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Abstract— Input-queued packet switches use a matching algo-
rithm to configure a non-blocking switch fabric (e.g. a crossbar).
Ideally, the matching algorithm will guarantee 100% through-
put for a broad class of traffic, so long as the switch is
not oversubscribed. An intuitive choice is the Maximum Size
Matching (MSM) algorithm, which maximizes the instantaneous
throughput. It was shown in [1] that with MSM the throughput
can be less than 100% when� � �, even with benign Bernoulli
i.i.d. arrivals. In this letter we extend this result to � � �, and
hence show it to be true for switches of any size.

Index Terms— Maximum Size Matching, switching algorithms,
instability.

I. I NTRODUCTION

High-speed Internet routers commonly use virtual output
queueing (VOQ), a crossbar switch, and (internally) fixed-size
cells. Time is slotted with one cell transmission per time-slot.
At each time-slot a matching algorithm finds a match between�

inputs and
�

outputs (
� � �

, since there is no need for
a matching algorithm when

� 	 

), and cells are transferred

according to this match.
This letter is about switches that are unstable even though no

input or output is over-subscribed. It is known that for a broad
class of traffic, a switch is stable (for

� � �
) if the Maximum

Weight Matching (MWM) algorithm is used [1, 3]. On the
other hand, it is known that with the Maximum Size Matching
(MSM) algorithm, a switch can be unstable for

� � �
[1] (if

ties are broken randomly).� This is surprising because MSM
maximizes the instantaneous throughput by transferring the
maximum number of cells during each time-slot.

The instability result in [1] is based on a counter-example
that holds for

� � �
. In this letter we extend the proof to� � �

, and hence prove that MSM is unstable for any switch.
We also derive the exact throughput formula for the

� 	 �
case.

II. PROBLEM STATEMENT

We will consider a packet switch with 2 inputs and 2
outputs, i.e.,

� 	 �
.

Notation -Time-slot 
 represents the interval�
 � 
� 
�. Let���
denote the VOQ at input� destined to output� . ���

contains��� �
� packets at the end of time-slot
, with ��� ��� 	�
We assume here that MSM breaks ties randomly. In [2] it is shown that

otherwise, MSM could be stable for� � �.

�
for all � � � by convention.��� �
� packets arrive at

���
at the

beginning of time-slot
 and� �� �
� packets depart from it at
the end of the time-slot, with

�  ��� �
� � � �� �
�  

. The

service indicator!�� �
� is



if
���

is serviced at time
, and
�

otherwise. There is a departure from
���

if it both receives a
service and is non-empty. As a consequence, for
 � 


, ��� �
�
satisfies the following equation:��� �
� 	 � �� �
 � 
� " � �� �
� � � �� �
�	 �� �� �
 � 
� " � �� �
� � !�� �
�#$ % (1)

Arrivals - For our counter-example, it is sufficient to assume
that the arriving traffic follows a Bernoulli i.i.d. distribution
with mean rate&�� arriving to

���
. We will consider the

following type of traffic:& 	 ' &(( &()&)( &)) * 	 ' + ,- � * � (2)

where+, , and - are positive constants. It is assumed that no
input or output is over-subscribed, i.e.,+" , . 


and+" - . 

.

Services -VOQs are serviced according to a MSM algorithm
with ties broken randomly.

Stability - A queue is said to beunstableif after a finite
time, its occupancy never returns to zero with probability one.
Note that with Bernoulli traffic, this is implied by the queue
having a positive drift, which happens if the service rate isless
than the incoming traffic rate. A switch is said to beunstable
if any of its queues is unstable.

III. I NSTABILITY OF MSM WHEN
� 	 �

Our approach is to assume, 	 -, then find values of+ and, such that the service rate of
�(( is less than its arrival rate.

Lemma 1 At the end of a time-slot
, at least one of the two
queues

�() and
�)( is empty:�() �
� / �)( �
� 	 � % (3)

Proof: By induction. The case when
 	 �
is clear. Assume

that this property holds until the end of some time-slot
 � �
.

Consider two cases:
Case 1:At least one of the two queues is empty after the

arrivals at time-slot
 " 
. It will still be empty after departures,
hence the property holds for time-slot
 " 


.
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Case 2:Both queues are occupied after the arrivals in time-
slot 
 " 


. MSM will choose the configuration with size two
that serves

�() and
�)( (because

�)) is always empty). By
assumption, at least one of the two queues was empty at the
end of time-slot
, therefore this queue will be empty after the
service, and the property holds for
 " 


.
Let 0 �
� be the service probability of

� (( at time-slot
, i.e.,0 �
� 	 123! (( �
� 	 
4
, and5 �
� the probability that both

�()
and

�)( are empty at time-slot
, i.e., 5 �
� 	 123�)( �
� 	� () �
� 	 �4
. The following two lemmas provide upper bounds

on 0 �
� and5 �
� that will be useful for showing the instability
of MSM.

Lemma 2 (Bound on0 �
�) For any 
 � 

,0 �
�  �
 � ,� �
 " 5 �
 � 
��� % (4)

Proof: Let 
 � 

, and consider whether

�(( is served at time-
slot 
. There are two cases:

Case 1:With probability 5 �
 � 
�, � () �
 � 
� 	 �)( �
 �
� 	 �
. There are three possibilities. If both

�() and
�)(

have arrivals, which happens with probability,), �(( will not
be served. With probability

�, �
 � ,�, only one of the two
queues

3� () � � )( 4 has an arrival, then
�(( is served with

probability

6�

, if it is non-empty. Finally, with probability�
 � ,�) , neither of
3� () � �)( 4 has an arrival, in which case

the probability that
�(( is served cannot exceed 1. Hence, an

upper bound on the probability that
�(( receives service in

this case is:
12 �!(( �
� 	 
 7 � () �
 � 
� 	 �)( �
 � 
� 	 ��  �, �
 � ,� / 
6� " �
 � ,�) 	 
 � , %

Case 2:With probability

 � 5 �
 � 
�, � () �
 � 
� " �)( �
 �
� 8 �

. By Lemma 1, only one of the two queues
3� () � �)( 4

is non-empty. There are two possibilities. If the empty one
has an arrival (which occurs with probability,), then

�((
will not be served. However, if the empty one does not have
an arrival and remains empty (with probability


 � ,), then�(( is served only if it is non-empty, and then only with
probability


6�
. Thus, we get the upper bound of0 �
� in this

case,
12 �!(( �
� 	 
 7 � () �
 � 
�"�)( �
 � 
� 8 ��  �
� ,�6�.

Combining the two cases yields0 �
�  5 �
 � 
� / �
 � ,� "�
 � 5 �
 � 
�� / �
 � ,�6� 	 �
 � ,� �
 " 5 �
 � 
��6� %
Lemma 3 (Bound on5 �
�) For any 
 � 


,5 �
�  
 � + / ,� % (5)

Proof: Let 
 � 

. We will show that

12 �� () �
� " �)( �
� 8�� � 9 :;) , by considering two cases.
Case 1:� () �
 � 
� 	 �

. Consider the following possible
succession of events:�(( �
� 	 �)( �
� 	 


(which implies�() �
� 	 �
), and !(( �
� 	 


. This succession of events
happens with probability+ / , / 
6�, and after this succession
of events it is clear that� () �
� " �)( �
� 8 �

. We did not
consider other possible events, therefore,

12 �� () �
�"�)( �
� 8� 7 � () �
 � 
� 	 �� � +,6�.
Case 2:�() �
 � 
� 8 �

. In this case,
�() will remain non-

empty as long as� () �
� 	 

, which happens with probability,. Therefore,

12 �� () �
� " �)( �
� 8 � 7 � () �
 � 
� 8 �� � , 8+,6�.

Hence
12 �� () �
� " �)( �
� 8 �� � +,6�, proving the

Lemma.

Theorem 4 MSM is unstable for
� 	 �

whenever
 � ,
 " , �
 � ,�6< . + . 
 � , (6)

Proof: From Lemmas 2 and 3, we get0 �
�  =0, where
=0 >?@	�
 � ,� �
 � +,6<�, for all 
 � 


. If we can find a tuple
�+ � ,�

such that
� . =0 . + . 
 � ,, then

� (( would have more
arrivals than services, and MSM would be unstable. Solving=0 . + . 
 � , yields Equation (6), which is true over a
non-empty set for any, A �� � 
�.

For example, when, 	 � %B, the switch is unstable for+ 8C6
D E � %<D
, i.e., for a loadF 	 + " , such that
� %GD
 .F . 


. As we will see shortly, this bound is not tight.

Corollary 5 MSM is unstable for any switch of size
� � �

.

Proof: The case
� � �

was proved in [1], and
� 	 �

in
Theorem 4.

IV. M AXIMUM THROUGHPUT OF A2H2 MSM SWITCH

In this section we will derive a closed form formula for
the maximum throughput of a 2H2 switch under traffic of the
form given in (2). We will do so by comparing two systems,
later called theoriginal system and thenewone.

We call the 2H2 maximum size matching switch theorigi-
nal system, and denote it by parameters with a superscript

�I�.
By contrast, in thenew system, all parameters are the same
except that a packet generator is attached to

�((. The packet
generator generates a packet for

�(( at the very beginning,
and whenever

�(( is empty. Thus, in the new system,
�(( is

always occupied. This enables us to analyze the evolution of�() and
�)( without considering

�((.
A. The Single Unstable Queue Lemma

First we will prove the following useful lemma which
applies toany admissible traffic:J
Lemma 6 Under Bernoulli admissible traffic, a

� H � MSM
switch can have at most one unstable queue.

Proof: Let the doubly strictly substochastic matrixK 9 ;L M N
represent the input traffic rate. Suppose that more than one
queue is unstable. Without loss of generality, let one of them
be

� ((.
If
�() is also unstable, let us consider�(( " � () . After

a finite time, both queues are always occupied, so together,
they have departures at rate 1. But the incoming traffic rate is+ " , . 


, so at least one of
�(( and

� () should eventually
drain to zero. Therefore,

�() cannot be unstable. Similarly,�)( cannot be unstable.
Finally, if both

�(( and
�)) are unstable, both queues will

be permanently occupied after a finite time. Then
�() andO

Note that the new system may not be admissible due to the packet
generator, and hence more queues can be unstable than shown in the lemma.



STANFORD HPNG TECHNICAL REPORT TR03-HPNG-030100 3

TABLE I

TRANSITIONS OF PQ RS T QSR U, THEIR PROBABILITIES, AND THE SERVICE PROBABILITY OF V RR
Arrival Initial and final values of

�� () � �)(��� () � � )( � Probability
�� � �� �
� �� �� � 
��� � �� �
 � ,� �
 � -� �W � W� �� � �� �X � W� �� � �� �W � X��� � 
� �
 � ,�- �� � �� �W � X� �� � �� �� � 
� �W � Y��
� �� , �
 � -� �� � �� �X� W� �
� �� �Y � W� �� � ���
� 
� ,- �� � �� �
� �� �� � 
�

prob.
�(( is served


 � () �, " -� () �
 � -� () �
 � ,�
(0,0)

1u

d1 d1

1u

d1

1u

u2

d2

u2u2

d2d2

(0,1)(0,2) (1,0) (2,0) ........

Fig. 1. Markov chain ofPQ RS T Q SR U in the new system

�)( can only be served if both queues have packets, i.e., at a
maximum rate ofZ [\ �, � -�. Then

�(( and
�)) are served at

a rate no less than

 � Z [\ �, � -� 8 Z]^ �+ � _�. So

�)) cannot
be unstable because we’ve assume

�(( to be unstable.
Thus we conclude that at most one queue can be unstable

in a 2H2 MSM switch with Bernoulli admissible traffic.
The following corollary will enable us to link the new and

the original systems.

Corollary 7 In a 2H2 maximum size matching switch under
admissible traffic

� 9 ;L ` �, only
�(( can be unstable.

Proof: Assume that
�() is unstable, and thus that after a finite

time with probability one its occupancy never returns to zero.
Then

�(( has to be stable due to Lemma 6. Thus
�(( is served

at rate+ and
� () at rate


 � + because it is backlogged. But
this is impossible because the incoming traffic rate to

�() is, . 
 � +. Similarly
�)( cannot be unstable either. Thus, only�(( can be unstable.

B. Throughput of the New System

We will now study the new system by analyzing the
Markov chain with state

�� () � � )( � under the traffic matrix in
Equation (2). Table I summarizes the transitions of

�� () � � )( �
over a time-slot as a result of different arrivals. This table
only mentions three initial states, because MSM only requires
the binary information of whether a queue is occupied or not.
Note that there are two possible configurations of the crossbar:
either !(( 	 !)) 	 


and !() 	 !)( 	 �
, or !(( 	 !)) 	 �

and !() 	 !)( 	 
% When both configurations have an equal
number of packets that can depart, i.e. when there is one packet
for each configuration, one of them is chosen at random with
equal probabilities, resulting in two equally likely final states.
The bold entries in the table represent the transitions during
which

�(( is served. The last row summarizes the service
probability of

�(( given the initial state
�� () � � )(�.

With at least one of�() and �)( always being zero
(Lemma 1), the Markov chain of

�� () � �)(� becomes one
dimensional, as shown in Figure 1, wherea( (respectively

0 1 b

1

c

0.5

0.5

Q_21 unstable

Q_12
unstable

both stable
Q_12, Q_21

Region I

Fig. 2. Stability regions for thenewsystem

a)) and
_( (resp.

_)) are the probabilities that
� () (resp.�)() increases or decreases by 1 during a time-slot. (We have

omitted the probability of staying in a state from the figure.)
Thus, we have

F ( >?@	 bcMc 	 cd ; e(fLgcd e(f;g e($ Lg 	 ;e(fLge(f;g e($ Lg (7)F) >?@	 bdMd 	 cd e(f;gLcd e($ ;g e(fLg 	 Le(f;ge(fLg e($ ;g (8)

We will only consider cases when both
�() and

�)( are
stable, which meansF (  


andF)  

. As shown in Figure 2,

solving the two inequalities gives the region:h 	 3,  �
 " -�6� � -  �
 " ,�6�4% (9)

We will now derive the service rate of
�(( in regionh

. Let
3i �� � � / � 	 �4

be the stationary distribution of
the Markov chain for

�� () � � )( �. Solving the normalization
equationj i�� 	 


, we get:

i`` 	 �
 � �, " -� �
 � �- " ,��
 � ,� �
 � -� �
 " , " -� (10)i�` 	 F�(i`` (11)i`� 	 F�)i`` % (12)
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Then the service rate of
� (( is then given by:k(( 	 
� �
 � -� lm�n( i�` " 
� �
 � ,� lm�n ( i`�" �
 � 
� �, " -��i``	 
 " ,- � ,) � -)
 " , " - % (13)

It is easy to verify thatk(( . Z [\ �
�, � 
�-� in the interior
of
h
. If + . k((, the packet generator generates packets at an

average rate ofk (( � +. On the other hand, if+ 8 k((, packets
in
�(( will build up at the rate+ � k((, and with probability

one the packet generator will only generate a finite number of
packets before the queue becomes permanently occupied.o
C. Throughput of the Original System

In this section we will show that the stability condition for
the original system is the same as the new system. We will use
throughputto denote the expected number of packets leaving
the system in each time slot.

Lemma 8 The throughput of the original system is no greater
than the new system.

Proof: We have shown that only
�(( can be unstable in

the original system, so after running a long enough time,
either all queues are stable, or

�(( becomes permanently
backlogged with probability one and the other two queues
are stable. In either case,

�� () � � )( � form a Markov chain
with the same transitions paths as the new system (as in
Figure 1), but with possibly different transition probabilities.
Let 5 	 �
 � +� 123� (( 	 �4

be the probability that
�((

is empty after arrivals in a time slot. If
�(( is unstable then5 	 �

, otherwise5 8 �
.

Now let us look at the one-step transitions of
�� () � � )( �

and distinguish two cases.
Case 1: With probability


 � 5 ,
� (( is occupied after

arrivals, and the transition probabilities will be the sameas
in the new system.

Case 2:With probability 5 ,
�(( is empty. Denote by the

superscriptempty the transitions probabilities in this case.
Then a pqrst( 	 � . a(, a pqrst) 	 � . a); and

_pqrst( 	
 � , 8 _(, _pqrst) 	 
 � - 8 _).
Therefore, considering both cases leads toa eug� 	 �
�5 �a �"5a pqrst�  a� and

_ eug� 	 �
 � 5 �_� " 5 _pqrst� � _�
. Thus, by

properties of birth-death chains, we have:i``  i eug`` (14)lm�n( i�` � lm�n( i eug�` (15)

lm�n( i`� � lm�n( i eug`� (16)

Now let v� � � 	 � � 
� � � j v� 	 

denote the probability that� packets are are served in the 2H2 switch during a time slot.w

If x y z RR, the Markov chain forV RR is null recurrent. The queue is
stable because the probability ofQ RR returning to zero is one.
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Fig. 3. Throughput ofV RR given by formula and by simulation

Then the expected number of packets served in a time-slot can
be calculated by{ 	 v( " �v). Given the queue occupancy at
the beginning of a time slot, the probability that two packets
are served is- if

�() is occupied (with probabilityjl�n( i�` ),, if
�)( is occupied (with probabilityjl�n( i`�), and , / - ., � - if both queues are empty (with probability

i`` ). Therefore,
the inequalities (14-16) givev) � v eug) . In the new system,
there is always a non-empty queues, thereforev` 	 �  v eug` .
We can rewrite{ as { 	 v( " �v) 	 �
 � v` � " v) . Then it is
easy to see that the last two inequalities imply{ � { eug, i.e.,
the original system has a throughput no greater than the new
system.

Theorem 9 A 2H2 maximum size matching switch under
admissible traffic

� 9 ;L ` � is unstable if and only if,  �
" -�6�,-  �
 " ,�6�, and + 8 k(( 	 ($ ;Lf;d fLd($ ;$ L .

Proof: In region
h

(Equation (9)),
�() and

�)( are stable
in both systems. (They are also stable in the original system
becausea eug�  a �, _ eug�  _�

.) By Lemma 8, the original
system has a throughput no greater than the new system,
therefore we must havek eug((  k(( 	 
 " ,- � ,) � -)
 " , " - % (17)

In the 2H2 MSM switch, if + 8 k((, �(( will have a positive
drift, and with probability 1,

� (( is never empty after a finite
time. Then the switch behaves the same as the one with a
packet generator. Thus, the maximum throughput for

� (( isk((. On the other hand, if+  k((, �(( has to be stable.
Otherwise, if it is unstable, it must have a service rate less
than +, and the queue is never empty after a finite time. By
comparison with the new system, the service rate must bek((,
which is a contradiction.

Outside the region
h
, if

�(( is unstable, we again have the
two systems having the same throughput for

� ((. But one of�() and
�)( is also unstable, which contradicts Corollary 7.

So
� (( is stable outside of region

h
.

For example, when, 	 � %B, the switch is unstable if
and only if + 8 �6C 	 � %�DB, compared to the sufficiency
condition + 8 � %<D
 given by Theorem 4. Figure 3 shows
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the service rate of
� (( when , 	 - and + 	 
 � ,, given

by Theorem 4, by the exact formula in Theorem 9, and by
simulation. As shown in the figure, the theoretical values from
Theorem 9 agree extremely well with the simulations.
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