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Abstract—Data center switches need to satisfy stringent low-
delay and high-capacity requirements. To do so, they rely on
small switch buffers. However, in case of congestion, data center
switches can incur throughput collapse for short TCP flows as
well as temporary starvation for long TCP flows.

In this paper, we introduce a lightweight hash-based algorithm
called HCF (Hashed Credits Fair) to solve these problems at the
switch level while being transparent to the end users. We show
that it can be readily implemented in data center switches with
O(1) complexity and negligible overhead. We illustrate using
simulations how HCF mitigates the throughput collapse of short
flows. We also show how HCF reduces unfairness and starvation
for long-lived TCP flows as well as for short TCP flows, yet
maximizes the utilization on the congested link. Last, even though
HCF can store packets of a same flow in different queues, we
also prove that it prevents packet reordering.

I. INTRODUCTION

A. Motivation

The recent emergence of the data center switch market has
required switch vendors to answer new stringent requirements
and rethink their switch architectures. This is because switch
vendors of both Ethernet switches and Internet routers want to
enter the data center switch market as well, ideally by using
variants of their next-generation switch architecture. However,
while Ethernet switches typically require extremely low delay
with reasonable capacity, and Internet backbone routers require
extremely high capacity with reasonable delay, data center
switches require both extremely low delay and extremely high
capacity. As a result, the data center switch stringent require-
ments on delay and capacity are now becoming generalized
requirements on most high-end next-generation switch designs
as well.

Data center switch vendors need to address two crucial
problems that result from the low-delay requirements. First,
they need to address the TCP incast problem, i.e., the through-
put collapse of short flows [1]–[5]. The throughput of TCP-
based applications drastically reduces when multiple senders
communicate with a single receiver in high-capacity low-delay
networks. Fast and highly bursty data transmissions overfill
the switch buffers, causing intense packet loss that leads to
TCP timeouts. These timeouts last hundreds of milliseconds
on a network whose round-trip-time (RTT) is hundreds of
microseconds, i.e. three orders of magnitude lower. Protocols
that have some form of synchronization requirement, such as

filesystem reads and writes or highly parallel data-intensive
queries found in large memory-cached clusters, keep wait-
ing for timed-out connections to finish before issuing new
requests. These timeouts and the resulting delay can reduce
application throughput by up to 90% [2], [5].

The second crucial problem is the starvation of long TCP
flows. As we will further show in this paper, during con-
gestion, long TCP flows can be temporarily starved during
tens of seconds, even though the total switch throughput stays
high. These high delays are unacceptable for latency-sensitive
data center applications. For instance, an algorithmic trading
application needs a guarantee that its information will most
probably not be delayed beyond a millisecond, or even a few
microseconds. Small delays also play a crucial factor in switch
benchmarks. For instance, a recent benchmark study favored
two switches over a third because they essentially achieved
lower delays for large Ethernet frames, reaching 750 ns vs.
3.4 µs [6].

The throughput collapse of short flows and the starvation
of long flows actually have shared reasons, stemming from
the high-capacity and low-delay requirements of data center
switches. The high-capacity requirement, needed to deal with
a large number of flows, would require significant buffer sizes
to prevent a high loss rate for the TCP flows, as in Internet
high-speed links [7]–[10]. However, the low-delay requirement
imposes the use of small switch buffer sizes, and as a result
typically incurs a large loss rate and many timeouts for TCP
flows in case of congestion. These timeouts cause unfairness
among flows, which experience a high delay variability.

This paper is about reducing the short-flow throughput
collapse and long-flow starvation by reducing the delay un-
fairness among flows. To do so, we want to use a lightweight
switch-based mechanism that does not significantly impact
the switch architecture or require any meaningful additional
buffering. In contrast to previous papers on TCP incast [1]–
[5], we assume that it is forbidden to change the TCP protocol
implementations both at the sources and destinations. Thus,
the switch-based mechanism should be transparent to the end
hosts.

B. Contributions

In this paper, we introduce a simple switch-based algorithm
to reduce the TCP unfairness in data centers. To our knowl-



edge, this paper is unique in that it is the first to point out the
fundamental starvation properties of long TCP flows in data
center networks, even when there is no throughput collapse. It
is also the first to suggest a specific switch-based mechanism
to address this starvation.

We propose to use the HCF (Hashed Credits Fair) algorithm,
a novel lightweight algorithm for data center switches that is
transparent to TCP-based applications. HCF relies on hashing
to aggregate flows into bins, and therefore needs to maintain
only a limited number of bins credits using a few bits of
information. In addition, HCF regularly updates the hashing
functions to prevent persistent hash collisions between the
same flows. Last, HCF combines the credit hashing mech-
anism with a queueing mechanism that provides a higher
priority to flow aggregates that have not been recently served.

Although HCF allows packets of a same flow to join differ-
ent queues, we demonstrate that HCF prevents reordering by
using a special updating mechanism. We also prove that HCF
has an O(1) time complexity, and that it requires significantly
less resources than competing fairness algorithms. In addition,
we explain why HCF does not require any change at the end
stations, and in particular does not require any change to the
standard TCP protocol.

Later, through simulations, we show the short-flow through-
put collapse in the TCP incast problem. We also point out the
long-flow starvation problem. We show how HCF can help
solve these problems by providing an increased fairness among
flows.

The rest of the work is organized as follows. We first
survey the related work in Section II. Then we present our
proposed algorithm in Section III. Next, we show alternative
implementation parameters in Section IV. Last, we present
simulation results in Section V, before concluding.

II. RELATED WORK

To solve the TCP incast problem, former papers typically
suggest changing the TCP protocol in data centers, e.g., by
reducing the value of the minimal retransmission time-out
(RTO) from 200 ms to 1 ms or less [1], [2], [5]. Additional
suggested changes affect the application itself, such as increas-
ing the request sizes, limiting the number of servers, throttling
data transfers and using global scheduling [3]. However, all
these solutions require changing the protocols at the end users,
and therefore cannot be implemented at the switch level in a
transparent way.

Another possible solution is to increase the switch buffer
size by making it proportional to the number of flows, since
packet loss and timeouts tend to decrease with the buffer
size [7]–[10]. However, this would incur high delays that are
unacceptable in data center switches. In addition, it would typ-
ically require off-chip memory, and therefore a major hardware
change with significant issues of power consumption, chip
in/out pin SERDES implementation, buffer area, and memory
cost. A related solution is to only increase the buffer size for
TCP ACKs (acknowledgments). However, while the needed

additional memory size would be lower, this solution would
still violate the stringent low-delay data center requirements.

There are many fairness algorithms in the literature to pro-
vide increased fairness among flows, such as WFQ (Weighted
Fair Queueing) [11] or DRR (Deficit Round Robin) [12]. But
these fairness algorithms need per-flow queues, and therefore
significantly increase the switch implementation complexity
given thousands of possible flows. Fairness algorithms like
SFQ (Stochastic Fair Queueing) [13] solve this by using
hashing to reduce the number of needed queues. However,
while they fit Internet requirements, these algorithms do not
work well with the shallow buffers in data centers. In order
to provide fairness, they statically divide these small buffers
among the many flow aggregates. Thus, they can barely keep
some buffering for each flow aggregate, incurring large loss
rates to bursts even without any congestion. Likewise, active
queue management algorithms based on the queue sizes like
RED (Random Early Detection) [14] do not work well with
small buffers of a few packets, which do not provide enough
information.

Explicit congestion notification (ECN) [15] allows end-
to-end notification of network congestion without dropping
packets. Constantly setting the ECN congestion indication at
the switch level could force flows to restrict the congestion
window size to 1. However, such a solution would force
endpoints to use ECN. It would also need a guarantee that
ACK packets use the same path as data packets and go through
the same switch.

Last, each switch could implement a full TCP proxy and
manage a list of high-priority flows [16]. However, such a
solution obviously requires again a prohibitive complexity and
a full change of the switch hardware.

III. HASHED CREDITS FAIR (HCF) ALGORITHM

In this section we introduce the Hashed Credits Fair (HCF)
algorithm. The algorithm is implemented in the intermediate
switches, and its objective is to provide increased fairness
among flows using a lightweight implementation.

A. HCF Overview

The HCF algorithm sorts arriving packets into two queues:
the High-Priority (HP) and the Low-Priority (LP) queues. The
HP queue receives packets of flows which have recently been
under-served,, while the LP queue receives the other packets.
The HP queue is always served first.

HCF needs to know which flows have recently been under-
served, while avoiding memory-expensive per-flow crediting
mechanisms. To do so, flows are hashed into bins, and credits
are attributed per bin. Through the number of bins, the HCF
algorithm trades off memory size and fairness. Moreover,
the hash function is often updated to avoid persistent hash
collisions between the same flows.

B. HCF Algorithm

Figure 1 illustrates the switch architecture for the HCF
algorithm. For simplicity, we assume that all packets have the



Fig. 1. Architecture of the HCF algorithm.

same length.The architecture relies on a buffer of size B and
on K credit counters.

The buffer is divided into the HP and LP queues. For
instance, assuming that the total buffer size is B, the sizes
of the HP and LP queues can be B/2 each. Other buffer
divisions are possible, as discussed in Section IV, together
with additional implementation alternatives.

Time is divided into priority periods. The period length is
dynamic and determined by the HP queue size: whenever the
HP queue becomes empty, the priority period ends. Then, the
next priority period lasts until at least one HP packet has been
serviced and the HP queue is empty again.

The objective of the priority periods is to keep changing
the hashing function. Each priority period uses a unique
hashing function, possibly chosen among a predetermined
set of functions. The inputs of the hashing function are the
source/destination IP addresses and ports, and its output is the
index of the hashed bin among the K possible indices.

The algorithm takes the following steps as packets arrive to
the queue.

Initialization — At the start of each priority period,
1) Reset the number of credits c(k) of each bin k, with

0 ≤ k ≤ K − 1, to c(k) = c0 credits.
2) Pick a new hashing function f .
Packet arrival — At the arrival of each packet p,
1) Apply the hashing function f on the packet’s IP header

and obtain the corresponding bin k = f(p) of the packet.
2) Check the number of credits in bin k and the queue

sizes. If the bin has credits and the HP queue is not full,
packet p joins the HP queue. Otherwise, if the LP queue
is not full, p joins the LP queue. If both queues are full,
p is simply dropped.

3) If p joins the HP queue, decrement the number of
credits in its bin: c(k) ← c(k) − 1. (With variable-
size packets, credits can be based on the packet length
instead. For simplicity, we restrict explanations to fixed-
size packets.)

4) If p joins the LP queue, set the number of credits in its
bin: c(k)← 0. 1 (This ensures packet order preservation

1This condition was not included in the conference version. We would like
to thank Ahmad Omary for this helpful remark.

Algorithm 1 Hashed Credits Fair (HCF)
init(){
∀k : c(k)← c0;
∗f()← createHashFunction(time);
}

arrive(p){
k ← f(p.srcIP, p.destIP, p.srcPort, p.destPort);

if c(k) > 0 and HP.full = false then
HP.enqueue(p);
c(k)← c(k)− 1;

else if LP.full = false then
LP.enqueue(p);
c(k)← 0;

else
drop(p);

end if
}

transmit(){
if HP.empty = false then
HP.dequeue();
if HP.empty = true then
init();

end if
else
LP.dequeue();

end if
}

within a flow.)
Packet departure — When the output line can service the

queues,
1) Give priority to the HP queue: if it is not empty, read

the head-of-line packet in the HP queue. Else, read from
the LP queue.

2) If the HP queue was serviced, check its number of
packets. If the HP queue becomes empty, the priority
period ends. Re-enter the initialization step.

Algorithm 1 describes the detailed pseudo-code for the HCF
algorithm. It shows that the HCF algorithm holds in a few
lines of code, and relies on three functions that respectively
implement the initialization of the priority period, the packet
arrivals, and the packet departures.

As shown in the simulation results of Section V, a high
packet arrival rate typically causes the LP queue to rarely get
empty, thus practically ensuring a near-100% utilization of the
bottleneck link. In addition, the credit mechanism significantly
reduces the unfairness among flows and the flow starvation.

C. HCF Complexity

The objective of the HCF algorithm is to be very lightweight
and easily implementable, so as to fit data center switches
without additional hardware requirements.



The above pseudo-code shows that both the packet arrival
and the packet departure functions have an O(1) time com-
plexity. Their main functions are queueuing/dequeueing pack-
ets, and checking/updating bin credits. Therefore, assuming
that the initialization of the credit bins in the registers to fixed
predetermined values is O(1), the HCF algorithm runs in an
O(1) time complexity.

In addition, the required memory space overhead for the
management of the algorithm is the memory of the bin array
that holds the amount of credits. Since the maximum credit
of each bin is c0 and there are K bins, the memory needed is
K · dlog(c0+1)e. For instance, it could easily be implemented
in hardware using K = 32 counters of 8 bits each, thus only
holding 32 bytes. In addition, we need to manage two queues
instead of one, and potentially store the timestamp of the
priority period, thus adding a negligible overhead. Therefore,
the total overhead of the HCF is essentially negligible in front
of the memory size needed for the queue (e.g., 32 bytes are
negligible in front of an Ethernet packet of 1500 bytes).

In addition, note that the priority period of HCF adjusts
dynamically to the traffic through the size of the HP queue. It
does not need to be predetermined.

D. Packet Reordering

The HCF algorithm presented so far does not prevent packet
reordering during the priority-period change. For instance,
consider two packets p1 and p2 from the same flow succes-
sively arriving to the switch. It might be that the flow does not
have credits left, and therefore p1 is stored in the LP queue.
Then, the HP queue might get empty, thus generating a new
priority period with bin credits re-initialized to c0. When p2
arrives, it might therefore use a credit and be stored in the
HP queue, which has higher priority. Thus, p2 would depart
earlier than p1, and the packets would be reordered.

A simple solution to this packet reordering problem is to
swap the HP and LP queues at each new priority period, while
the credits are initialized, by redefining the LP queue as the HP
queue, and vice versa. The following theorem demonstrates
that this solution ensures that non-dropped packets are not
reordered.

Theorem 1: HCF with queue swapping prevents reordering
among packets of a same flow that leave the switch.

Proof: First, packets that leave the switch have not been
dropped, and therefore we can restrict the proof to packets
currently in the queues HP and LP.

Consider the set SF of all packets in the queues from a
given flow F , and define the following total order relation ≤
on any two packets {x, y} ∈ SF 2: x ≤ y iff (x and y are
in the same queue and x is ahead of y) OR (x is in HP and
y is in LP). Then the relation clearly satisfies anti-symmetry,
transitivity and totality over SF .

Assume that two packets p1 and p2 of the same flow arrive
in that order but leave the queues reordered: we want to show
that this is impossible.

Let’s first show that p1 ≤ p2. Clearly, if they were reordered
in the switch, at some point, both p1 and p2 were in the switch

queues. There are three possible cases. First, if both p1 and p2
are in the same queue, since the HP and LP queues are FIFO,
then necessarily p1 is ahead of p2 and p1 ≤ p2. Otherwise, if
p1 is in HP and p2 is in LP, p1 ≤ p2 as well by definition. In
the last case, if p1 is in LP, it means that the flow does not have
credits left. If p2 arrives in the same priority period, it will hash
into the same bin with no credits left, and therefore cannot be
stored in HP. Else, if it arrives after the priority period of
p1, then p1 is now in HP by swapping, and as shown above
necessarily p1 ≤ p2 again. Therefore, in all cases, p1 ≤ p2.

Let’s now show that whenever p1 ≤ p2, p1 necessarily
leaves before p2. First, whenever first defined in some priority
period, the relation p1 ≤ p2 is kept during the entire priority
period (as long as no packet has departed): if p1 is ahead of
p2 in the same queue, it stays ahead, and likewise, if p1 is
in HP and p2 is in LP, they stay in their respective queues.
In addition, by definition, p2 cannot leave before p1 during
this priority period: either p1 is ahead of p2 in the same FIFO
queue, or p1 is in HP and p2 is in LP, which cannot be serviced
before HP gets emptied. Therefore, to be reordered, neither p1
not p2 can leave during the first priority period in which the
relation p1 ≤ p2 is defined.

Last, after the priority period ends, by definition, the HP
queue is empty. Therefore both p1 and p2 were necessarily in
the LP queue, and p1 was necessarily ahead of p2. Since the
LP queue (which becomes the HP queue) is FIFO, p2 cannot
leave before p1, hence there cannot be reordering.

IV. IMPLEMENTATION ALTERNATIVES

There are several possible implementation alternatives for
the HCF algorithm, involving a broad span of tradeoffs be-
tween cost and performance. While we detail below several
of these alternatives that often introduce additional parameters,
we have attempted to reduce the number of parameters needed
in the main HCF variant described above, since we only need
to define the number of bins K (in addition to the queue
size B, which is needed even in droptail). The objective of
reducing the number of parameters is to enable both an easier
implementation and a range-free scalability of the algorithm.

A. Bloom Counter

Instead of using a single hash function, it is possible to
combine several hash functions by using a Bloom counter,
where the counter is successively decremented from c0 to
0 [17], [18].

For instance, a possible implementation using Bloom coun-
ters with conservative updates would work as follows. Each
arriving packet is mapped to several bins. If at least one bin
has a remaining credit, the packet is stored in HP, and all
of its corresponding positive hashed credits are decremented.
Else it is stored in LP. Therefore, the credits represent the
complementary of the Bloom counter values within c0 credits.

In particular, when c0 = 1, this implementation reduces
to a simple Bloom filter (more precisely, it shows the com-
plementary of the Bloom filter bit values). Therefore, it is
a generalization of the HCF algorithm for any number of



hash functions, and reduces to HCF when using a single hash
function.

The goal of the Bloom filter is to represent set membership
while minimizing the false positive error. In our case, it
represents whether a flow belongs to the set of flows that have
already used a credit, while minimizing the probability that a
flow is wrongly tagged as having already used a credit. The
ideal number of hash functions κ in such a Bloom filter is
provided by

κ ≈ K

N
· log 2,

where K is the number of bins and N the number of flows to
represent [17], [18]. Since we want a small number of bins,
we often use K � N , and therefore there is no point in using
more than one hash function. Simulations with K = 20 bins
and N ≈ 400 flows confirmed that Bloom filters with κ ≥ 2
hash functions did not improve the performance of HCF.

B. Number of Bins

The number of hashed bins K has a significant influence
on the performance of the system. On the one hand, an
HCF switch with a single bin is similar to a FIFO-based
switch. On the other hand, a large number of bins minimizes
hash collisions, and therefore maximizing the fairness among
flows. However, a large number of bins also consumes slightly
more system resources, and in particular takes more memory
and increases the implementation complexity. The simulation
results in Section V-C provide a performance comparison
using different numbers of bins. It appears that K = 20 bins
are often enough both for fairness and starvation.

C. Priority Period

In the presented algorithm we use a dynamic priority period,
i.e. the period length dynamically changes depending on the
queue occupancy. To simplify the implementation, a fixed
period length can be used, so that the credits are initialized
and a new hash function is determined at predetermined
periodic times. However, while a fixed priority period might be
simpler to implement and avoid initializing credits too often, it
requires tuning the period parameter. In addition, simulations
in Section V-C show that a fixed priority period has a negative
impact on the system performance.

D. Hash Function

A hash function is used to map packets to their correspond-
ing bins. There are many possible alternative hash functions
that can be used [13]. Since the input size and the output
ranges for the hash function are fixed, the hash function can
be easily implemented. In addition, in order to implement a
different hash function for each priority period, it is possible to
use an XOR of the packet header with the local time-stamp of
the priority period start. The algorithm is fully distributed, and
therefore there are no synchronization issues between different
ports.

V. SIMULATION RESULTS

We run simulations of a congested link using an NS2
simulator [19]. We assume a simple dumbbell topology with
N flows going through the congested link. We further assume
that the congested link corresponds to an output of an output-
queued switch.

We successively simulate the effects of HCF on short-flow
throughput collapse and on long-flow starvation. We then
analyze the impact of changing the HCF parameters, and
finally check mixes of short and long flows.

We attempt to provide some intuition for all these simula-
tions. Yet, note that the reasons behind data center fairness
problems such as the TCP incast are often hard to model
because of the complex interactions involved [1], [2], [5].

A. Short-Flow Throughput Collapse

1) Typical Data Center: We first run simulations of the
TCP incast problem with short-flow throughput collapse using
the parameters of the data center incast scenario from [2]. We
use 1 Gbps links, a 32 MB switch buffer, a 0.1 ms round-
trip transmission time and data blocks of 1 MB. Therefore,
each flow sends 1/N MB of data, where N is the varying
number of flows. We simulate TCP-Reno flows with packets
of size 1KB. The HCF switch hashes flows into 16 bins with 1
credit per bin, and uses a dynamic priority period. The buffer
is divided equally between the HP and the LP queues with
16 packets per queue. The block goodput of the short TCP
flows is defined as the size of the transmitted data (block size)
divided by the longest finish time (latency) of the flow, as
in [1]–[5]. We measure block goodput as a function of the
number of flows (servers).

Figure 2(a) compares FIFO and HCF. HCF outperforms
FIFO over most flow numbers, which are roughly divided into
three regions:

• Goodput collapse — below 25 servers (flows), the size
of each flow is long enough, so the influence of HCF on
fairness is noticeable.

• Goodput preservation — between 25-100 servers, the
flow lengths are too small to notice the influence of HCF
on fairness.

• Goodput recovery — above 100 servers, the large number
of flows causes increased congestion in both FIFO and
HCF, but the HCF credit mechanism balances the packet
drops across the flows, thus balancing the timeouts as
well.

Therefore, HCF works better in two cases: with few flows per
block, and with increased congestion.

2) Next-generation Data Center: Next, we analyze next-
generation data centers with parameters from [2], where the
round-trip times are decreased from 100 µs to 20 µs, the
transmission link capacity is increased from 1 Gbps to 10
Gbps, and the block size is increased from 1 MB to 80 MB.
Figure 2(b) shows the comparison of FIFO and HCF. As in the
previous case, HCF outperforms FIFO over the whole range.



(a) Comparison of goodput at a Typical Data
Center using FIFO and HCF switches with fixed
block size flows.

(b) Comparison of goodput at a Next-Generation
Data Center using FIFO and HCF switches with
fixed block size flows.

(c) Comparison of goodput at a Typical Data
Center using FIFO and HCF switches with fixed
flow size.

Fig. 2. Comparison of goodput using FIFO and HCF switches under TCP incast scenario.

(a) Comparison of Maximal Starvation Time at a
Typical Data Center at FIFO and HCF switches
with fixed block size flows.

(b) Comparison of Maximal Starvation Time at a
Next-Generation Data Center at FIFO and HCF
switches with fixed block size flows.

(c) Comparison of Maximal Starvation Time at a
Typical Data Center at FIFO and HCF switches
with fixed flow size.

Fig. 3. Comparison of Maximal Starvation Time using FIFO and HCF switches under the TCP incast scenario.

3) Fixed-sized Flows: Next, we keep the length of each
flow constant to 10 KB (i.e. each flow sends the same amount
of data regardless to N ). We simulate a data center with typical
parameters of a 1 GB link capacity and a 100 µs round-trip
time. We compare the performance of a FIFO switch with an
HCF switch, which hashes flows into 128 bins.

Figure 2(c) compares FIFO and HCF. We see that HCF
outperforms FIFO only for a large number of flows. For a
small number of flows, there is not enough congestion, so
the advantages of HCF are limited; and at the same time, the
HCF buffer space is not fully utilized, because HCF drops
more packets then FIFO (to save space for HP packets).

4) Starvation Time: We define starvation time as the time
between two packet arrivals (at the destination). The maximal
starvation time is affected by the retransmission exponential
back-off value, which grows with the number of consecutive
RTO events.

Figures 3(a), 3(b) and 3(c) show the maximal observed
starvation time at the FIFO-queue based switch and the HCF-
queue based switch as a function of the number of servers.
In most cases, the maximal starvation time in the HCF-queue
based switch is smaller, which provides some basis for the
better goodput.

B. Long-Flow Starvation

1) Settings and Metrics: In the long-lived flow simulations,
we run N = 400 long TCP New Reno flows [20] with RTT =
100µs. We also run UDP packets with average arrival rate of
5% of the switch output link capacity. The capacity C of the

switch congested output link is 100 Mbps, with other links
running at a much higher capacity so as to have the switch
output link form a single bottleneck in the network. The total
buffer size B in the switch output is 20 packets, with a uniform
packet size L of 1500 bytes. Therefore, in the HCF switch, the
buffer is divided equally between the HP and LP queues with
10 packets per queue. The HCF algorithm relies on a dynamic
priority period, the flows are hashed in the simulation using a
real hash function into K = 20 bins, and each bin receives an
initial credit of c0 = 1 credit unit. Each simulation is run for
3 minutes, and simulation results are measured during a final
measuring time of T = 10 seconds.

In the simulations we measure two performance indicators
that can reflect on the extreme unfairness among flows in
the data center network: the unfairness and the starvation
percentage.

In an ideally-fair system, all flows would be able to send
the same amount of traffic during the measured time of T =
10 seconds. This intuitively suggests to define the unfairness
based on the deviations between the number of packets sent
by each flow and the average across all flows. Therefore, we
define the unfairness as the variance of the cumulative number
of packets sent by each flow during some time T .

A significant unfairness often causes long periods of tempo-
rary starvation for flows. We want to characterize such tempo-
rary starvation, and will simply define starvation percentage
as the percentage of all flows that have not sent any packet
during the measuring time T .

In addition, we also consider the throughput and utilization



Fig. 4. Distribution of per-flow throughput using FIFO and HCF switches.

of the bottleneck link. The bottleneck link throughput is
defined as the rate of all packets transmitted through the bot-
tleneck link during time T , and the bottleneck link utilization
is defined as the ratio of its throughput by the bottleneck link
capacity. The goal is to keep the bottleneck link utilization
close to 100%, thus maximizing the throughput. In simula-
tions, we found that both for HCF and FIFO, the bottleneck
link utilization was extremely close to 100%. Therefore, there
was no point plotting it.

2) Throughput Distribution: Figure 4 plots the distribution
of the per-flow throughput. For the FIFO-based switch, we
can see that most of the flows have a low throughput during
time T , while several flows have a high throughput. Therefore,
the distribution is extremely unfair, because a few flows send
significantly more packets than the others.

On the other hand, the distribution of the HCF algorithm is
more concentrated around its mean, thus displaying a lower
unfairness. This lower unfairness is reflected by the lower
distribution variance: while the FIFO switch has a computed
variance of 5.55 · 104, the HCF switch has a lower variance
of 6.74 · 103.

Likewise, we can also see that fewer flows are significantly
impacted by sending nearly no packets (25 flows for HCF
are in the first histogram bin vs. 175 flows for FIFO), thus
reflecting as well on the lower starvation. More precisely,
32% of flows in FIFO are fully starved during this period
of 10 seconds, while only 1.5% of HCF are fully starved.

Figure 5 illustrates the impact of HCF on starvation time.
For each TCP flow, we measure the longest starvation time,
i.e. the longest inter-ACK time, over a 3-minute simulation.
We then plot the distribution of this longest starvation time.

Given a simple FIFO-based switch with droptail queueing
and output-queued switching, the plot shows that several flows
have a starvation time that exceeds a minute, and that the
starvation time of most flows exceeds 20 seconds. On the other
hand, when using HCF in the switch, it can be seen that most
starvation times are under 20 seconds, thus potentially having
a significant impact on application performance (even though
the performance might of course still not be acceptable for the

Fig. 5. Distribution of the longest flow starvation times using FIFO and HCF
switches.

(a) Unfairness. (b) Starvation Percentage.

Fig. 6. Influence of the buffer size. Comparison between an HCF switch
and a FIFO-based switch.

applications that are most latency-sensitive).

3) Buffer Size: Figure 6 shows the influence of the buffer
size on the unfairness and starvation. It is obtained by changing
the buffer size B in the baseline defined above.

We can see that for low buffer sizes, the unfairness and
starvation with HCF are significantly lower than with FIFO.
This is the case we are most interested in, since data center
buffers are often shallow and only consist of a few packets.
This simulation illustrates how buffers with a few packets are
enough with HCF to provide low starvation, while FIFO needs
buffers of some 1000 packets. In fact, this can impact the
switch architecture: given a packet size of 1500B, this scaled-
down example with 400 flows would need at least 1.5MB of
buffering per output. Therefore, a real-life switch with some
40000 flows might require some 100 times more buffering,
thus not being able to store all packets in the internal memory,
and requiring some external memory with significant hardware
changes.

In addition, for higher buffer sizes, the unfairness and
starvation are about similar. In particular, the unfairness is a
bit lower with FIFO and starts increasing with large buffer
sizes. A possible explanation is that large buffer sizes favor
larger window sizes, and therefore a larger traffic burstiness,
thus increasing the variance of the per-flow instantaneous
throughput.



(a) Unfairness. (b) Starvation Percentage.

Fig. 7. Influence of the initial number of credits per bin.

(a) Unfairness. (b) Starvation Percentage.

Fig. 8. Influence of the number of bins.

C. Analysis of HCF switch parameters

We now want to analyze how the parameters of the HCF
algorithm impact its performance. These parameters were
detailed in Section IV. We use a baseline for the set of
simulation settings, and for each simulation vary a single
parameter in this baseline. The baseline settings follow those
defined in Section V-B.

1) Initial Number of Credits per Bin: Figure 7 shows the
influence of the number of initial credits c0 on the unfairness
and starvation. It can be seen that a large number of initial
credits decreases the performance of the system; an intuitive
explanation is that an HCF switch with an infinite number
of credits becomes a FIFO switch, and therefore loses the
benefits of the credits. In addition, smaller credits enable
smaller priority periods, and therefore a fast renewal of the
hashing function, thus reducing the odds of persistent hash
collisions between any two flows.

2) Number of Bins: Figure 8 shows the influence of the
number of hash credit bins K on the unfairness and starvation.
Of course, a smaller number of bins increases unfairness and
starvation, and therefore decreases the performance of the
system, because it increases hash collisions between flows.
The plots show that a few dozen bins seem enough to provide
a reasonable fairness and starvation. Given c0 = 1, i.e. a single
bit per bin, this means that only a few bytes stored in the
register are needed for the HCF bins.

3) Priority Period Length: Figure 9 shows the influence of
the priority period on the unfairness and starvation. The red
solid line shows the value for the dynamic priority period. It
is compared with different values of a fixed priority period.
Simulations show that the dynamic priority period fares better
than any of the fixed period values. Therefore, there is no need
to fix the priority period value of HCF. It is an interesting
result, in the sense that the system can learn to dynamically
regulate itself better than any fixed regulation.

(a) Unfairness. (b) Starvation Percentage.

Fig. 9. Influence of the fixed priority period. The red solid line shows the
performance with a dynamic priority period.

D. Short TCP Flows over Long Flows

We have previously analyzed separately the performance of
long-lived TCP flows and the short-lived TCP flows. We now
want to analyze the performance of mixes of short and long
flows, and in particular the influence of long flows on short
flows. To do so, we change the simulation network to include
only 100 long-lived TCP flows, and use a buffer size of B =
10 packets. We then add several short TCP flows, and check
the total transfer latency time for each short TCP flow. We use
three types of short flows: 10-, 30-, and 60-packet flows, and
generate 100 flows of each type. The total simulation time is 5
minutes, and the start times of the short TCP flows are spread
uniformly in the first half of the simulation time (i.e., the first
2.5 minutes).

Figure 10 compares the performance of the FIFO switch
and the HCF switch under the same network parameters. It
plots the CDF of the transfer latency when measured over the
100 flows of each type. For instance, a CDF value of 95%
at a latency value of 25 seconds in the second plot indicates
that 95% of the short flows of the second type (i.e., with 30
packets to send) finished transmission at most 25 seconds after
they started.

The plots show that HCF switches often provide a lower
transfer latency than the FIFO switch. More significantly, they
have lower odds of having long transfer latencies. This is
especially meaningful for highly parallel applications, such
as scientific computing and parallel database accesses, which
start several flows in parallel and are dependent on the highest
transfer latency among all of these.

VI. CONCLUSION

In this paper, we analyzed both the TCP-incast short-
flow throughput-collapse problem, and the long-flow starvation
problem. We presented the significant unfairness problem of
TCP flows in data centers. To address it, we introduced
HCF, a novel lightweight data center switch algorithm that
is transparent to TCP-based applications. HCF combines a
hashing-based credit allocation algorithm with a queueing
mechanism that provides a higher priority to flows with credits.
We further showed that HCF runs in an O(1) time complexity,
that it requires significantly less resources than competing
fairness algorithms, that it does not incur reordering, and that
it is transparent to the end-station users. Last, we illustrated



(a) CDF of Transfer Latency for TCP Flows of 10
packets.

(b) CDF of Transfer Latency for TCP Flows of 30
packets.

(c) CDF of Transfer Latency for TCP Flows of 60
packets.

Fig. 10. CDF of transfer latency for short TCP flows of different sizes.

through simulations that HCF can dramatically reduce unfair-
ness and starvation for long TCP flows in data centers, as well
as increase the goodput of short TCP flows that suffer from
TCP incast problem.

It should be noted that while the HCF algorithm was
especially studied in the framework of data centers, it can be
readily adapted to provide fairness in other types of networks,
since it uses a simple and compact structure that can be easily
generalized.
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