
1

Exact Worst-Case TCAM Rule Expansion
Ori Rottenstreich, Rami Cohen, Danny Raz and Isaac Keslassy

APPENDIX A
TCAM ARCHITECTURES

A. Suggested Architectures

In this section we suggest several TCAM architectures that
enable us to implement range encoding more efficiently using
logical gates, and illustrate them with a simple example. The
objective of these TCAM architectures is to illustrate the trade-
off between the worst-case range expansion guarantees and
the complexity of the logic module. Since they cannot be
implemented directly using off-the-shelf TCAMs, it should be
clear that they will probably not directly fit a large class of
networking devices.

Fig. 1 illustrates the different TCAM architectures. We
assume d = 2 fields of W = 4 bits each. We want to
encode k = 2 multi-dimensional ranges R1 and R2, where
R1 = [1, 14] × [5, 14], R2 = [7, 10] × [2, 3], and each range
leads to a different action. We assume that the default action
is predefined in the parallel encoder (PE), and therefore there
is no need to add TCAM entries for it. We also use an input
example, equal to 8 = {1000} in the first field and 7 = {0111}
in the second, and denote in parentheses the values that are
transmitted on each line.

First, Fig. 1(a) presents the standard INTERNAL-PRODUCT
architecture. Using internal Binary-Prefix encoding, it encodes
each range by using the product of its TCAM entries along each
dimension. In this case, it uses 6×5 entries to encode R1, and
3× 1 entries to encode R2, yielding a total of 33 entries.

Next, Fig. 1(b) introduces the proposed COMBINED-
PRODUCT architecture. Instead of encoding each range only
internally, the COMBINED-PRODUCT architecture encodes it
using its complementary as well, in at most fp(W) = W
entries instead of 2W−2 above, and uses more logic to process
the results. In this example, it uses 12 entries for R1 and 3 for
R2, i.e. a total of 15.

Specifically, each field of each range behaves like a single
TCAM block. The results of each TCAM entry are entered
into a chained logic part that outputs a (1) on each line if it is
the first entry that matches the header, and (0) otherwise (i.e.,
either there was no match on this line or there was a match
on a previous line). Note that the chained logic can also be
replaced with a more efficient hierarchical logic.

In the second logic part, a logic gate with a control input
either behaves like a pass-through gate or like a zeroing gate,
depending on whether the encoded entry corresponds to the
range or to its complement. Thus, the output is a (1) iff it is
the first matching entry and it belongs to the range. Last, an
OR gate checks whether the first matching entry belongs to the
range, i.e. whether the range is matched. The PE then outputs
the first matching range.

TABLE I
UPPER BOUND ON RULE EXPANSIONS OF TCAM ARCHITECTURES

Architecture Expansion upper Values for k = 1,
bound W = 16, d = 2

INTERNAL-PRODUCT k · (2W − 2)d (30)2 = 900
COMBINED-PRODUCT k ·W d (16)2 = 256
COMBINED-SUM k · d ·W 2 · 16 = 32

Next, Fig. 1(c) shows the proposed COMBINED-SUM archi-
tecture. Each field of each range is encoded separately, by using
chaining as in the COMBINED-PRODUCT architecture. Then, in
a second stage, an AND gate checks whether all fields have a
match. In this example, R1 is encoded using 3+4 = 7 entries,
and R2 using 3 + 1 = 4, with a total of 11 entries.

Table I summarizes the bounds on the worst-case rule
expansion for each architecture, and provides the corresponding
values for IPv4 packet headers with 2 range fields of 16 bits
each. The first two results follow from Theorem 13. The last
result comes from applying Theorem 7 on each field, with
W ≥ 2.

The additional logic required in the last two architectures is
summarized as follows. In the COMBINED-PRODUCT architec-
ture, we have for each range one OR gate with multiple inputs
as well as one controlled logic gate, one OR gate, one AND
gate and one invertor for each TCAM entry. Likewise, in the
COMBINED-SUM architecture, there is one AND gate for each
range, one OR gate with multiple inputs for each of the d fields
as well as one controlled logic gate, one OR gate, one AND
gate and one invertor for each TCAM entry.

B. Implementation Considerations

Hot Updates: Since the TCAM is clearly divided between
ranges, and the implementation of each range is independent
of the other ranges, hot classifier updates are surprisingly
easy to apply in this architecture compared to typical TCAM
architectures.

Turning Off Entries: In the figures, we only represent
the active entries. A simple way to implement the TCAM is
to divide it by blocks, each block representing the maximum
number of entries per range (Table I). Then, when some entries
are not used, it is possible to turn them off. To do so, we add a
transistor to switch voltage on and off, together with an SRAM
array of 1 bit per entry that remembers the correct action.

PE Size: The number of inputs and outputs of the PE is
reduced. It now equals the number of ranges, i.e. the number of
rules, instead of the number of TCAM entries. In a sense, the
PE is implemented in a hierarchical fashion, with the first logic
block being the one shown in the figure (e.g. using chaining).
In addition, the size of the SRAM that follows the PE can
decrease as well from the TCAM size (number of entries) to
the classifier size (number of rules).

2

0001 - 0101

0001 - 011*

0001 - 10**

10** - 011*

1110 - 10**

1110 - 110*

1110 - 1110

⋮ ⋮ ⋮

⋮ ⋮ ⋮

0111 - 001*

100* - 001*

1010 - 001*

PE

header

1000.0111 (range 1)

(0)

(0)

(0)

(0)

(0)

(0)

(1)

(0)

(0)

(0)

(a) INTERNAL-PRODUCT

0111 - 001*

100* - 001*

1010 - 001*

0 0 0 0 - 0 1 0 1

0 0 0 0 - 0 1 1 *

0 0 0 0 - 1 1 1 1

0 0 0 0 - * * * *

1 1 1 1 - 0 1 0 1

1 1 1 1 - 0 1 1 *

1 1 1 1 - 1 1 1 1

1 1 1 1 - * * * *

* * * * - 0 1 0 1

* * * * - 0 1 1 *

* * * * - 1 1 1 1

* * * * - * * * *

(0)

(1)

header

1000.0111
PE (range 1)

⋮ ⋮ ⋮
(1)

(0)

(b) COMBINED-PRODUCT

0000 - ****

1111 - ****

**** - ****

0111 - ****

100* - ****

1010 - ****

**** - 0101

**** - 011*

**** - 1111

**** - ****

**** - 001*

(0)

(1)

(1)

(0)

header

1000.0111
PE (range 1)

(1)

(1)

(1)

(1)

(1)

(c) COMBINED-SUM

Fig. 1. TCAM Architectures implementing various encoding schemes

acl1 acl2 acl3 acl4 acl5 fw1 fw2 fw3 fw4 fw5 ipc1 ipc2 total
0

10

20

30

40

50

60

70

80

 Im
pr

ov
em

en
t

(%
)

Classifier

SRGE
COMBINED−PRODUCT

Fig. 2. The improvement of the SRGE scheme and the COMBINED-PRODUCT
scheme in the average rule expansion of ClassBench synthetic classifiers in
comparison with the Binary-Prefix scheme.

Multiple Actions: To implement more actions than accept
and deny, the architecture does not need to be changed. The
action associated with each range simply needs to be indicated
in the corresponding SRAM entry.

Encoding Rules Defined on More Than Two Fields: In
many cases, a classification rule R = ((R1, . . . , Rd) → a) is
defined on additional fields besides the two fields with ranges.
For instance, besides the ranges defined in the source and
destination ports, a rule might require specific values of the
source and destination IP and protocol. In these fields the
rule is limited to an exact match or to a prefix-match and in
both cases the encoding requires only one TCAM entry. To
encode the rule itself and not just the fields with ranges, we
can simply concatenate the encodings of the additional rules
to each of the entries in the range encoding. The TCAM width
is changed accordingly. A packet header is then compared in
parallel against all the rule fields in one search and there is no
requirement for additional searches the additional fields.

C. Additional Simulation Results

Effectiveness on Synthetic Packet Classifiers: We eval-
uate the suggested architectures on large synthetic classifiers
generated by the ClassBench benchmark tool [32], using the
12 standard available files based on real classifiers that were
also used in [17], [18]. These 12 files are of three types: access
control lists (files acl1-acl5), firewalls (files fw1-fw5) and IP
chains (files ipc1-ipc2). We compared, for each of the files, the
expansion of the Binary-Prefix encoding, the SRGE encoding
[17] and the suggested scheme from Section III-B implemented
in the COMBINED-PRODUCT architecture. The file parameters

TABLE II
AVERAGE RULE EXPANSION WITH REAL-LIFE CLASSIFIERS.

Parameters All rules 1 range-field 2 range-fields
Fraction of all rules (%) 100% 26% 1.5%
Binary-Prefix [19] 2.68 7.32 47.18
SRGE [17] 2.67 7.27 46.92
INTERNAL-PRODUCT 2.68 7.32 47.18
COMBINED-PRODUCT 1.63 3.38 20.09
COMBINED-SUM 2.45 3.69 8.80

and the detailed results of this comparison are presented in
[34]. Figure 2 shows for each of the twelve classification
databases the improvement in the average rule expansion of the
SRGE scheme and the COMBINED-PRODUCT in comparison
with the Binary-Prefix encoding. The last column summarizes
the results for all the databases.

We can see that in the first 11 databases the expansion of
the new encoding scheme is smaller than the expansion of the
binary encoding as well as of the SRGE encoding. In the last
database (ipc2), all the rules are trivial and require only one
TCAM entry in each of the three schemes. The expansion of
the the Binary-Prefix encoding is reduced by up to 72.46% in
the COMBINED-PRODUCT scheme, and by at most 3.25% by
the SRGE encoding. The average expansion of the suggested
encoding scheme for all the 118217 rules in all the 12 databases
is 1.223 instead of 2.330 and 2.312 for the binary and SRGE
encoding, respectively. The improvement in the total average
expansion in all the databases in our scheme is 47.49% instead
of less than 1% in the SRGE scheme.

Of course, please note that the improvement comes with
a cost, as our suggested COMBINED-PRODUCT architecture
requires additional logic (Fig. 1). Therefore, this comparison
is meant to provide some insights on the fundamental TCAM
efficiency, and by no means does it imply that this is a straight
apples-to-apples comparison.

Effectiveness on Real-life Packet Classifiers: We eval-
uate the suggested architectures on a real-life database of
120 separate rule files and about 215, 000 rules originating
from various applications (such as firewalls, ACL-routers and
intrusion prevention systems). The database was previously
used in [4], [17], [18], [29]. We compare these architectures
with the Binary-Prefix scheme [19] and the SRGE scheme [17].
The results are presented in Table II.

Since the standard INTERNAL-PRODUCT architecture uses
the internal Binary-Prefix encoding, it requires the same num-
ber of entries as the Binary-Prefix encoding. The SRGE scheme

3

suggests a minor improvement of less than 1% for the average
expansion. The COMBINED-PRODUCT architecture performs
well and improves by 39.2% the total number of TCAM entries
in comparison with Binary-Prefix and in particular by 53.8%
and 57.4% the entries needed for rules with (at least) one and
two range-fields, respectively. Due to its linear expansion in
the number of dimensions, the COMBINED-PRODUCT architec-
ture has much better average expansion of two range-fields.
However, its average expansion over all rules is worse than the
expansion of COMBINED-PRODUCT mainly because of the low
proportion of two range-fields.

Of course, our schemes rely on additional logic, and there-
fore provide clear tradeoffs between improved range expansion
guarantees and more complex logic within the TCAM.

