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_ Abstract— Input-queued packet switches use a matching algo- 0 for all 7, j by convention 4;; (t) packets arrive af);; at the
rithm to configure a non-blocking switch fabric (e.g. a croskar).  peginning of time-slot and D;;(t) packets depart from it at
Ideally, the matching algorithm will guarantee 100% through- the end of the time-slot, with < A;;(¢), D;;(t) < 1. The
’ s ij s g >~ L

put for a broad class of traffic, so long as the switch is . . . - : .
not oversubscribed. An intuitive choice is the Maximum Size S€TVICE indicatorS;; (¢) is 1 if Q;; is serviced at time, and0

Matching (MSM) algorithm, which maximizes the instantaneaus  Otherwise. There is a departure fragy; if it both receives a
throughput. It was shown in [1] that with MSM the throughput  service and is non-empty. As a consequencet forl, L;;(t)
can be less than 100% whenV > 3, even with benign Bernoulli  satisfies the following equation:

i.i.d. arrivals. In this letter we extend this result to N > 2, and

hence show it to be true for switches of any size. Lij(t) = Lij(t—1)+ A (t) — Dij(t)

[Lij(t— 1)+ Ai (1) — Sy @] Q)

Arrivals - For our counter-example, it is sufficient to assume
that the arriving traffic follows a Bernoulli i.i.d. distnition

) ) with mean rate);; arriving to @Q;;. We will consider the
High-speed Internet routers commonly use virtual OUtp\‘Bllowing type of traffic:

gueueing (VOQ), a crossbar switch, and (internally) fixex-s
cells. Time is slotted with one cell transmission per tirfa:s \ = [ A1 Are ] _ [ a b ] @)
At each time-slot a matching algorithm finds a match between Aa1 Az c 0]’

N mpur:; andIN ql;]tputsh(\f 2_2’ smcz the”re IS no ne(fed fo(;wherea, b andc are positive constants. It is assumed that no
a matching algorithm whed = 1), and cells are transferred;, .+ or output is over-subscribed, i.e+b < 1 anda+c < 1.

aCCOTd'”g tO.thIS match: Services YOQs are serviced according to a MSM algorithm
This letter is about switches that are unstable even thoagh it ties broken randomly

input or output is over-subscribed. It is known that for adato Stability - A queue is said to benstableif after a finite
class of traffic, a switch is stable (fé¥ > 2) if the Maximum

. ! . _ time, its occupancy never returns to zero with probabilitg.o
Weight Matt_:h_lng (MWM) algorithm is used [1’_ 3]. On theNote that with Bernoulli traffic, this is implied by the queue

ﬂaving a positive drift, which happens if the service ratiess
than the incoming traffic rate. A switch is said to bestable
'P; any of its queues is unstable.

Index Terms— Maximum Size Matching, switching algorithms,
instability.

I. INTRODUCTION

(MSM) algorithm, a switch can be unstable fyr > 3 [1] (if
ties are broken randomly)This is surprising because MSM
maximizes the instantaneous throughput by transferrimg t
maximum number of cells during each time-slot.

The instability result in [1] is based on a counter-example IIl. INSTABILITY OF MSM WHEN N = 2
that holds forN > 3. In this letter we extend the proof to  Qur approach is to assunbe= ¢, then find values o& and
N > 2, and hence prove that MSM is unstable for any switchh.such that the service rate ¢f;; is less than its arrival rate.
We also derive the exact throughput formula for tNe= 2
case. Lemma 1 At the end of a time-sldt, at least one of the two

gueues;» and @2 is empty:

L12(t) - La1 () = 0. 3)

I[I. PROBLEM STATEMENT
We will consider a packet switch with 2 inputs and 2

outputs, i.e.N = 2. _ Proof: By induction. The case wheh= 0 is clear. Assume
Notation -Time-slot¢ represents the interv@d —1,). Let  that this property holds until the end of some time-glot 0.

Q;; denote the VOQ at inpui destined to outpuy. Q;; Consider two cases:

containsL;; () packets at the end of time-slotwith L;;(0) = Case 1:At least one of the two queues is empty after the

*We assume here that MSM breaks ties randomly. In [2] it is shtvat  @rfivals at time-slot+1. It will s‘gill be empty after departures,
otherwise, MSM could be stable fa¥ > 2. hence the property holds for time-slo# 1.
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Case 2:Both queues are occupied after the arrivals in time- Hence Pr(L;2(t) + Loi(t) > 0) > ab/2, proving the
slot ¢ + 1. MSM will choose the configuration with size twoLemma. ]
that served):> and @, (becausd)s. is always empty). By
assumption, at least one of the two queues was empty at Ttieeorem 4 MSM is unstable forV = 2 whenever

end of time-slot, therefore this queue will be empty after the 1—b

service, and the property holds for- 1. [ ] m <a<l-b (6)
Let z(t) be the service probability @@, at time-slott, i.e.,

#(t) = Pr{S11(¢) = 1}, andp(t) the probability that botl12  proof: From Lemmas 2 and 3, we gett) < &, whered '

and Qz; are empty at time-slot, i.e., p(t) = Pr{La1(t) = (1 _p)(1 — ab/4), for all ¢t > 1. If we can find a tuplea, b)
L;5(t) = 0}. The following two lemmas provide upper boundg,ch that) < # < a < 1 — b, thenQ;; would have more
onz(t) andp(t) that will be useful for showing the instability 5jyais than services, and MSM would be unstable. Solving
of MSM. Z < a < 1 — b yields Equation (6), which is true over a
non-empty set for any € (0,1). [ |

For example, whed = 0.5, the switch is unstable fag >
8/17 ~ 0.471, i.e., for a loadp = a + b such that0.971 <

Lemma 2 (Bound onz(t)) For anyt > 1,
(1-b)(1+p(t-1))

< . 4 . . . .
2(t) < 2 “) p < 1. As we will see shortly, this bound is not tight.
Proof: Lett > 1, and consider wheth&),; is served at time-
slot . There are two cases: Corollary 5 MSM is unstable for any switch of si2é > 2.

Case 1:With probability p(t — 1), Lia(t — 1) = Loy (¢t —
1) = 0. There are three possibilities. If bot};» and Q21
have arrivals, which happens with probabilb8; @, will not
be served. With probabilitgb(1 — b), only one of the two
queues{@12,Q21} has an arrival, ther®; is served with
probability 1/2, if it is non-empty. Finally, with probability ~ In this section we will derive a closed form formula for
(1 —b)?%, neither of{Q12, @21} has an arrival, in which casethe maximum throughput of ax2 switch under traffic of the
the probability thaiQ,; is served cannot exceed 1. Hence, aform given in (2). We will do so by comparing two systems,
upper bound on the probability th&);; receives service in later called theoriginal system and th@ewone.
this case isPr(S11(t) = 1| L12(t —1) = L1 (¢t —1) = 0) < We call the 2«2 maximum size matching switch togigi-
2b(1—b)-1/2+ (1 —-b)>=1—b. nal system, and denote it by parameters with a supers@rpt

Case 2:With probability1 —p(t —1), Li2(t — 1)+ Ly, (t— By contrast, in thenew system, all parameters are the same
1) > 0. By Lemma 1, only one of the two queué§;2, @21} except that a packet generator is attache@19. The packet
is non-empty. There are two possibilities. If the empty ongenerator generates a packet {pr; at the very beginning,
has an arrival (which occurs with probability, then @Q;; and wheneve€):; is empty. Thus, in the new systefy, is
will not be served. However, if the empty one does not hawdways occupied. This enables us to analyze the evolution of
an arrival and remains empty (with probability— b), then Q12 and@Q»; without considering:;.

Q11 is served only if it is non-empty, and then only with

probability 1/2. Thus, we get the upper bound ®ft) in this A The Single Unstable Queue Lemma

CasePr(Sn(t) =1 | ng(t—1)+L21(t—1) > 0) < (1—b)/2
Combining the two cases yieldst) < p(t—1)- (1 —b) +

Proof: The caseN > 3 was proved in [1], andV = 2 in
Theorem 4. [ |

IV. MAXIMUM THROUGHPUT OF A2x2 MSM SWITCH

First we will prove the following useful lemma which
applies toany admissible traffid:

(1-pt-1))-1-0)/2=01-0)(1+p(t-1))/2. L
Lemma 3 (Bound onp(t)) For anyt > 1 Lemma 6 Under Bernoulli admissible traffic, 2 x 2 MSM
b - switch can have at most one unstable queue.
a -

pl) == ®) " proof: Let the doubly strictly substochastic matrige )
Proof: Let ¢ > 1. We will show thatPr(Lia(t) + Loy (t) > represent the input traffic rate. Suppose that more than one
0) > aTb by c_onsidering tWo cases. gueue is unstable. Without loss of generality, let one ofrthe

Case 1:Li»(t — 1) = 0. Consider the following possible be Q11. _ _

succession of eventsi;; (t) = A (t) = 1 (which implies If Q.2 is also unstable, let us considés; + Li,. After

Ap(t) = 0), and Sy1(t) = 1. This succession of eventsd finite time, both queues are always Qccupi_ed, SO .togethgr,
happens with probability. - b- 1/2, and after this successionthey have departures at rate 1. But the incoming traffic sate i
of events it is clear thafis(t) + La1(t) > 0. We did not @+b <1, so at least one af)y; and @2 should eventually
consider other possible events, theref®he,L5(¢)+ Lo (t) > drain to zero. Thereforeg);> cannot be unstable. Similarly,
0| Liz(t—1) = 0) > ab/2. Q21_cann(_)t be unstable. _
Case 2:L12(t — 1) > 0. In this caseQ1» will remain non-  Finally, if both @1, andQ»» are unstable, both queues wil
empty as long asi;»(t) = 1, which happens with probability be permanently occupied after a finite time. Th@m, and

b. ThereforePr(Lia(t) + La1(t) > 0| L12(t—1) > 0) > b > tNote that the new system may not be admissible due to the packe
ab/Z. generator, and hence more queues can be unstable than shéwenlemma.
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TABLE |
TRANSITIONS OF(L12, L21), THEIR PROBABILITIES, AND THE SERVICE PROBABILITY OF Q11

Arrival Initial and final values of L1, L21)

(A12; A21) PrObabiIity (07 0) | ( ’ ) | (07 1)
(070) (1 — b)(l _ C) (070) 070) | ( 7 (070) (07 )
(170) b(l _C) (070) (170) 170) | (270 (070)
(1,1) be (0,0) (1,0) (0,1)

| prob.Quuisserved [ 1-3(b+c¢) | 3(1-¢ [ 3(1-b |
“m m m m a c |
Uy 1
Fig. 1. Markov chain ofL12, L21) in the new system Q_21 unstable

Q21 can only be served if both queues have packets, i.e., at a
maximum rate ofmin(b,c). Then@Q:: and Q2. are served at 05 Region |
a rate no less thah— min(b, ¢) > max(a,d). S0Q22 cannot
be unstable because we've assufhg to be unstable.

Thus we conclude that at most one queue can be unstable Q_12,Q_21 12
in a 2x2 MSM switch with Bernoulli admissible traffic. m both stable Q

The following corollary will enable us to link the new and
the original systems.

un_stable

Y

0 0.5 1

Corollary 7 In a 2x2 maximum size matching switch undetig. 2. stability regions for theew system
admissible traffiq 2 ), only Q11 can be unstable.

Proof: Assume that)- is unstable, and thus that after a finite

time with probability one its occupancy never returns toozeru2) and di (resp.d») are the probabilities tha@1> (resp.
ThenQ:; has to be stable due to Lemma 6. Tifs is served (21) increases or decreases by 1 during a time-slot. (We have
at ratea and Q- at ratel — a because it is backlogged. Butomitted the probability of staying in a state from the fighre.
this is impossible because the incoming traffic ratete is Thus, we have

b < 1—a. Similarly QQ2; cannot be unstable either. Thus, only

can be unstable. ] def o, _  3b(l—c) _  b(1—c)
Qu O e (s Rl () (&) @
def 1(1-b -
B. Throughput of the New System p2 = 3—2 = %(ff,,)(l)ic) = (13(61)(12,,) (8)

We will now study the new system by analyzing the

Equation (2). Table | summarizes the transitiongbfz, L21)  stable, which meansg < 1andp, < 1. As shown in Figure 2,
over a time-slot as a result of different arrivals. This mb'solvmg the two inequalities gives the region:

only mentions three initial states, because MSM only rezguir
the binary information of whether a queue is occupied or not.
Note that there are two possible configurations of the ciaossb
eitherS;1 = S99 =1 andSjo = Sy =0, 0r S =S99 =0
andS12 =S5 = 1. When both configurations have an equal We will now derive the service rate @11 in region
number of packets that can depart, i.e. when there is onepack |et {mij,i - j = 0} be the stationary distribution of

for each configuration, one of them is chosen at random wighe Markov chain for(L12, Ly ). Solving the normalization
equal probabilities, resulting in two equally likely finahtes. equationy” 7;; = 1, we get:

The bold entries in the table represent the transitionsnduri

I={b<(1+¢)/2,c<(1+b)/2}. 9)

which @1 is served. The last row summarizes the service

probability of Q11 given the initial state(Lis, Loy). B ((11_ bQ)b(lJr_C)(f)l( - fii?) (10)
With at least one ofL;» and L,; always being zero .

(Lemma 1), the Markov chain ofLis,Ls;) becomes one Tio = P1To0 (11)

dimensional, as shown in Figure 1, wheig (respectively Toi = pPhToo- (12)
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Then the service rate @y, is then given by:

1 > 1 >
5(1 —C);ﬂ'm-ﬁ- 5(1 —b);ﬂ'm’

(- %(b +¢))mo0

14+bc—b2—c?
B 1+b+c (13)
It is easy to verify that; < min(1—b,1—¢) in the interior
of I. If a < 011, the packet generator generates packets at an
average rate af;; —a. On the other hand, i > 071, packets
in @11 will build up at the raten — 011, and with probability
one the packet generator will only generate a finite number of
packets before the queue becomes permanently occhipied.

o111 =

Service Rate of Qu
o o ) o o o
[ N w 'S 2 >
T T T T

o

. |
“—1b
Theorem 4

* _Simulation

—— Theorem 9 H

0
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L L L L L L
0.4 0.5 0.6 0.7 0.8 0.9
b

Fig. 3. Throughput 011 given by formula and by simulation

C. Throughput of the Original System
In this section we will show that the stability condition for

the original system is the same as the new system. We will useen the expected number of packets served in a time-slot can
throughputto denote the expected number of packets leavif§ calculated by) = g1 + 2¢». Given the queue occupancy at

the system in each time slot.

the beginning of a time slot, the probability that two pasket

are served ig if Q12 is occupied (with probability":°; o),
Lemma 8 The throughput of the original system is no greatel if Q21 is occupied (with probabilityy 552, 7o;), andb - ¢ <

than the new system.

b, ¢ if both queues are empty (with probabilityg). Therefore,

the inequalities (14-16) givg, > qé"). In the new system,

Proof: We have shown that only);; can be unstable in
the original system, so after running a long enough timgv
either all queues are stable, ¢};; becomes permanently ,
backlogged with probability one and the other two queugs
are stable. In either cas€L;2,L2;) form a Markov chain
with the same transitions paths as the new system (as
Figure 1), but with possibly different transition probatdis.
Let p = (1 — a) Pr{L:1 = 0} be the probability that):1

is empty after arrivals in a time slot. [§,; is unstable then
p =0, otherwisep > 0.

Now let us look at the one-step transitions (@2, La;)
and distinguish two cases.

Case 1:With probability 1 — p, @11 is occupied after
arrivals, and the transition probabilities will be the saase
in the new system.

Case 2:With probability p, @11 is empty. Denote by the
superscriptempty the transitions probabilities in this case.
Thenu{™" = 0 < uy, uS™Y = 0 < uy; and di™Y =
1=b>dy, d™Y =1—c¢> ds.

Therefore, considering both cases Ieadsz({’()) = (1-p)u;+
pul™PY < anddz(o) = (1 —p)d; + pdi™" > d;. Thus, by
properties of birth-death chains, we have:

moo < F(()g) (14)
S > Yoaly (15)
=1 =1
S > Sy (16)
=1 =1

(]

(i) <o =

o)

1+b+c

there is always a non-empty queues, therefgre- 0 < q(()").

Ve can rewritey asn = q1 + 2¢2 = (1 — qo) + ¢2. Then it is
asy to see that the last two inequalities imply 5, i.e.,
e original system has a throughput no greater than the new
s%stem.

Theorem 9 A 2x2 maximum size matching switch under
admissible traffiq 2 ¢ ) is unstable if and only ib < (1+¢)/2,
c < (1 —|—b)/2, anda > 011 = 1dbe—b —c”

Proof: In region I (Equation (9)),Q12 and @)5; are stable
in both systems. (They are also stable in the original system
becauseugo) < wy, d

< d;.) By Lemma 8, the original

14+bc—b>—-¢2
1+b+c

Now letg;,i =0,1,2,>" ¢; = 1 denote the probability that gq Q1: is stable outside of regioh.

i packets are are served in the 2 switch during a time slot.

system has a throughput no greater than the new system,
therefore we must have

(17)

In the 2x2 MSM switch, ifa > o711, Q11 Will have a positive
drift, and with probability 1,01, is never empty after a finite
time. Then the switch behaves the same as the one with a
packet generator. Thus, the maximum throughput@er is
o11. On the other hand, it < o171, @11 has to be stable.
Otherwise, if it is unstable, it must have a service rate less
thana, and the queue is never empty after a finite time. By
comparison with the new system, the service rate must, be
which is a contradiction.
Outside the regiod, if Q11 is unstable, we again have the
two systems having the same throughput®hr . But one of
Q12 and @2 is also unstable, which contradicts Corollary 7.

For example, wherb = 0.5, the switch is unstable if

HIf @ = o011, the Markov chain for@11 is null recurrent. The queue is and Only ifa > 3/8 = 0.375, compared to the SUfﬁCienCy

stable because the probability bf1 returning to zero is one.

conditiona > 0.471 given by Theorem 4. Figure 3 shows
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the service rate o€)y; whenb = ¢ anda = 1 — b, given

by Theorem 4, by the exact formula in Theorem 9, and by
simulation. As shown in the figure, the theoretical valuesnr
Theorem 9 agree extremely well with the simulations.
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