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ABSTRACT
The Pathway project, by the Office of the CTO at VMware(OCTO),
constructs a global overlay network across public clouds. Pathway
interconnects geographically-dispersed corporate datacenters and
branches. The project leverages the global geographical spread of
public clouds and their vast compute and networking infrastruc-
ture. Clients using Pathway could see improvements in download
times sometimes by orders of magnitude. The main contributor to
improving network performance was shown to be the split TCP
technique. Unfortunately, the available TCP split solutions incur a
penalty on connection time, and actually hurt the performance of
short flows. In addition, available TCP split implementations are in
user-space, and thus have two expensive system calls per forwarded
buffer. The redundant system calls hurt server performance and limit
the scalability of such solutions.

This paper describes KTCP, a Linux Kernel module built to take
full advantage of a cloud environment. The design of KTCP aims
to minimize and effectively eliminate any overheads of establishing
the split TCP connection. We define a theoretical model for optimal
transmission and cover the methods we use to bring KTCP as close
as possible to this ideal model. We demonstrate that KTCP is able to
considerably increase the link utilization by TCP connections and
reduce the connection latency close to its theoretical minimum. Fur-
thermore, KTCP avoids the main performance penalties associated
with splicing sockets i.e., system calls and memory copying.

1 INTRODUCTION
Pathway. The Pathway [20] project taps into an underutilized re-
source: the vast network infrastructure being built by the cloud
providers [1, 16, 18]. A Pathway customer, the client connecting to
any server would traverse multiple Pathway routers. In this paper,
without loss of generality, we assume exactly two relays; in all fig-
ures the two assumed Pathway routers are depicted as RC , for the
router connected to the client, and RS , for the router connected to
the server. In reality, these routers are just commodity VMs hosted
by the cloud provider.
TCP split. TCP split is a well known technique for optimizing link
utilization with TCP flows. For the past 20 years, TCP split has been
used for wireless networks, satellite transmissions, LAN and WAN
optimizations [3, 7, 11, 12, 17, 21]. Now, as part of the the Pathway
project, we are introducing TCP split into a new context of public
clouds as a networking infrastructure. TCP split is standard in all
WAN optimization products [22, 23, 30, 31].

1.1 Laying pipes in the clouds
The cloud provides an auto-scaling networking infrastructure with
links of virtually-infinite capacity. As a result, flows in the cloud
will rarely ever encounter congestion. In fact, like others [6], we
find that in-cloud paths provide a more predictable performance
than the public Internet, with a loss rate that is lower by an order of
magnitude.

Given the particularly favorable conditions in the cloud, we start
by exploring whether it is possible to achieve (or get closer to) an
ideal transmission with minimal latency, which is currently quite
out of reach in the Internet.

Ideal (Figure 1a). Figure 1a illustrates our fundamental model
of an ideal transmission. Importantly, this model reflects a protocol-
free, theoretical and ideal transmission; thus we are free to disregard
overheads like the TCP three way handshake. In an ideal scenario,
we would like to wait no more than one round-trip time (RTT),
for the response to our request to start arriving. In this case the
request would go through the Pathway routers directly triggering the
transmission of all response packets. The time-to-first-byte (TTFB)
would be just one RTT, the lowest possible TTFB.

Real (Figure 1b). Unfortunately, the classical end-to-end data
transfer shown in Figure 1b falls short of this ideal model. In this ex-
ample, we suppose that the client requests three MSS-sized packets
using HTTP over TCP, that the initial TCP window size is one MSS,
and that there are no losses. The end-to-end1 HTTP transmission
over TCP first requires the establishment of an end-to-end connec-
tion, adding one RTT to the ideal finish time. Waiting one RTT for
the first ACK further delays the download.

TCP Split (Figure 1c). Now, when we use standard TCP-split
logic in the Pathway routers, we also add new sources of delay.
The basic TCP split mechanism divides the long control loop into
several separate legs, each with a shorter control loop. This sepa-
ration results in shorter download time for larger files. But a naive
implementation also introduces additional overheads. Due to these
overheads, TCP split may be detrimental for small file downloads.
The main overheads stem from: (a) on-demand resource allocation
on the VM, and (b) socket semantics, a server accepting connections
will be notified of a new connection only once the TCP 3WHS is
complete; meaning that the split connections can only be established
successively.
In Section 2 we discuss TCP split overheads in greater detail. The
most significant contribution of this paper is that we efficiently ad-
dress the delays marked (1)-(4) in Figure 1c, and therefore reduce
the connection latency to be very close to its theoretical minimum.
However, if we can only change the TCP-split implementation in the
relays, we also find that we cannot address the small leftover delays
∆c and ∆s on the client and server sides, respectively, and therefore
cannot fully reach the ideal minimum latency. To do so, the best
ways would be either by making the relays closer to the end-points
(client and server), or by changing the congestion control in these
end-points.

2 APPROXIMATING THE IDEAL PIPE
To approximate the ideal data transmission model, we introduce
KTCP(K=Kernel-based TCP split). The goal of KTCP is to provide

1In this case the Pathway routers just forward packets, without any additional logic.



(a) Ideal protocol-free transmission. (b) End-to-end (no split) transmission. (c) Simple TCP split, on both RC and RS

Figure 1: Illustrated comparison of the considered baseline data transmission methods.

an efficient, delay-free TCP optimization while utilizing commod-
ity VMs and standard programming APIs. We introduce four im-
provements over the naive TCP split approach. The effects of these
improvements are illustrated in Figure 2.

Improvement 1: Early SYN (Figure 2a). In Early-SYN [10, 17],
the relay server sends a SYN packet to the next-hop server as soon as
the SYN packet arrives, without waiting for the three-way handshake
to complete. KTCP captures this first SYN packet and triggers the
start of a new connection. This allows the proxy to establish the
two legs of a split connection in parallel. Using Early-SYN, we can
remove the SYN-ACK and ACK delays, marked as (1) in Figure 1c.
Out of our 4 suggested improvements, this is the only one that was
already known in the literature.

Improvement 2: Thread pool (Figure 2b). The creation of new
processes or threads for each new split connection is time-consuming
and adds greatly to the connection jitter. Some outliers may take tens
of milliseconds, greatly hurting performance. For small files/objects,
this jitter may even nullify the benefit of KTCP. To mitigate this
problem, we create a pool of reusable threads. These are sleeping
threads, awaiting to accept new tasks. Using a thread pool removes
the delays marked as (2) in Figure 1c.

Improvement 3: Reusable connections (Figure 2c). This opti-
mization aims to improve the performance of long-haul connections,
i.e., those where the RTT between the two cloud relays dominates.
The goal is to negate the delay of the long three-way handshake.
We achieve this goal by preemptively connecting to distant Pathway
routers. In each Pathway router we create a pool of pre-established
connections between each pair of distant Pathway routers. With a
connection pool, delay (3) in Figure 1c is eliminated.

Improvement 4: Turbo-Start TCP (Figure 2d). Congestion is not
an issue within the cloud, hence, there is essentially no need to

use TCP’s slow-start mechanism. It is redundant to probe the net-
work when a connection is established between two Pathway routers
within the same cloud provider. We thus configure a large initial
congestion window (CWND) and large receive window (RWIN),
thus eliminating delay (4) in Figure 1c. In addition, we increase the
socket buffers for the relay machines, so that memory would not
limit the performance of the intra-cloud flows. Note that we do not
change the CWND used on any Internet-facing flows. We wish to
remain friendly to other TCP flows potentially sharing a bottleneck
link with our Pathway routers.

3 KTCP DESIGN
KTCP is a Linux kernel-based module, incorporating the four op-
timizations described in Section 2. In this section we discuss the
various design and implementation details.

Kernel mode. We implemented KTCP as a kernel module. We rely
on procfs [28] to control the behaviour of KTCP. Procfs, a virtual file
system [32] provides a simple interface and facilitates easy scripting
that allows communication with the module at run time. The decision
to use kernel mode is a significant one. While developing in user
space would have provided an easier development environment,
implementing KTCP in the kernel allows us to (1) take advantage
of resources only available in the kernel, such as Netfilter [27],
which is crucial to our needs; and (2) avoid the penalties that stem
from numerous system calls [13, 19]. By working in the kernel,
we eliminate the redundant transitions to and from user space by
avoiding gratuitous system calls. Netfilter, which provides hooks for
callbacks on the network stack, is the standard option for capturing
and processing a packet in various stages of its path trough the
network stack.

The decision to implement the components of KTCP in the kernel
is further made easy by the fact that all socket APIs have kernel
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(a) Early-SYN. (b) Thread pool.

(c) Connection pool.

(d) Turbo-Start TCP.

Figure 2: KTCP successive implementation improvements

counterparts.2 Instead of POSIX threads we utilize kernel_threads
to handle each leg of the split connections.

Cost of System Calls To better gauge the cost of system calls that
we are avoiding by working in the kernel, we measure the cost of
context switching between kernel_threads on our setup, assuming an
n1-standard(GCP) VM with Intel Skylake Xeon CPU. Specifically,
we measure the time it takes for two kernel_threads to call sched-
ule() 10 million times each. This experiment completes in under 3.2
seconds, resulting in 0.16 µsec per context switch on average; by
comparison, an analogous experiment with two processes runs for

2One limitation of an in-kernel implementation is that epoll [24], a scalable I/O event
notification mechanism, has no kernel counterpart.

15.6 seconds and 12.9 seconds for two POSIX threads [29]. The ex-
periment highlights the cost of using blocking system calls. The time
it takes to send/receive a packet is in the range of several µsec [13].
These numbers hint at the direct impact system calls would have
had on the performance of KTCP. The actual cost of sending and
receiving packets varies, depending on hardware used, the size of
packets, system configuration and system load.3

Basic implementation. The basic implementation of KTCP, on
each Pathway router, has three components. (1) A socket listening
for incoming connections. (2) Iptable [25] rules that redirect TCP
connections to our proxy socket. (3) A second TCP socket is used to

3A load on a shared resource like the L3 cache or the memory controller can impact
performance greatly [14].

3



connect to the next server and thus complete the second leg of the
split connection. Once both connections are established, the bytes
of a single stream are read from one socket, and then forwarded to
its peer. This forwarding happens in both directions. When either
connection is terminated via an error or a FIN packet, the other
connection is shut down as well. This means that the bytes in flight
(i.e., not yet acked) will reach their destination, but no new bytes
can be sent.

Memory Footprint. We found that the size of the buffer used to read
and write the data is important. At first we used a 4KB buffer, and
experienced degraded performance. Starting at 16KB buffer sizes
the performance levels out. Each split connection has two sockets
and two kernel_threads [26], with each kernel_thread taking 9KB
in addition to 16KB for the forwarding in each direction. Each split
connection takes 50KB of memory to maintain.

Early-SYN. As there is no standard API that enables the capture
of the first SYN packet, we use Linux Netfilter [27] hooks. We add
a hook that captures TCP packets, and then parse the headers for
the destination IP and the SYN flag. With this information, KTCP
launches a new kernel_thread. It is impossible to create a new thread
while in the Netfilter callback, which is an atomic context. We
use our thread pool to launch kernel_threads from atomic contexts.
The “new" thread initiates a connection to the intended destination.
Capturing the SYN allows the Pathway router to establish the two
sides of a connection concurrently.

Thread pool. We use blocking send/receive calls with our sockets
allowing for a simple implementation; this also means that we need
a kernel_thread per active socket. Unfortunately, the creation of a
new kernel_thread is costly. On our setup, a kernel_thread creation
takes about 12µsec, on average.4 But an outlier may consume several
milliseconds, resulting in a jittery behaviour.

To mitigate this problem and the problem of creating new ker-
nel_threads from atomic context, we create a pool of reusable
threads. Each kernel_thread in this pool is initially waiting in state
TASK_INTERRUPTIBLE (ready to execute). When the thread
is allocated, two things happen: (1) a function to execute is set
and (2) the task is scheduled to run (TASK_RUNNING). When
the function is finished executing, the thread returns to state
TASK_INTERRUPTIBLE and back to the list of pending threads,
awaiting to be allocated once more. A pool of pre-allocated kernel
threads thus removes the overhead of new kernel_thread creation.
A new kernel_thread from the waiting pool can start executing im-
mediately and can be launched from any context. KTCP attempts to
keep the number of threads in a pool between two configurable wa-
termarks. KTCP creates new threads when the number drops below
the low mark and frees from the pool when the limit grows above
the high mark. On a multi-core system, the heavy lifting of thread
creation is offloaded to a dedicated core.

Pre-established connections. For pre-established connections, we
have added a dedicated server thread that accepts connections from
other Pathway routers that may create new pre-established connec-
tions to this server.5 When established, these connections wait for

4By comparison a fork consumes more than 25µsec, while launching a POSIX pthread
consumes around 13µsec.
5In order to keep the connection from closing before being used, the sockets are
configured with KEEP_ALIVE.

the target address to be sent from the initiating peer. The destination
address is sent over the connection itself. This information is sent in
the very first bytes, and all following bytes belong to the forwarded
stream. Once the destination address is received by RS , a connection
to the target is initiated and the final leg of the split connection is
created.

For example, a SYN captured on RC will trigger a look-up in the
pool of pre-established connections on RC ; looking for an existing
TCP connection between RC and RS . If a pre-established connection
exists it will be used for the split connection. RC will send the target
information inside the connection. Upon receiving the target infor-
mation from RC , RS will establish a TCP connection with the target,
and from that point on RS will forward the stream from RC to the
target. When the connection terminates the socket associated with
the connection will be freed and will not be reused.
On pre-established connection sockets Nagle’s Algorithm [15] is dis-
abled. In our experiments, we have seen that the TTFB is increased
by some 200 milliseconds, unless Nagle’s Algorithm is disabled.
Proc. The water marks of the thread-pool, the destination and num-
ber or pre-established connection are controlled via the procfs [28]
interface. These parameters can be modified at run time.
Multi-core systems. Shared resources that are used by multiple
cores may result in degraded performance due to contention. In
KTCP only the two pools, i.e., the pool of pre-established connec-
tions and the thread pool, form a shared resource. To avoid con-
tention, we have implemented a generic magazine [2] infrastructure;
it is used to implement both pools.

The asynchronous creation of a new split connection initially
results in two threads each holding only one socket. One thread has
the socket with an established connection to the source, and the other
holds the socket with an established connection to the next server.
For the split connection to work, both threads need to find their
peer. This look up is facilitated by a red-black tree (rb_tree).6 This
rb_tree holds elements with three fields, the two sockets and a 12
Byte key, we call these elements QP (queue pair). The 12 Byte key
is simply the source/destination IP/port. To avoid contention over a
single rb_tree, we create an rb_tree on each core. When conducting
the look up, both threads are bound to run on a specific core; this
core is determined by a xor on the 12 Byte key. Once the lookup
is complete, both threads are free to be scheduled anywhere on the
system, and the QP is removed from the rb_tree.
Kernel Zero Copy. While KTCP is able to sidestep system calls
and context switch costs by utilizing kernel threads; the cost
of copying remains high. We expand the existing Linux TCP
API with a tcp_read_sock_zcopy for RX and add a new
msg flag SOCK_KERN_ZEROCOPY for tcp_sendmsg_locked
in TX. We base our new function tcp_read_sock_zcopy
on existing infrastructure i.e., tcp_read_sock. It is used
by tcp_splice_read to collect skbs from a socket. For
TX, zero copy infrastructure already exists in the form of
MSG_ZEROCOPY[4]. When kernel memory is used for I/O, en-
abling zero copy is trivial when compared to zero copy from user
space. The pages are already pinned in memory and there is not
need for a notification on TX completion. The pages are reference
counted, and can be freed by the device driver completion handler.
6A generic implementation already exists in the Linux Kernel
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Figure 3: Time-To-First-Byte (TTFB) in seconds. Median re-
sults of 50 runs.
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Figure 4: Download completion time in seconds. Median results
of 50 runs.

4 EXPERIMENTAL EVALUATION
To evaluate the contribution of each of these improvements, we set
up a server in Bangalore as a VM on a Digital Ocean infrastructure;
and a client PC in San-Francisco, connected using a residential
Internet service 7. Our relays are two VMs on GCP’s public cloud:
one in Mumbai, close to the server (RS ), and another (RC ) in Oregon,
near the client. Both VMs run on Ubuntu 17.04 and use small (n1-
standard-1) machines with a single vCPU and 3.75 GB memory. The
client and server are Ubuntu 16.04 machines.

We set up an Apache web server on the Bangalore VM and
evaluate the performance of each of the options by measuring both
download times and time-to-first-byte (TTBF). We experiment with
files of different sizes that the client is downloading from the server,
using HTTP via the curl utility. The times reported in Figure 3 and
Figure 4 are as returned by the curl utility.

7The ISP is Comcast.

The RTT (as measured by ICMP) between the client and RC is
32.7ms, between RC and RS is 215ms, and between RS and the server
is 26ms.

We compare the performance of the following configurations:
(i) simple End-to-End (e2e); (ii) routing through the cloud relays;
using iptable’s DNAT, without splitting the TCP flow (Cloud NoS-
plit); (iii) splitting the TCP flow using SSH’s port forwarding feature
(Baseline); (iv) TCP splitting using our KTCP kernel module, set up
to use the improvements listed in section 2: thread pool only (KTCP
+TP), thread pool and early-SYN (KTCP +TP+ES), a complete bun-
dle of the three connection improvements including pre-established
connection (KTCP +TP+ES+CP), and finally also configuring the
intra-cloud TCP connection to use Turbo-Start (KTCP).

The benefit from the improvements is best observed by looking at
the Time-To-First-Byte in Figure 3. We can see that the TTFB and
total download time of the basic KTCP coincide with those of the
Baseline. Our basic kernel-based implementation performs at least as
well as the well-established ssh utility. We also note that KTCP +TP
does not improve the median performance by a noticeable amount.
However, we have noticed throughout our testing that the thread
pool improves the stability of our results.

For all file sizes we notice an improvement of ≈ 60ms when
using KTCP +TP+ES. This is in line with Figure 1c, as Early-SYN
eliminates one RTT on the (client ↔ RC ) and another RTT of
the (RS ↔ server). The amount of time reduced, according to our
RTT measurements is supposed to be 59ms, in line with our results.
Adding pre-established connections to the mix should potentially
reduce the TTFB by one RTT of the (RC ↔ RS ) leg. However,
since the REQ cannot be forwarded with the SYN packet sent by the
client (without any TCP extensions), we can only gain 215 − 33 =
182ms. Indeed, the benefit of adding CP as evident in Figure 3 is of
≈ 180ms. The addition of Turbo-Start does not reduce the TTFB,
as it only influences the way packets are sent after the first bytes.
The contribution of Turbo-Start is clearly evident when considering
the total download time (Figure 4). We see considerable reduction
of the file download time when using Turbo-Start for all file sizes,
except that of 10 KB file. The default initial congestion window size
for both Ubuntu 17.04 and 16.04 is 10 segments, so the entire file
is sent in a single burst. Indeed, the results show that for 10 KB
file the download completion time is about 1 ms after the first byte
arrives. All other improvements contribute to the reduction of TTFB,
and so reduce the total download time by roughly the same amount.
This reduction is barely noticeable for large files, where the main
benefits stem from splitting the TCP flow and using Turbo-Start. In
this experiment we notice that the best performing implementation
improvement (i.e., KTCP) outperforms e2e file transfer by up to 3
times! (depending on the file size).

5 RELATED WORK
To our knowledge KTCP is the first fully featured in-kernel imple-
mentation of TCP split. One previous work [7] uses Netfilter hooks
to forward packets but doesn’t maintain a TCP stack per connection,
instead using its own bookkeeping code for packet re-transmission.
A different approach [17] uses unikernels [9] and a modified lwip
[5] as the basis of their proxies. Both approaches lack the proven
stability, reliability and versatility of the Linux kernel, all needed for
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a reliable product.
In parallel to our own work, a new API i.e., SOCKMAP [8, 23]
was introduced. SOCKMAP aims to solve the performance prob-
lems of splicing two sockets, using BPF programs. But SOCKMAP
its not flexible enough to facilitate all Pathway requirements (e.g.,
Early-SYN Fig.2a).
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