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Abstract—Operators need routers to provide service guaran-
tees such as guaranteed flow rates and fairness among flows, so
as to support traffic engineering and real-time traffic. However,
current centralized input-queued router architectures cannot
scale to fast line rates while providing these service guarantees.
On the other hand, while load-balanced switch architectures that
rely on two identical stages of fixed-configuration switches appear
to be an effective way to scale Internet routers to very high
capacities, there is currently no practical and scalable solution
for providing service guarantees in these architectures.

In this paper, we introduce the interleaved matching switch
(IMS) architecture, which relies on a novel approach to provide
service guarantees using load-balanced switches. The approach
is based on emulating a Birkhoff-von Neumann switch with
a load-balanced switch architecture and is applicable to any
known admissible traffic. We show that service guarantees, 100%
throughput, and packet ordering can be achieved with O(1)
online complexity. In cases where fixed frame sizes are applicable,
we also present an efficient offline frame-based decomposition
method. More generally, we show that the IMS architecture can
be used to emulate any input queued or combined input-output
queued switch, leveraging a large body of known results for
ensuring stability.

Index Terms—Load-balanced routers, high-performance
switches, rate guarantees, switch emulation.

I. INTRODUCTION

A. Background

THERE has been much interest recently in a class of
switch architectures called load-balanced routers [1]–

[7], [9]–[15]. This class of architectures is based on a load-
balanced switch architecture where two identical stages of
fixed configuration switches are used for routing packets.
Figure 1 shows a diagram of a generic two-stage load-balanced
switch architecture (all figures are in the appendix). The first
switch connects the first stage of input linecards to the center
stage of intermediate input linecards, and the second switch
connects the center stage of intermediate input linecards to
the final stage of output linecards. As shown in [4], this
class of architectures appears to be a practical way to scale
Internet routers to very high capacities and line rates. The
scalability of this class of architectures can be attributed to
two key aspects. First, they do not require a scheduler. Second,
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these architectures are built using two identical stages of fixed
configuration switches whose deterministic interconnection
patterns are independent of packet arrivals. Thus, there is no
need for arbitrary per-packet dynamic switch configurations,
which are extremely difficult to achieve at high-speeds. The
use of fixed configuration switches is particularly amenable to
scalable implementations with optics, as exemplified by the
100 Tb/s reference design described in [4]. This reference de-
sign is based on a fixed hierarchical mesh of optical channels
that interconnects N = 640 linecards, each operating at a rate
of R = 160 Gb/s.

Although the load-balanced routers described in [1]–[7],
[9]–[11] can achieve guaranteed throughput for all admissible
traffic on a best effort basis, they do not provide service
guarantees required by network operators to support real-time
traffic, bandwidth provisioning, and various other critical traf-
fic engineering tasks. In particular, backlogged flows cannot
obtain any service rate guarantees, and therefore flows could
easily get starved or suffer from extreme service unfairness.

On the other hand, as shown in [16]–[20], centralized input-
queued router architectures are able to provide such service
guarantees, by using a Birkhoff-Von Neumann scheduling
algorithm [21], [22]. Nevertheless, centralized input-queued
router architectures cannot easily scale to higher line rates and
port counts. Therefore, the objective of this paper will be to
investigate an approach for providing service guarantees that
retains the key scaling properties of the load-balanced switch
architecture.

In [12], two alternative schemes are proposed for providing
service guarantees on a load-balanced switch. The first scheme
is based on timestamping individual packets and buffering
packets at the center stage. Packets are then scheduled at the
center stage using an Earliest-Deadline-First (EDF) scheduling
policy. Using an EDF scheduling policy, packets may arrive
at the final destination output linecard out-of-order. A packet
resequencing mechanism is implemented at the final output
stage to correct mis-sequenced packets. As noted in [12],
the proposed EDF-scheduling and resequencing mechanisms
require complex hardware that are difficult to implement
at very high speeds. The second scheme is a frame-based
approach that requires choosing a frame size T . The end-to-
end delay of this approach is Θ(NT ), where N is the number
of switch ports. Therefore, a large frame size implies a large
multiplicative end-to-end packet delay. On the other hand, a
small frame size implies a large rate granularity. As a result,
the approach fails to provide uniform service guarantees for
all non-uniform traffic patterns.

B. Contributions of the Paper

The main contributions of this paper are as follows:
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Fig. 1: Generic load-balanced switch architecture.

• First, from a theoretical point of view, we show that our
proposed interleaved matching switch (IMS) architecture
can be used to emulate any input queued (IQ) or com-
bined input-output queued (CIOQ) switch by interleaving
the associated matchings across the intermediate input
nodes of a load-balanced switch. In particular, we prove
that the departure time of every packet on a load-balanced
switch architecture is within a constant delay from a
corresponding shadow IQ or CIOQ switch under the same
matchings. Consequently, many of the throughput and
service guarantees provided in the literature for IQ and
CIOQ switches directly extend to load-balanced switches.

• Second, in the case when the traffic is known a priori, we
show that our proposed IMS architecture can practically
provide service guarantees by emulating a Birkhoff-
von Neumann input-queued switch [19]. In addition to
using scalable fixed configuration switches, an IMS only
requires a fully-distributed online fair queueing mecha-
nism at each input linecard, based only on local state
information. This online scheduling can be achieved in
O(1) complexity by using either a round-robin based
scheduler [23], [24] or a timestamp-based scheduler with
a pipelined priority queue mechanism [25], [26]. Since
packet ordering is enforced throughout the switch, the
IMS architecture does not require packet resequencing at
the output or the associated resequencing delays. IMS can
provide uniform service guarantees for any admissible
traffic where the traffic profile is known.

• Finally, in cases where a fixed frame size is applicable,
we present an efficient offline decomposition method
that has significantly lower complexity than Birkhoff-
von Neumann decomposition. In contrast to the frame-
based scheme presented in [12] that has an Θ(NT )
end-to-end delay bound, we show that our approach
has a significantly lower Θ(T + N) end-to-end delay
bound. For instance, when T is a constant multiple of
N , the frame-based scheme presented in [12] incurs an
Θ(N2) end-to-end delay bound, whereas our approach
only incurs an Θ(N) end-to-end delay bound. The frame-
based decomposition method is also applicable to the case
of a single crossbar switch.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II
introduces the IMS architecture. Section III demonstrates that
the IMS architecture can emulate any IQ or CIOQ switch,

leveraging known results for achieving stability and service
guarantees. In particular, Section IV shows that service guar-
antees can be provided by emulating a Birkhoff-von Neumann
switch and that the emulation can be implemented with
constant time online complexity in a fully distributed manner.
Section V presents a more efficient offline decomposition
algorithm than Birkhoff-von Neumann decomposition for the
case where a fixed frame size is applicable. This frame-based
decomposition scheme for the IMS architecture is shown to
achieve low end-to-end delay. Section VI presents an illus-
trative example and experimental results. Finally, Section VII
presents conclusions.

II. THE INTERLEAVED MATCHING SWITCH

This section describes the IMS architecture. The basic idea
of the IMS architecture is to emulate any IQ or CIOQ switch
over two identical stages of fixed configuration switches by
using the same matching algorithm m. In particular, we
will prove later in Section III that the departure time of
every packet on an IMS is within a constant delay from a
corresponding shadow IQ or CIOQ switch under the same
matchings. Therefore, many of the throughput and service
guarantees provided in the literature for IQ and CIOQ switches
directly extend to the IMS architecture. The key benefit of
emulating an IQ or a CIOQ switch over fixed configuration
switches is the ability to scale the switch fabric to very high
switch capacities and line rates. We defer to Sections III, IV,
and V for detailed discussions on the emulation properties of
IMS.

In this section, we first present an overview of the IMS
architecture. We then present in more details how a packet
is routed through the IMS architecture. Finally, we describe
delay optimizations that can reduce the constant for the fixed
propagation delay through the switch.

Note that throughout this paper, we assume that packets
have a fixed length and time is slotted.

A. Overview of the Architecture

The IMS architecture consists of three linecard stages that
are interconnected by two fixed configuration switches, exactly
like the load-balanced switch architectures described in [1],
[2], [4]. However, in case of congestion, these architectures
primarily buffer packets in the center stage whereas the IMS
architecture primarily buffers packets in the input stage. This
is depicted in Figure 2.

Specifically, the first stage consists of N input linecards.
Each input linecard i maintains N virtual output queues
(VOQ) for buffering incoming packets, one per final output
destination. The center stage consists of N intermediate input
linecards. Each intermediate input linecard j maintains a set
of N slots: Bj1 . . . BjN . These slots are used for coordination,
as we shall see in Section III. The final stage consists of N
output linecards where packets depart.

To simplify presentation, we model the two switches as
uniform meshes, as in [4]. Each linecard in the first stage is
connected to each linecard in the center stage by a channel
at rate R/N via the first mesh, where R is the line rate
and N is the number of linecards. Similarly, each linecard
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Fig. 2: The Interleaved Matching Switch Architecture.

in the center stage is connected to each linecard at the final
stage by a fixed equal rate channel at rate R/N via the
second mesh. As described in [4], the uniform mesh model
can be readily implemented at very high capacities and line
rates using different types of switches, such as optical meshes
with space and/or wavelength multiplexing, as well as time-
multiplexed cyclic permutation switches (also called round-
robin switches) with no speed-up.

As usual, we assume that a packet sent at the start of time
slot t through a line of rate R will be completely transferred
by the end of time slot t, taking one full time slot. Similarly,
a packet sent through a line of rate R/N will take N full time
slots, and therefore will be transferred by the end of time slot
t+N − 1.

B. Packet Path

To understand the operation of the IMS architecture, con-
sider a stream of packets arriving at an input linecard i, one
new packet at the start of every time slot t. The packets are
immediately queued at their appropriate VOQs, depending on
their final output destination.

At the start of every time slot t, after packet arrivals, each
input linecard i selects a VOQ Zik to serve, using a selection
mechanism described later. Then, all input linecards send in
parallel the packets at the head of their respective selected
VOQs to intermediate input linecard j, where

j = ((t− 1) mod N) + 1. (1)

These packets can be sent in parallel over the first mesh
because each linecard in the first stage is connected to each
linecard in the center stage by a channel of rate R/N .
Therefore, no speed-up is required.

As explained above, intermediate input linecard j then
receives up to N packets in parallel by the end of time slot

t+N − 1. (2)

These packets are stored in the set of slots Bj1 . . . BjN .
Specifically, if a packet is destined for output k, it is stored in
Bjk . To avoid conflict, we need to ensure that packets received
from different inputs are destined to different outputs. This is
the usual bipartite matching constraint, as we shall see.

Then, at the start of time slot

t+N, (3)

intermediate input linecard j sends up to N packets in parallel
over the second mesh to the N output linecards, including
at most one packet to each output linecard k from the
corresponding slot Bjk. Again, these packets can be sent in
parallel over the second mesh with no speed-up. Each output
linecard k then receives the packet sent by intermediate input
linecard j by the end of time slot

(t+N) + (N − 1) = t+ 2N − 1, (4)

and the packet departs immediately from the router.
The above process operates continuously. Specifically, at

time slot t = 1, all input linecards can send a packet each
in parallel to intermediate input linecard j = 1, and all
output linecards may receive a packet each in parallel from
intermediate input linecard j = 1 by time slot 1 + 2N − 1.
At time slot t = 2, all input linecards can send packets to
intermediate input linecard j = 2, and all output linecards
may receive packets from intermediate input linecard j = 2
at time slot 2 + 2N − 1, and so on. Thus, each input linecard
can continuously select at every time slot a new packet to send
over the first mesh, and each output linecard may continuously
receive a new packet at every time slot from the second
mesh for departure. All linecards operate in parallel, and the
operations of the first mesh and the operations of the second
mesh effectively overlap in time.

Note that the above operation implies that each input
linecard sends packets in round-robin order to intermediate
input linecards, and each output linecard receives packets in
the same round-robin order from intermediate input linecards,
starting with the first intermediate input linecard, moving
next to the second intermediate input linecard, and so on,
possibly not sending a packet to (or receiving a packet from)
a particular intermediate input linecard at some time slots.

Also, as depicted in Figure 3, note that the two uniform
meshes can be replaced by a single mesh running twice as
fast, with each linecard containing three logical parts (input,
intermediate input, and output). The channels in the first
logical mesh can be time-multiplexed with the channels in
the second logical mesh, thus reducing the total propagation
delay.

For instance, linecard 2 sends traffic to linecard 3 in both
the first and second stages, both at rate R/N . Therefore, by
providing a link of total rate 2R/N , we can time-multiplex
the two channels into one, e.g. by dividing each time-slot
into two sub-time-slots, each being devoted to a different
stage. In Figure 3, we represent the three logical parts (input,
intermediate input, and output) of linecard 2 using a single
symbol. We then use the link linecard 2 → linecard 3 twice
at rate R/N each, providing the total rate of 2R/N .

III. IMS CAN EMULATE ANY IQ OR CIOQ SWITCH

In this section, we prove that the IMS architecture can
emulate any IQ or CIOQ switch using the same matching
algorithm m. There are two main reasons behind our desire
to emulate IQ and CIOQ switches. The first reason is a
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Fig. 3: The Interleaved Matching Switch architecture using a
single combined mesh, shown with N = 4.

fundamental and historical need to better understand how
new switch architectures work by studying how they would
emulate current switch architectures. The second reason is
the desire to emulate the Birkhoff-von Neumann input-queued
switch [19], which is known to provide service guarantees
with only a low-complexity online scheduler that can be fully
distributed. The emulations of IQ and CIOQ switches are
shown in Sections III-A and III-B, respectively.

A. Emulating Any IQ Switch

The intuition behind the emulation of any IQ switch by
an IMS is as follows: every N time slots, an IQ switch
consecutively makes N matchings between its inputs and its
outputs, and transfers packets from the inputs to the outputs
accordingly. An IMS will make the very same N matchings,
and implement each matching using a different intermediate
input linecard. Therefore, putting aside the fixed propagation
delays, it will move the same packets at the same time, hence
emulating the IQ switch. In the next paragraphs, we will first
formalize this intuition by defining the terms used in the proof,
and then we will prove that an IMS can emulate any IQ switch.

Definition 1 (Conflict-Free Matching): Let m be a match-
ing algorithm, let πm(t) represent the matching of all inputs
to outputs under the matching algorithm m at time slot t,
and let k = πm(i, t) denote the unique output matched to
input i under matching algorithm m at time slot t. Then
πm(t) is said to be a conflict-free matching if and only if
i1 �= i2 ⇒ πm(i1, t) �= πm(i2, t).

In the remainder, we assume that an IQ switch only uses
conflict-free matchings.

Definition 2 (Match Time): Let c be a packet queued at a
VOQ Zik at input linecard i. Let tmatch(c) be the time slot
that it gets matched for transfer from input linecard i. Then
tmatch(c) is referred to as the match time for c.

Definition 3 (Departure Time): Let c be a packet that has
been matched for transfer and it is destined to output linecard
k. Let tdepart(c) be the time slot that it completely arrives at
its destination output linecard k. Then tdepart(c) is referred
to as the departure time of c. We assume that once a packet

completely arrives at an output linecard, it departs immediately
through its outgoing link.

Definition 4 (Shadow Switch): Let X be a switch. A
shadow switch Y is a switch with the same number of
input and output ports as X . It receives identical input traffic
patterns, and operates at the same line rate as X .

Definition 5 (Emulation): A switch X is said to emulate a
shadow switch Y if under identical inputs, the departure times
for identical packets are within a constant.

In other words, two switches emulate each other if they have
the same queueing delay under all possible traffic patterns
(ignoring the fixed propagation delays inside the switches).
The following theorem shows that an IMS can emulate any
IQ switch. It is illustrated using a practical example of IQ
emulation in Section VI-A.

Theorem 1 (IQ Emulation): An IMS can emulate any IQ
switch under the same matching algorithm m.

Proof: Let Y be a shadow IQ switch that uses some
conflict-free matching algorithm m. Let X be an IMS.

Assume that X uses the same matching algorithm m to
select which VOQ Zik to service at every time slot. By
assumption, the inputs in X as well as Y have the same arrival
process, both switches use the same matching algorithm, and
in both switches packets depart from the inputs as soon as
they are matched. Therefore, by induction, we can see that
at all time slots, both input stages have the same arrival and
departure processes, as well as the same states. In particular,
for every packet c scheduled in the shadow IQ switch Y , match
time tXmatch(c) = tYmatch(c).

For a shadow IQ switch with a crossbar implementation,
once a packet c has been scheduled, it is assumed to depart
through the corresponding output in the same time slot. That
is,

tYdepart(c) = tYmatch(c). (5)

For the IMS X , once a packet c has been scheduled, there
are no conflicts in the middle linecards since m is conflict-
free. Following Equation (4), the packet c will depart through
the corresponding output in time slot

tXdepart(c) = tXmatch(c) + 2N − 1. (6)

Therefore, the difference in departure time is a constant delay
(propagation time):

tXdepart(c) − tYdepart(c) = 2N − 1. (7)

In particular, this theorem applies to algorithms like the
MWM (Maximum Weight Matching) scheduling algorithm,
which is known to be strongly stable, and therefore provide
100% throughput [27], [28].

Corollary 1 (IMS-MWM): IMS provides 100% throughput
when using MWM.

It is interesting to note that, in effect, the set of slots
Bj1 . . . BjN at each intermediate input linecard j corresponds
to an equivalent crossbar configuration in the shadow IQ
switch at some point in time. In fact, this architecture can
be seen as extending the idea of time-slicing among parallel
crossbars to time-slicing among intermediate linecards. It is a
particular case of time-space conversion.
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At first glance, this architecture also shares similarities with
a Clos network. However, there is a crucial difference in
that a Clos network needs active (electronic) switch elements
that require per-slot dynamic configuration for each match,
whereas the current architecture is able to use passive (optical)
elements.

B. Emulating Any CIOQ Switch

In this section, we extend the results in Section III-A to
show that the IMS architecture can also emulate any CIOQ
switch under the same positive integer speedup S (e.g. S = 2)
and matching algorithm m. In a conventional CIOQ crossbar
switch with a speedup of S, S matching phases are performed
in every time slot. Corresponding to the S matching phases,
up to S packets may be served from each input, and up to S
packets may be received at each output. Each output maintains
an output queue since only one packet may depart from it at
each time slot, and the crossbar switch operates S times faster.

To emulate a CIOQ switch, we make several extensions
to the IMS architecture. First, the two meshes operate at a
speedup of S: each linecard in the first stage is connected to
each linecard in the center stage by a channel at rate SR/N
via the first mesh, and each linecard in the center stage is
connected to each linecard in the final stage by a channel at
rate SR/N via the second mesh.

Then, at every time slot n, each input linecard i performs
S matching phases and selects S VOQs to service based on
matching algorithm m, possibly selecting the same VOQ more
than once.

Definition 6 (Match Time under Speedup): Let C be the set
of up to S packets selected in the S matching phases at time
slot n. Then for all c ∈ C, the match time is tmatch(c) = n.

At every time slot, an intermediate input linecard j is
chosen in the same way as described in Section III-A (i.e.,
see Equation (1)). The S packets selected are then sent to
this intermediate input linecard via a channel at rate SR/N
through the first mesh, and will all completely arrive by the
end of time slot n+N − 1.

Then, at each intermediate input linecard, instead of each
Bjk holding one packet, Bjk can buffer up to S packets
destined to output k.

Then, at the start of time slot n+N , each intermediate input
linecard j may send up to S packets to each output linecard k
from the packets buffered at Bjk . These packets will be sent
to output linecard k via a channel at rate SR/N through the
second mesh, which will completely arrive at outline linecard
k for departure by the end of time slot n+ 2N − 1. Since up
to S packets may arrive at an output in a given time slot, and
only one packet can depart through the outgoing link, they
have to be queued in the output queue. Therefore, instead of
defining a departure time, we define an output queue arrival
time as follows.

Definition 7 (Output Queue Arrival Time): Let O be the
set of up to S packets received at an output k in time slot
t. Then for all c ∈ O, the output queue arrival time is
toutput(c) = t.

Note that this t = n+2N−1 is the same as in Equation (4)
defined in Section II. Finally, since up to S packets may be

received at an output each time slot, but only one can depart,
output queues are added to each output linecard. With these
extensions, the packets will arrive in order at their final output
destinations as before.

Theorem 2 (CIOQ Emulation): An IMS can emulate any
CIOQ switch under the same speedup S and matching algo-
rithm m.

Proof: The proof follows the same line of arguments as
Theorem 1. Let Y be a shadow CIOQ switch with speedup
S and some conflict-free matching algorithm m. Let X be an
IMS, and assume that X has the same speedup and uses the
same matching algorithm m in S matching phases to select up
to S packets to service at every time slot. By assumption, both
switches have the same arrival process, both switches make
the same matchings, and packets depart from inputs as soon
as they are matched in both switches. By induction, both input
stages have the same arrival and departure processes, and the
same states. Therefore, for every packet c scheduled in Y ,
match time tXmatch(c) = tYmatch(c), and departure time at Y
is tYoutput(c) = tYmatch(c). For X , since there is a constant
2N − 1 delay through the switch from match time to arrival
at the destination output, tXoutput(c) = tXmatch(c) + 2N − 1.
Therefore, the difference in arrival time to the destined output
queue is also constant:

tXoutput(c) − tYoutput(c) = 2N − 1. (8)

Since only one packet can depart for an outgoing link in both
switches, their output queue lengths when c arrives at their
respective output queue will also be the same. Therefore, the
2N − 1 difference in output queue arrival time will remain in
the difference in departure time.

In particular, this theorem applies to maximal matching
algorithms such as iSLIP [29], since they are known to be
strongly stable and provide 100% throughput with speedup
two [27].

Corollary 2 (IMS-Maximal): IMS provides 100% through-
put when using any maximal matching algorithm and speedup
two.

Further, using a speedup of two, there exist matching
algorithms that can emulate output-queued switches [30].
Therefore, we obtain the following result.

Corollary 3 (OQ Emulation): IMS can emulate an output-
queued switch with a speedup of two.

Finally, we can also use this theorem to obtain a packet-
mode IMS architecture, in which cells belonging to the same
packet are forced to arrive consecutively to their output des-
tination. As shown in [31], this can be done for any speedup
S = 2 + ε with ε > 0.

Corollary 4 (Packet-Mode OQ Emulation): IMS can emu-
late a packet-mode output-queued switch with a speedup
arbitrarily close to two.

IV. PROVIDING SERVICE GUARANTEES

In the previous section, we showed that the IMS architecture
can emulate any IQ or CIOQ switch. In this section, we
show that service guarantees can be achieved by emulating a
Birkhoff-von Neumann input-queued switch, which is known
to provide service guarantees when the traffic is known a
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priori. This is described in Sections IV-A and IV-B. We show
in Section IV-C that the emulation can be realized in a fully
distributed manner using O(1) online algorithms.

A. Background on Birkhoff-von Neumann Decomposition

In [19], an approach based on Birkhoff-von Neumann
decomposition was presented for providing service guarantees
on IQ crossbar switches when the traffic profile is known a
priori. In particular, let Λ = (λik) be an N ×N non-negative
arrival traffic rate matrix, where λik represents the mean rate
of traffic from input i to output k. Λ = (λik) is said to be
admissible and doubly sub-stochastic when

∀k,
N∑

i=1

λik ≤ 1, and ∀i,
N∑

k=1

λik ≤ 1.

and it is said to be doubly stochastic if these are all equalities.
Given an admissible traffic rate matrix Λ, the problem of
crossbar matching can be defined as a decomposition of Λ
into a series of permutation matrices (πh) such that

Λ ≤
H∑

h=1

φhπh (9)

where 0 < φh ≤ 1 and
∑

h φh = 1. With the decomposition,
each permutation matrix πh can then be used for crossbar
matching for the corresponding fraction of time φh. Here, we
overload the notation of πh to represent both a permutation
matrix and the corresponding matching that it implies.

The overall approach in [19] consists of the following:

1) It first uses an O(N3) von Neumann algorithm [22] to
convert an admissible traffic rate matrix into a doubly
stochastic matrix.

2) It then uses an O(N4.5) Birkhoff decomposition algo-
rithm [21] to find the decomposition shown in Equa-
tion (9). Both steps 1 and 2 are performed offline.

3) It finally uses the Packetized Generalized Process Shar-
ing (PGPS) algorithm in [32], [33] to determine which
permutation matrix πh (obtained in Step 2) is to be
used in a given time slot in proportion to φh. This
online scheduling step has O(logN) complexity, but
this complexity can be reduced to O(1) time by using
a pipelined priority queue mechanism [25], [26] or
by replacing fair queueing with a round-robin based
scheduler [23], [24].

B. Birkhoff-von Neumann Switch Emulation, Throughput
Guarantees, and Service Guarantees

It follows directly from Section III-A, and in particular
from Theorem 1, that an IMS can emulate a Birkhoff-von
Neumann input-queued switch, and therefore provide the
same throughput and service guarantees, as stated in the next
theorem.

Theorem 3: An IMS can emulate a Birkhoff-von Neumann
IQ switch.

Using this emulation theorem, we can directly extend most
of the properties of a Birkhoff-von Neumann switch to an IMS
that emulates it.

Theorem 4: If the arrival traffic is a stationary and ergodic
stochastic process with the strictly doubly sub-stochastic mean
rate Λ = (λik), then an IMS provides 100% throughput.

Proof: This is a known result for the Birkhoff-von
Neumann IQ switch [1], [19]. It extends directly to the IMS
architecture using the emulation proved in Theorem 3.

We next show that an IMS has the same service guarantees
as the Birkhoff-von Neumann switch that it emulates.

Theorem 5: Let Fik be a continually backlogged flow from
input i to output k, and let Cik(t) be the cumulative number of
its served packets by time t. Let t1 and t2 be two time slots
such that (2N − 1) ≤ t1 ≤ t2. Then any time-independent
bounds on service guarantees defined by

Cik(t2) − Cik(t1)

are exactly the same for an IMS and the input-queued switch
that it emulates.

Proof: Let X be an IMS, and let Y be an input-queued
switch that it emulates. Given that the departure time for a
packet in X is a constant offset (2N − 1) from the departure
time for the same packet in Y (Equation (4)), we have

CX
ik (t2) = CY

ik(t2 − (2N − 1)), (10)

CX
ik (t1) = CY

ik(t1 − (2N − 1)). (11)

Then it follows that any time-independent bounds defined by
Cik(t2) − Cik(t1) are the same for X and Y .

In [19], it was shown that for any admissible traffic rate
matrix Λ = (λik), the difference in the cumulative number of
packets served from a continually backlogged flow Fik in a
Birkhoff-von Neumann switch for any t1 ≤ t2 is bounded by∑

h∈Eik

φh(t2 − t1) − σik ≤ Cik(t2) − Cik(t1) (12)

≤
∑

h∈Eik

φh(t2 − t1) + σik,

where

σik = min

[
H, |Eik| +

∑
h∈Eik

φh(H − 1)

]
,

Eik is the subset of permutation matrices with the (i, k) entry
equal to 1, and H is the number of permutation matrices in
Equation (9). Therefore, it follows that an IMS that emulates
a Birkhoff-von Neumann switch provides the same service
guarantees.

C. Optimizing the IMS Architecture for Service Guarantees

In this section, we describe a number of optimizations that
can be used in emulating a Birkhoff-von Neumann switch.

1) Distributed Scheduling: Instead of performing PGPS
scheduling in a centralized manner, each input linecard
can perform the same PGPS scheduling in a fully-
distributed manner to select which of its own VOQs
to service at each time slot. Using a pipelined-based
priority queue mechanism, this fair queueing step can
be reduced to O(1) complexity [25], [26]. Alternatively,
another practical solution is to use an O(1) complexity
round-robin based scheduler [23], [24] to approximate
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PGPS scheduling. The combination of the IMS architec-
ture and fully distributed online scheduling with O(1)
time complexity enables this approach to be highly
scalable.

2) Distributed Storage: It was shown in [19], [21] that the
number of components in Equation (9) is bounded by
H ≤ N2−2N +2. Therefore, the memory requirement
is O(N3 logN) for storing up to O(N2) permutation
matrices with N logN bits per matrix. However, with
N = 1024, about 10 Gbits of storage would be required,
which is obviously not feasible. But with a distributed
scheduling approach, each input linecard is only respon-
sible for selecting a packet from its own VOQs to serve
at each time slot. Therefore, we only need to store the
ith row of each permutation matrix πh at input linecard
i. As a result, the memory requirement for each input
linecard is reduced to O(N2 logN) for storing up to
O(N2) rows with logN bits per row, 1/N th of the
storage required. With N = 1024, about 10 Mbits of
storage is required, which is achievable in SRAM.

V. FRAME-BASED DECOMPOSITION

A. Decomposition via Edge Coloring

In cases where a fixed frame size is applicable, the de-
composition problem can be greatly simplified. Specifically,
let Λ = (λik) be an admissible arrival traffic rate matrix
where each entry λik satisfies 0 ≤ λik ≤ 1. Suppose there
is a frame size T , where T is an integer, such that Ψ = ΛT
contains only integers or entries that can be rounded off into
integers with acceptable roundoff error. Then the Birkhoff-
von Neumann decomposition procedure and online scheduling
algorithm outlined in Section IV-A are unnecessarily complex.

Alternatively, it is well-known that the Slepian-Duguid [34]
algorithm can perform the decomposition of Ψ = ΛT into T
permutation matrices in O(N2T ) time. For instance, if the
chosen frame size T is a constant multiple of N , then the
decomposition complexity is bounded by O(N3). However,
the decomposition complexity can be reduced by formulating
the decomposition as an edge coloring problem.

Theorem 6: Let Λ = (λik) be an N ×N admissible arrival
traffic rate matrix, and let T be an integer frame size such that
Ψ = ΛT contains only integers. Then Λ can be decomposed
in O(NT logT ) time into T permutation matrices such that

Λ ≤
T∑

h=1

πh (13)

Proof: The matrix Ψ = ΛT can be transformed into a
bipartite graph with N nodes u1 . . . uN and v1 . . . vN on each
side, respectively, with ψik edges from ui to vk for all i and k.
We then solve an edge coloring problem, which can be solved
in O(E logD) time [35], [36]. Since the number of edges is
E = NT and the maximum degree D = T , the edge coloring
problem can be solved in O(NT logT ) time with T colors.
For each color, a permutation matrix can be induced by the
edges with that color.

The advantages of the proposed frame-based decomposition
approach over Birkhoff-von Neumann decomposition in the
cases where a fixed frame size is applicable are as follows:

1) The offline decomposition complexity is O(NT logT ).
For instance, if the chosen frame size T is a constant
multiple of N , then the decomposition complexity is
bounded by O(N2 logN). This is a much lower com-
plexity than the O(N4.5) complexity required by the
Birkhoff-von Neumann decomposition.

2) No need to first make the traffic rate matrix doubly
stochastic via an O(N3) von Neumann conversion.

3) No need to use PGPS scheduling since the T permuta-
tion matrices can be uniformly rotated in constant time,
for instance using [37].

4) The online memory requirement per input linecard re-
duces to O(T logN), or O(N logN) when T is a
constant multiple of N . This is a much lower memory
complexity than the Birkhoff-von Neumann decomposi-
tion approach that generates up to O(N2) permutation
matrices.

B. Delay of Frame-Based IMS

In this section, we compare the end-to-end delay of the
frame-based approach using the IMS architecture with the
frame-based scheme described in [12], since both schemes re-
quire a fixed frame size. In the frame-based scheme described
in [12], packets arrive in frames, and packets that arrive within
a frame of T time slots must satisfy the specified rate matrix
Λ = (λik). Specifically, let ψik = λikT . Then no more than
ψik packets from input i to output k can arrive within a frame.
Assuming these assumptions hold, it was shown in [12] that
the maximum end-to-end delay for all arrivals is bounded by
2NT or Θ(NT ). If T is a constant multiple of N , then the
bound becomes Θ(N2).

Theorem 7: Following the same assumption that packets
arrive in frames, with size T , and no more than ψik packets
from input i to output k arrive within a frame, we can
guarantee that the maximum end-to-end delay for all arrivals
is bounded by T + 2N − 1, i.e. Θ(T +N).

Proof: Following the same assumption that packets arrive
in frames and no more than ψik packets from input i to output
k arrive within a frame, we are guaranteed that a packet will
be scheduled for transfer no more than T time slots later. From
Equation (4), once a packet has been scheduled for transfer,
it will depart at its final output 2N − 1 additional time slots
later. Therefore, the maximum end-to-end delay is bounded
by T + 2N − 1 or Θ(T +N).

If T is a constant multiple of N , then the bound becomes
Θ(N), which is significantly better than Θ(N2) required by
the frame-based scheme described in [12].

VI. EXAMPLE AND RESULTS

In this section, we first present an illustrative example
showing how the IMS architecture operates. We then present
simulation results to verify our theoretical results and obser-
vations in the previous sections.

A. An Example

We illustrate in this section how an IMS emulates an
IQ switch, and more specifically a Birkhoff-von Neumann
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Fig. 4: Snapshots of switch in different time slots.

switch. Specifically, we illustrate by means of an example how
matchings generated via online scheduling of a Birkhoff-von
Neumann decomposition are executed. Consider the following
3 × 3 example.

Λ =

⎛
⎝ 0 0.75 0.25

0 0.25 0.75
1.0 0 0

⎞
⎠

A possible decomposition is

Λ = 0.75

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ + 0.25

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠

A possible online schedule may be the following matching
sequence in time

π1 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ π2 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠

π3 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ π4 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠

...
...

where π1, π3, π4 are schedules of the first component, π2 is a
schedule of the second component, and so on.

The flow of packets for this matching sequence is illustrated
in Figure 4. In the figure, the N = 3 ports are labelled
A, B, and C. Each packet is labelled with its input source,
output destination, and sequence number – e.g. packet BC-1
originates from input B, is destined for output C, and has
sequence number 1. Figure 4 depicts snapshots of the switch at
different points in time. Suppose that at time slot n, the packets
in white are queued at the input stage. By the end of time slot
n+3−1, packets CA-1, AB-1, and BC-1 completely arrive at
middle linecard A, as shown in the next shade of gray in the
figure. Other packets in-flight are not explicitly animated. By
the end of the next time slot, n+ 3, packets CA-2, BB-1, and
AC-1 completely arrive at middle linecard B. This is shown

Input Queues
Output

Linecards

AB-2

AC-1

CA-2CA-3

BC-1BC-2

BB-1

Crossbar

CA-1

AB-1

BC-1

AB-1

CA-1

0 1 0
0 10
01 0

1 =

Matching

Fig. 5: IQ switch implementation of a given matching.

with the next darker shade of gray. Still other packets are in-
flight, and so on. By the end of time slot n+ 6 − 1, packets
CA-1, AB-1, and BC-1 completely arrive at their respective
output linecards where they depart. Consider in particular the
packet path for BC-1: it leaves input linecard B at time n,
arrives at middle linecard A at time n+3−1, and departs from
output linecard C at time n+ 6 − 1. Therefore, this example
illustrates how packets are scheduled in a simple way that
exactly emulates the corresponding Birkhoff-von Neumann
switch.

In comparison, the flow of packets in a traditional IQ switch
is illustrated in Figure 5. The figure shows how at each time-
slot, the crossbar needs to be reconfigured to match inputs
and outputs according to the current matching. The crossbar
then services the input queues accordingly. In particular, the
transfer of packets shown in Figure 5 for the IQ switch
is emulated by the IMS shown in Figure 4 by transferring
the same packets to the first intermediate linecard shown in
Figure 4.

B. Simulation Results

In this section, we demonstrate the performance of the IMS
architecture by means of simulations. The results are shown
in Figures 6, 7, 8, and 9.

In particular, since the main advantage of the IMS architec-
ture is its ability to provide service guarantees, we compare
results using the IMS architecture with another load-balanced
switch architecture proposed in [12] that can provide service
guarantees. Specifically, a frame-based load-balanced switch
architecture was proposed in [12] that can provide service
guarantees with O(1) online complexity. The results for the
IMS architecture and the frame-based load-balanced switch
architecture are labeled as “IMS" and “Frame-LBvN" in the
figures, respectively.

In addition, we have also included simulation results for
the originally-proposed load-balanced switch [1], which does
not provide packet ordering guarantees, and the two modified



B. LIN and I. KESLASSY: THE INTERLEAVED MATCHING SWITCH ARCHITECTURE 9

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

A
ve

ra
ge

 D
el

ay
Load-Balanced UFS FOFF Frame-LBvN IMS

Fig. 6: Average delay for uniform traffic under a frame period
of T = 2N = 64. Switch size is N = 32.

load-balanced switch architectures proposed in [6], which do
provide packet ordering guarantees. The first method is called
uniform frame spreading (UFS), and the second method is
called full-ordered frame first (FOFF).

For comparison, we consider simulations using a uniform
traffic model where packets arriving to each input have a
uniform distribution of output destinations. That is, the proba-
bility that a packet arrives at input i with output destination k
is uniformly ρ/N , where ρ is the input load. For the Frame-
LBvN switch architecture to work [12], it assumes that an
admissible rate matrix Λ = (λik) and a fixed frame period
T are both given. In this case, Λ is simply the uniform rate
matrix. It also assumes that the number of packets arriving at
input i with output k is bounded by ψik = λikT during any
frame period of T consecutive time slots to guarantee packet
ordering. To satisfy this assumption, we used a modified
random arrival process as follows: whenever ψik = λikT
packets have already been generated between input i and
output k during a frame period, then no more packets between
input i and output k will be further generated in the random
arrival process for the remaining time slots in the frame. This
modified random arrival process is used in all simulations to
provide a common basis for comparisons. Also, we consider
a common switch size of N = 32 in all simulations.

For the first set of results shown in Figure 6, we used a
frame period of T = 2N = 64. Several observations can be
made in this first set of results.

• First, as discussed in the paper, the delay of the Frame-
LBvN switch is bounded by Θ(NT ), whereas the delay
for the IMS architecture is bounded by Θ(T +N). This
explains why the average delays for the IMS architecture
are significantly lower than the average delays for the
Frame-LBvN switch. The long delays required by the
Frame-LBvN switch are due in part to the aggregation
of packets into frames used by the switch.

• Second, to achieve packet ordering guarantees, the UFS
and FOFF methods are also based on the aggregation of
packets into frames, and they are known to have O(N3)
and O(N2) delay bounds, respectively. For the case when
the traffic is known, the IMS architecture can achieve
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Fig. 7: Average delay for uniform traffic under a frame period
of T = 10N = 320. Switch size is N = 32.

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

A
ve

ra
ge

 D
el

ay

Load-Balanced UFS FOFF Frame-LBvN IMS

Fig. 8: Average delay for diagonal traffic under a frame period
of T = 2N = 64. Switch size is N = 32.

significantly lower average delays while ensuring packet
ordering, as shown in Figure 6.

• Finally, although the original load-balanced switch is able
to achieve low average delays, it does not guarantee
packet ordering. This can be detrimental to Internet traffic
since the widely used TCP transport protocol falsely
regards out-of-order packets as indications of congestion
and packet loss.

The same trends can be seen for different switch sizes.
For the second set of results, we used a larger frame period

of T = 10N = 320 time slots. These results are shown in
Figure 7. As can be seen with the results, the delay for the IMS
architecture increased with the larger frame size under high
loads. However, the most substantial increase in delay can be
seen with the Frame-LBvN method as the increased in frame
size is amplified by a factor of N . Therefore, the advantage
of the IMS architecture over the Frame-LBvN switch is much
more pronounced when larger frame sizes are required. Again,
the same trends can be seen for different switch sizes.

Finally, in order to test the performance of IMS with non-
uniform traffic, we consider simulations using a diagonal
non-uniform traffic model, as illustrated in Figures 8 and 9.
Specifically, we consider a diagonal traffic pattern in which
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Fig. 9: Average delay for diagonal traffic under a frame period
of T = 10N = 320. Switch size is N = 32.

input i sends three quarters of its traffic to itself and one
quarter of its traffic to its right neighbor. That is, for all i,
λii = 3ρ/4 and λik = ρ/4, where k = (i + 1) mod N .
For all other i and k, λik = 0. We again use the modified
random arrival process described above to ensure that the
number of packets arriving at input i with output k is bounded
ψik = λikT during any frame period of T consecutive time
slots. In these results, we again see a similar trend as the results
for the uniform traffic case. IMS still has the lowest delays
even though the traffic matrix is sparse, which makes it easier
for UFS and FOFF to accumulate full frames, as there are
fewer flows that spread traffic. Further, we again see that the
delay of the Frame-LBvN switch is bounded by Θ(NT ). The
delays of all the other switching solutions under comparison
have even lower delays than in the uniform traffic case.

VII. CONCLUSIONS

In this paper, we proposed the interleaved matching switch
(IMS) as a scalable two-stage switch architecture that guar-
antees packet ordering. From a scalability perspective, IMS
uses the same two stages of fixed uniform meshes as in
current load-balanced switch architectures. These fixed uni-
form meshes do not require arbitrary per-packet switch con-
figurations and are amenable to scalable implementation in
optics. We showed that IMS can emulate any IQ or CIOQ
switches by interleaving the corresponding matchings across
the intermediate input linecards of a load-balanced switch.
With this emulation result, many of the throughput and service
guarantees provided in the literature for IQ and CIOQ switches
directly extend to the IMS architecture. Using the emulation
result, for the case of any known admissible traffic, we showed
that IMS can provide at O(1) online complexity both service
and stability guarantees by emulating a Birkhoff-von Neumann
switch. In the case where a fixed frame period is applicable, we
presented an efficient decomposition algorithm based on edge
coloring. Finally, our work on the IMS architecture connects a
large, well-developed, and still progressing body of work on
scheduling algorithms to load-balanced switch architectures.
We believe this connection opens the possibility for a great
deal more research in this direction.
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