and forward greedy algorithm.

8.4 Scheduling Complexity and Running Times

In this section, we compare the complexity of our
algorithms and their relative running time.

First, it is important to note that both Algorithm 1 and
Algorithm 2 run an underlying CCF algorithm on a shadow
cell-mode CIOQ switch: The CCF algorithm is based on
solving a stable marriage in bipartite graph and its
complexity is OðN2Þ per scheduling decision [5].

Algorithm 1 additionally computes (partial) maximal
matchings cell by cell, where obtaining each such matching
has complexity of OðN2Þ as well, thus, its total complexity is
OðN2Þ. On the other hand, Algorithm 2 performs Birkhoff
von-Neuman decomposition on matrices of packets with size
ð�þ 1ÞLmax, which is equivalent to computing a maximum
size matching every ð�þ 1ÞLmax scheduling decision. Hence,
its total complexity is OðN2 þ N2:5

�Lmax
Þ.

Finally, although the store and forward greedy algo-
rithm does not run an underlying CCF algorithm, it has also
a complexity of OðN2Þ, required to compute a maximal
matching in each scheduling decision.

However, in practice, the most time-consuming task of our
algorithms is to run the underlying CCF algorithm. Table 1
shows representative computation running times of the
algorithms in our nonoptimized implementation, normal-
ized by the computation running time of CCF. Since CCF is a
common component in both Algorithms 1 and 2, this
normalization masks external effects on the running time of
specific executions, and therefore, allows the comparison
between the different algorithms. To achieve the same
comparison, we also ran and timed the same underlying
CCF simultaneously with the store and forward algorithm.

The running time was measured under different traffic
patterns with various frame sizes. Moreover, only

computation tasks were accounted for, and not data
structure operations, traffic generation, and I/O opera-
tions. For example, the matrix decompositions of Algo-
rithm 2 require only between two and three percent of the
time it takes to run CCF, while the matrix decompositions
of Algorithm 1 require about 30 percent of the CCF total
running time. The difference between these algorithms is
explained by the granularity of their matrix decomposi-
tions and the fact that in the considered traffic patterns
�Lmax > N .

Finally, it is important to note that when implementing
scheduling algorithm in real-life switches, their hardware
implementation should be considered. For such imple-
mentations, two main issues should further be addressed:
whether parallelism significantly reduces the complexity
of the algorithm and what is the information complexity
of the algorithm. As CCF is known to be impractical [5],
[10], implementing either Algorithm 1 or Algorithm 2 is
difficult in practice.

9 DISCUSSION

This paper shows that strong performance guarantees can
be provided in packet-mode CIOQ switches, regardless of
the incoming traffic. These guarantees are provided by
mimicking, with bounded relative queuing delay, an ideal
OQ switch.

Packet-mode scheduling is an alternative to the tradi-
tional cell-mode scheduling, which eliminates the need for
the computationally expensive segmentation and reassem-
bly modules. It is expected to become even more useful as
the use of optics becomes widespread, since it is prohibi-
tively expensive to fragment packets in the optical domain.

Packet-mode scheduling imposes very confining restric-
tions on scheduling algorithms. While cell-based CIOQ
switches with speedup N are in fact output-queued
switches, packet-mode CIOQ switches cannot exactly emu-
late output-queued switches, regardless of their speedup.
Nevertheless, if relative queuing delay can be tolerated, a
speedup arbitrarily close to two suffices for such mimicking.
This matches the same result regarding cell-based schedul-
ing, implying that no additional speedup is required in order
to keep packets contiguous over the switch fabric.

These packet-mode schedulers induce high relative
queuing delay, which can be prohibitive for real-life switches.
We therefore study the trade-off between the relative
queuing delay and the speedup of the switch, and prove
that a reasonable relative queuing delay can be achieved by a
CIOQ switch with speedup close to 4. Using simulations, we
show that our algorithms incur even smaller relative queuing
delay with speedup smaller than 2, under real Internet traffic
traces and under synthetic stochastic traffics.

Scheduling algorithm complexity is often seen as the
main performance limitation of CIOQ switches [33]:
Scheduling decisions are typically done every time slot,
requiring the scheduling algorithm to be as fast as the
external line rate. Frame-based algorithms [33], [34], like those
presented here, overcome this obstacle because scheduling
decisions are done only at frame boundaries.

This paper presents upper bounds on the speedup
required to achieve a given relative queuing delay, leaving
the question of their optimality for future research. Note
that by Theorem 1, Lmax=2� 3 is a lower bound on the
relative queuing delay, regardless of the switch speedup.
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TABLE 1
The Scheduling Complexity and Computation Running Time

of Our Algorithms, Normalized by the Computation
Running Time of the Underlying CCF Algorithm
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