
Stable User-Defined Priorities
Shay Vargaftik, Isaac Keslassy, Ariel Orda

Technion
{shayvar@tx, isaac@ee, ariel@ee}.technion.ac.il

Abstract—Network providers now want to enable users to
define their own flow priorities, and commercial devices already
implement this ability. However, it has been shown that directly
applying arbitrary user-defined priorities can fundamentally
destabilize a network.

In this paper, we show that it is possible to apply user-
defined priorities while keeping the network stable. We in-
troduce U-BP, a scalable approach that extends backpressure-
based scheduling techniques to service user-defined flow priorities
and rates while maintaining throughput optimality and strong
network performance. We explain how our approach relies on a
dual-layer scheme with an exponential convergence to requested
priorities. We further prove analytically the network stability of
our solution, and show how it achieves a strong performance for
high-priority flows.

I. INTRODUCTION

This paper is about the emerging topic of user-defined
priorities, i.e., giving users the ability to dynamically choose
the priorities of their network flows. User-defined priorities
have only recently been prominently featured in the academic
literature, and especially in a recent paper on designing a user-
centric network [1]. It is building on [2], [3], which expose an
API and browser add-ons for users to dynamically express their
preferences.

User-defined traffic prioritization is particularly appealing
to network providers, because it can help them provide more
value to their customers using preferential treatment dictated
by the users themselves, without conflicting with network
neutrality regulations. In fact, user-defined prioritization has
already been implemented in the industry. OnHub, a com-
mercial home WiFi router built by Google, already enables
Boost, a user-defined prioritization of certain devices and
applications [4]. It first relied on a simple Chrome add-on
that allows prioritizing all flows related to specific open tabs.
In the Asus OnHub, it has since enabled prioritization using
a simple hand-waving above the router. Early users showed
widely varying preferences. For instance, some users preferred
to prioritize business calls; while others preferred to prioritize
their Netflix streams over those of their children [1].

Unfortunately, while network providers are eager to enable
user-defined priorities, it is unclear whether, and under what
conditions, they can fundamentally keep a dynamic network
stable when introducing dynamic priorities. In fact, [5] showed
that while backpressure algorithms typically guarantee stable
networks under either no priorities or fixed priorities, such
algorithms break down and do not guarantee stability anymore
under user-defined dynamic priorities. To our knowledge, no
algorithm today can provide such guarantees.

The goal of this paper is to analyze whether it is fun-
damentally impossible to provide network stability for user-

Alg. / Criterion Priorities Stability Mean total queue length

Q-BP 5 3 O(n2)

m-Q-BP X– X– O(mn2)

m-DRPC 3 5 —–

U-BP 3 3 O(n2)

TABLE I. Comparison between the standard Q-BP backpressure
algorithm, m-Q-BP, m-DRPC and our solution U-BP for variable-rate traffic
with user-defined priorities, given n nodes and m priorities (see Section III

for algorithm details).

defined priorities. We find that it is in fact possible. We propose
U-BP (User-defined BackPressure), a scalable approach that
extends backpressure-based scheduling techniques to provide
a user-defined flow-based quality of service while maintaining
throughput optimality and overall network performance. In
particular, we make the following contributions:

User-defined priorities and rates. While current papers typi-
cally assume fixed expected flow rates with fixed priorities,
we allow the users to set their flow priorities in any arbitrary
way, and send any arbitrary set of flows as long as it is upper-
bounded by an admissible process.

Dual-layer approach. As illustrated in Table 1, simple
backpressure-based approaches cannot efficiently handle the
user-defined priorities, and either become unstable or obtain
poor performance. Instead, we suggest using a dual-layer
approach, i.e., relying on virtual queues to handle the different
priorities, while only informing the upper-layer backpressure
scheme about the aggregate queue occupancy.

Weighted average priority. In order to reflect the difference
in priorities between different destination-based commodities,
we multiply the aggregate occupancy by the weighted-average
packet priority when informing the backpressure scheme.

Gradual priority updates. Since updating priorities immedi-
ately throughout the network can lead to jumps of potential
and to instability, we update priorities gradually. Specifically,
we increase priorities exponentially fast, and decrease them
immediately. We explain why this is a fundamental condition,
and demonstrate how to optimize the priority update speed.

Lyapunov-based stability. We introduce an appropriate
Lyapunov-based potential and prove the stability of the net-
work for user-defined priorities.

Simulations. Finally, in simulations, we illustrate how our
U-BP algorithm achieves significantly reduced delays for high-
priority traffic while maintaining overall network performance.



2

II. SYSTEM MODEL

Network. We consider a network of n nodes. Each node can
both be a source and a destination for data. We assume that
the network operates in slotted time t ∈ N. We denote by
S (t) the topology state of the network at time slot t, i.e., the
link capacities and interference model (e.g., specifying that two
links from the same node may not be used in the same slot
because of wireless constraints). We assume that S (t) takes
values within a finite state space S and is i.i.d. between time
slots.

User-defined flows. We want to introduce user-defined flows
with user-defined priorities. In contrast with most of the
literature, we cannot assume that the expected rate of flows
belonging to a given (source, destination, priority)-tuple is
fixed, because we want to allow users to mark and remark
any application flow with any priority at any time. Instead, we
only assume that the expected total incoming traffic is upper-
bounded by an admissible process. We allow the priorities of
packets to freely vary with time. The remainder of the model
then follows well-defined literature conventions.

Specifically, we assume that there are m priorities. We
also define per-destination commodities, so that packets that
are destined to destination c belong to commodity c. We then
define an upper bound A

(c)
i (t) on the number of packets in

commodity c that exogenously arrive to node i at time slot t,
including all priorities. We assume that ∀t:

A
(c)
i (t) is i.i.d. between time slots, (1)

E
[
A

(c)
i (t)

]
= λ

(c)
i , (2)

A
(c)
i (t) ≤ A(c)

i,max. (3)

Finally, we denote by λ =
(
λ

(c)
i

)
the upper bound on the

exogenous arrival rate vector to the network.

Scheduling. At each time slot t, we want to choose a schedule
π(t) that satisfies the topology constraints given by S(t). We
denote by Cij (S(t), π(t)) the capacity of link (i, j) at time
slot t. It is expressed in number of packets, assumed to be of
fixed size. Additionally we assume that:

Cij (S(t), π(t)) ≤ Cij,max ∀t. (4)

Each node holds one queue per commodity, so that it needs
at most n− 1 queues for storing packets destined to the other
destination nodes. U (c)

i (t) is the number of packets that reside
in the queue of commodity c in node i at time slot t. The
transmission rate offered to commodity c in node i over link
(i, j) at time slot t is denoted by µ(c)

ij (t), and satisfies∑
c

µ
(c)
ij (t) ≤ Cij (S(t), π(t)) ≤ Cij,max. (5)

Packets that exogenously or endogenously enter a queue during
time slot t are admitted only at time slot t+ 1, and therefore
cannot be forwarded during the time slot of their arrival. Ad-
ditionally, packets that arrive at their destination are assumed
to immediately leave the network.

Capacity region. We define the capacity region of the network
Λ to be the closure of the set of all possible arrival vectors

λ that the network can support with respect to the scheduling
constraints. Additionally, if λ ∈ Λ we say that λ is admissible,
and if λ + ε ∈ Λ for some ε > 0, we say that λ is strictly
admissible. In addition, assuming λ is admissible, there exists
an algorithm [6] in which the following holds for all ∀t, i, c:

E

[∑
b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t)

]
= λ

(c)
i , (6)

where the expectation is taken with respect to S(t), and
possibly a random choice of π(t) that belongs to the set
πS(t) of all possible schedules at time slot t. Additionally,
this algorithm is shown to be dependent only on S(t), thus
independent of any backlog information at time t.

Backpressure: Q-BP. As a baseline for our algorithm, for
ease of exposition, we use the standard queue-length-based
backpressure algorithm (Q-BP), which does not take priorities
into account. However, our technique can be naturally extended
to a wide range of potential functions that can be represented
using queue dynamics and are amenable to formal analysis via
the Lyapunov drift technique. The weight of each link in the
network is defined as follows:

Wij (t) = max

[
U

(coptij (t))
i (t)− U(coptij (t))

j (t) , 0

]
, (7)

where

coptij (t)
∆
= arg max

c

[
U

(c)
i (t)− U (c)

j (t)
]
. (8)

With these weights at hand, the solution of the following
optimization problem dictates the algorithm’s choice of the
scheduling among the different links.

max
∑
ij

Wij (t)Cij (S (t) , π (t))

s.t. : π (t) ∈ πS (t) .
(9)

Then, for each strictly positive Wij(t), the network offers a
transmission rate as follows:

µ
(c)
ij (t) =

{
Cij (S (t) , π (t)) if c = coptij (t)
0 else.

(10)

Following standard practice [7], whenever there are not enough
packets for commodity coptij (t) in node i to fill the allocated
capacity as dictated by Eq. (10), it virtually transmits null
packets (i.e., in practice it simply asks to update the null packet
counters).

III. THE U-BP ALGORITHM

We now want to introduce our U-BP (User-defined Back-
Pressure) algorithm. We will successively introduce and ex-
plain its three main components: (1) dual-layer approach; (2)
weighted-average priority; and (3) gradual priority update.

A. Dual-layer approach

The standard Q-BP backpressure algorithm does not dif-
ferentiate between priorities. At each node, all packets of
a given commodity c are stored together in a single FIFO
queue. Instead, we want to differentiate between the packets
of the m different priorities. We assume that each priority
k ∈ {1, . . . ,m} is associated with a fixed weight αk, and that
the weight of a queue with priority-k packets is equal to the



3

Fig. 1. Implementation of a single-commodity topology with m priorities. Focus on a single-link using different approaches. Comparison between (a) the
standard Q-BP technique, in which all priority classes are queued in the same FIFO queue; (b) the single-layer solution for m-DRPC and m-Q-BP that isolates
between the m priorities and reflects m commodities instead of one to the backpressure algorithm; and (c) our proposed dual-layer virtual-queue abstraction
that preserves the number of commodities observed by the backpressure algorithm.

product of αk by its occupancy. We assume that the weights
are ordered and positive, i.e., 0 < α1 < · · · < αm, and denote
A = (α1, . . . , αm). We first consider two simple approaches
before introducing our own approach.

Single-layer solution: m-DRPC. A first natural approach
is to use m different FIFO queues for the m priorities.
Therefore, instead of building a per-destination commodity, we
define a per-(destination,priority) commodity. We can do so by
(a) replicating each destination node into m virtual priority-
based destination nodes, and (b) applying the DRPC priority-
service algorithm framework [5], which enables backpressure
to handle queues with different fixed priorities and fixed arrival
rates to these queues. We denote this first algorithm m-DRPC.

Unfortunately, while this natural approach seems promis-
ing, [5] provides a counter-example to user-defined varying
priorities that can be directly extended to demonstrate that
m-DRPC may also lead to unstable networks even when the
arrival rates are strictly within their capacity region.

Single-layer solution: m-Q-BP. We can also consider a
simpler approach that we believe can guarantee network sta-
bility and provide priority isolation, but does not provide
priority-based weights. We call this approach m-Q-BP. In
this approach, we use again the solution described above,
but normalize all weights to 1. That is, we simply tell the
backpressure algorithm that each queue represents another
commodity, and its queue weight is equal to its queue size.

Unfortunately, this algorithm has two major problems.
First, while it guarantees priority isolation, it does not provide
a better service for high-priority flows. Second, since in
the backpressure algorithm the upper bound on mean queue
lengths is proportional to the number of queues in the network,
even with fixed priority rates, such a solution multiplies this
bound by a factor of m. In turn, this also incurs a prohibitive
penalty in terms of mean delay bounds by Little’s Law
(assuming fixed arrival rates).

Example 1. Figure 1(a) provides a toy example to gain insight
into this observation (more complex topologies are evaluated
in the evaluation section). Consider a single-commodity topol-
ogy with a link capacity of Cij = m. Additionally, assume that
a single data packet arrives for each of the m priorities at each
time slot. Using the standard queue-length differential-based

backpressure technique results in a mean delay of 1, since link
(i, j) can serve all packets of node i within a single time slot.

Figure 1(b) illustrates the m-DRPC and m-Q-BP algo-
rithms based on a topology with m queues. Each queue at
node i is served no more than once every m time slots. Thus,
this approach results in a mean delay of Ω(m).

Dual-layer solution. We want to be able to (a) still rely on the
backpressure algorithm in order to obtain a 100% throughput
guarantee; but also (b) hide the differentiation into several
priorities from the backpressure algorithm, since we have seen
that displaying it can lead to a worse performance.

To do so, we suggest using a dual-layer solution. As
illustrated in Figure 1(c), in layer 1, we create m virtual FIFO
queues corresponding to the m priorities. We place incoming
packets within their respective virtual queues. In layer 2 (bold
line), we only present to the backpressure algorithm the total
number of packets in all the m virtual queues, since we do not
want it to use the occupancy of each specific virtual queue.
(Therefore, this actually differs from virtual output queues in
input-queued switches, where virtual queues are created to
enable the algorithm to use the occupancy of each virtual
queue).

We then apply the simple Q-BP backpressure algorithm
in layer 2 to decide on the queues to receive service. When
the backpressure algorithm decides to serve a packet from the
layer 2 buffer, we can read any head-of-line packet from the
layer 1 virtual queues. We are guaranteed that the resulting
algorithm will be stable. Specifically, since we want to favor
higher priorities, we pick each priority-based virtual queue
with a probability that is proportional to its priority weight.
For instance, if we have two virtual queues with respective
priority weights α1 = 1 and α2 = 2, we pick them with
probabilities 1/3 and 2/3, respectively.

B. Weighted average priority

The above dual-layer approach guarantees network sta-
bility, and provides differentiated treatment between priori-
ties within a commodity. However, it does not favor higher
priorities between different commodities. The reason is that
the layer 2 backpressure algorithm performs scheduling by
only considering the number of packets in each node as the
potential, and not incorporating their priority.



4

Instead, we change the way we reflect the node potential
to the backpressure algorithm. Instead of setting the potential
as equal to the sum of the virtual queue sizes, we set it as
equal to the scalar product of the virtual queue sizes by their
priorities; in other words, we multiply the total queue size by
the weighted average priority. Formally, let U (k,c)

i (t) denote
the queue size of virtual-queue k, and

U
(c)
i (t) =

∑
k

U
(k,c)
i (t), (11)

denote the total queue size. Then the potential function Φ̃
(c)
i (t)

of a layer 2 queue is defined as

Φ̃
(c)
i (t) = 〈A,U (·,c)

i (t)〉
=
∑
k

αk · U (k,c)
i (t) = θ̃

(c)
i · U

(c)
i (t) , (12)

where we use the weighted average priority

θ̃
(c)
i =

∑
k αk · U

(k,c)
i (t)∑

k U
(k,c)
i (t)

. (13)

In addition, Eq. (13) yields:

0 < α1 ≤ θ̃(c)
i (t) ≤ αm ∀t. (14)

C. Gradual priority update

We have described above how our U-BP algorithm can
group queues of different priorities by providing a priority-
based differentiated service both within each commodity and
between different commodities. However, such a scheme
would have a poor performance with arbitrary user-defined pri-
orities, because it allows the queue weights to jump much more
than in a simple backpressure scheme. In fact, these jumps
are precisely the reason behind the instability of the m-DRPC
algorithm. Instead, we will introduce our most significant
change, which will enable us to prove the network stability:
we will typically update the priority increases exponentially
fast but not immediately; and only update priority decreases
immediately. Namely, as we show later, if some users increase
their flow priorities such that the weighted average priority at
some node for some commodity grows from 1 to 10, we will
intuitively do so over O(log(10)) slots instead of doing it in a
single slot. We later explain and demonstrate why these gradual
changes are crucial to preserving the network stability and
lowering congestion in the presence of user-defined priorities.

More specifically, we will refer to the immediate user-
defined priority θ̃(c)

i as the reference priority of queue U (c)
i (t).

For our algorithm, we define a smoother effective priority
θ

(c)
i (t). Our objective is to find a suitable technique such

that the effective priority θ
(c)
i (t) of each queue will quickly

converge to the reference priority θ̃
(c)
i (t) upon a priority

change, while preserving stability within the entire capacity
region. Accordingly, we define the potential function of queue
(i, c) as the product of its weighted average effective priority
by its total (layer 2) queue length:

Φ
(c)
i (t) = θ

(c)
i (t) · U (c)

i (t) , (15)

with
0 < α1 ≤ θ(c)

i (t) ≤ αm ∀t. (16)

Intuitively, the key idea behind the dual use of the priority
weights for both layer 1 (probability to serve a given virtual
queue) and layer 2 (weighted averaging of the total queue
potential reflected to the backpressure algorithm) is to evenly
share the load incurred by flow prioritization. When a high-
priority flow enters a node with lower-priority flows sharing
its destination, the potential of this total layer 2 queue grows
proportionally as well. Thus, this high-priority flow fast-
forwarding does not harm too much the low-priority flows of
the same commodity, as the total service rate of the queue is
proportionally increased.

IV. U-BP STABILITY WITH USER-DEFINED PRIORITIES

In this section, we formally analyze our approach. Specif-
ically, we first obtain the priority change regulation function,
a measurable metric to assess the impact of having different
per-flow service classes on network performance. Then, we
use this function to derive a sufficient condition for obtaining
throughput optimality using the Lyapunov drift technique.
Using these results, we continue by constructing the Lyapunov
potentials used by U-BP. We also consider the additional
optimization criterion of the convergence speed of our used
gradual priority weights to the user-defined priority weights.
Finally, we show exponentially fast convergence to the desired
priorities as long as the network is not overloaded.

A. Priority change regulation function

Our goal is to obtain a measurable metric to assess the
impact of a queue priority change on the system performance
and on the capacity region of the network. To that end, we
begin our analysis by defining the priority change regulation
function P (c)

i (t):

Definition 1. Let

∆θ
(c)
i (t)

4
= θ

(c)
i (t)− θ(c)

i (t− 1)

be the change in the priority of queue (i, c) between two
consecutive time slots. Then, we define the priority change
regulation function P (c)

i (t) of queue (i, c) as follows:

P
(c)
i (t)

4
= ∆θ

(c)
i (t) ·

(
U

(c)
i (t)

)2

.

We make the observation that when the priority of a queue
is changed, the algorithm enters a transition period during
which unregulated changes of priorities may lead to subopti-
mal choices of resource allocation (in terms of throughput).
For ease of exposition, we next prove the following lemma on
the Lyapunov drift, which we later use in our stability theorem.

Lemma 1. For all queues (i,c) and for all t,

θ
(c)
i (t+ 1) ·

(
U

(c)
i (t+ 1)

)2

− θ(c)
i (t) ·

(
U

(c)
i (t)

)2

≤ θ(c)
i (t) ·B(c)

i,max (t) + P
(c)
i (t+ 1)−

2Φ
(c)
i (t)

(∑
b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t)−A(c)

i (t)

)
,



5

where:

B
(c)
i,max (t) =

(∑
b

µ
(c)
ib (t)

)2

+

(∑
a

µ
(c)
ai (t) +A

(c)
i (t)

)2

.

Proof: We start our proof with the well-known queue
dynamics equation (see [7]):

U
(c)
i (t+ 1) ≤ max

{
U

(c)
i (t)−

∑
b

µ
(c)
ib (t) , 0

}
+
∑
a

µ
(c)
ai (t) +A

(c)
i (t) .

(17)

We employ Lemma 4.3 of [7] on Eq. (17) and obtain:(
U

(c)
i (t+ 1)

)2

≤
(
U

(c)
i (t)

)2

+

(∑
b

µ
(c)
ib (t)

)2

+(∑
a

µ
(c)
ai (t) +A

(c)
i (t)

)2

− 2 · U (c)
i (t) ·(∑

b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t)

)
+ 2 · U (c)

i (t) ·A(c)
i (t) .

(18)

Rearranging Eq. (18) yields:(
U

(c)
i (t+ 1)

)2

−
(
U

(c)
i (t)

)2

≤ B(c)
i,max (t)− 2U

(c)
i (t) ·(∑

b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t)

)
+ 2U

(c)
i (t)A

(c)
i (t) .

(19)

Next we multiply Eq. (19) by θ
(c)
i (t) to create the potential

Φ
(c)
i (t) at the right hand side of the inequality and obtain

θ
(c)
i (t) ·

[(
U

(c)
i (t+ 1)

)2

−
(
U

(c)
i (t)

)2
]
≤

θ
(c)
i (t) ·B(c)

i,max (t)−

2 · θ(c)
i (t) · U (c)

i (t)︸ ︷︷ ︸
Φ

(c)
i (t)

(∑
b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t)

)
+

2 · θ(c)
i (t) · U (c)

i (t)︸ ︷︷ ︸
Φ

(c)
i (t)

·A(c)
i (t) .

(20)

In order to maintain the telescoping series in the left hand side
of the equation, when summing over time slots, we rewrite the
left hand side of the equation as follows:

θ
(c)
i (t) ·

[(
U

(c)
i (t+ 1)

)2

−
(
U

(c)
i (t)

)2
]

=

θ
(c)
i (t+ 1) ·

(
U

(c)
i (t+ 1)

)2

− θ(c)
i (t) ·

(
U

(c)
i (t)

)2

+

θ(c)
i (t)− θ(c)

i (t+ 1)︸ ︷︷ ︸
−∆θ

(c)
i (t+1)

 · (U (c)
i (t+ 1)

)2

.

(21)

Combining Eq. (20) with Eq. (21) yields the result.

With this Lemma at hand, we can proceed to establish a
sufficient condition on the priority change regulation function
that ensures the stability of U-BP within the entire capacity

region of the network. Specifically, we next seek a condition
that will guide us in determining how to gradually adapt
θ

(c)
i (t) when the user-defined priority θ̃

(c)
i (t) changes, such

that throughput optimality is maintained.

B. Stability proof using Lyapunov technique

We observe that according to Lemma 1, providing an appro-
priate upper bound on the regulation function P (c)

i (t+ 1) can
ensure the desired negative drift of the Lyapunov function

θ
(c)
i (t) ·

(
U

(c)
i (t)

)2

and therefore the throughput optimality.
Therefore, we will want to use a gradual priority change such
that this upper bound is maintained. Using Lemma 1 and this
observation, we prove the following result.

Theorem 1. Let λ be strictly admissible. Assume

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E[P
(c)
i (τ + 1) ] <∞.

Then:

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(

Φ
(c)
i (τ)

)
<∞.

Proof: Summing the result obtained by Lemma 1 over all
(i, c) entries, rearranging and taking conditional expectation
yields:

E
[∑
ic

θ
(c)
i (t+ 1) ·

(
U

(c)
i (t+ 1)

)2

|Φ (t)

]
−

E
[∑
ic

θ
(c)
i (t) ·

(
U

(c)
i (t)

)2

|Φ (t)

]
≤

E
[∑
ic

θ
(c)
i (t) ·B(c)

i,max (t) |Φ (t)

]
+

E
[∑
ic

P
(c)
i (t+ 1) |Φ (t)

]
+

2
∑
ic

Φ
(c)
i (t) · E

[
A

(c)
i (t) |Φ (t)

]
− 2E[∑

ic

Φ
(c)
i (t)

(∑
b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t)

)
|Φ(t)

]
.

(22)

Applying Eq. (1)-(3) and Eq. (5)-(10) on Eq. (22) yields:

E
[∑
ic

θ
(c)
i (t+ 1) ·

(
U

(c)
i (t+ 1)

)2

|Φ (t)

]
−

E
[∑
ic

θ
(c)
i (t) ·

(
U

(c)
i (t)

)2

|Φ (t)

]
≤

θmax ·B − 2ε ·
∑
ic

Φ
(c)
i (t) +

E
[∑
ic

P
(c)
i (t+ 1) |Φ (t)

]
,

(23)

where:
B =

∑
ic

B
(c)
i,max =∑

ic

(∑
b

µ
(c)
ib,max

)2

+
∑
ic

(∑
a

µ
(c)
ai,max +A

(c)
i,max

)2

.
(24)

Taking expectations on Eq. (23) and summing over time slots
yields:

E[
∑
ic

θ
(c)
i (t) ·

(
U

(c)
i (t)

)2

−
∑
ic

θ
(c)
i (0) ·

(
U

(c)
i (0)

)2

]

≤ t · θmax ·B − 2ε ·
t−1∑
τ=0

∑
ic

E[Φ
(c)
i (τ)]

+
t−1∑
τ=0

∑
ic

E[P
(c)
i (τ + 1)]

(25)



6

Rearranging, dividing by t and taking limits of Eq. (25) yields:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
ic

E
(

Φ
(c)
i (τ)

)
≤ θmaxB

2ε

+ 1
2ε lim sup
t→∞

1
t

t−1∑
τ=0

∑
ic

E[P
(c)
i (τ + 1) ] <∞,

(26)

yielding the result.

As a consequence, by applying Eq. (16), we further obtain:

Corollary 1 (U-BP stability). Let λ be strictly admissible and

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E[P
(c)
i (τ + 1) ] <∞.

Then:

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E[U
(c)
i (τ)] <∞,

i.e., U-BP achieves stability within the entire capacity region.

Therefore, any choice of θ(c)
i (t) values that respect the

assumption of Corollary 1 on the regulation function will also
ensure stability. Out of all such values, we would like to pick
those that would converge the fastest to our reference priority
and maintain overall network performance. Accordingly, we
next proceed to bounding the priority change regulation func-
tion and assess the theoretical impact of our choice on network
performance.

C. Bounding the regulation function

Our goal is to maximize the convergence rate of the
weighted-average effective priority of each queue (i, c) to its
user-defined reference priority. To that end, for each queue
(i, c), we define a positive constant P (c)

i and propose to
gradually change the priority of queue (i, c) such that its cor-
responding value of P (c)

i (t) will keep obeying the following
bound:

1

t

t−1∑
τ=0

P
(c)
i (τ + 1) ≤ P (c)

i <∞ ∀t. (27)

The idea behind this choice is that, since queue regulation is
independent among queues, it allows a completely distributed
implementation in networks with independent links (i.e., when
the interference between different links is negligible). More-
over, such a heuristic does not incur additional computational
overhead even when links are dependent.

In order to derive sufficient values for the priorities within
the potential function, we analyze Eq. (26) and apply Eq. (27).
Specifically, we optimize these values with respect to the upper
bound on mean queue lengths and obtain the following result:

Proposition 1 (Setting priorities). Assume that U-BP sets

P
(c)
i = θmax ·B(c)

i,max.

Then, P (c)
i maximizes the convergence rate of a queue to its

desired priority with respect to the upper bound of the mean
queue length.

Proof: Consider Eq. (26). Then:

Φ
(c)
i ≤

θmaxB
(c)
i,max + P

(c)
i

2ε
, (28)

and

U
(c)
i ≤

θmaxB
(c)
i,max + P

(c)
i

2ε · θmin
. (29)

Our goal is to maximize ∆θ
(c)
i . To do so, we construct the

following optimization problem that seeks the optimal value
of P (c)

i with respect to the upper bound on the mean queue
length:

maximize
P

(c)
i

: ∆θ
(c)
i

s.t.

(a)U
(c)
i =

θmax·B(c)
i,max+P

(c)
i

2ε·θmin

(b)P
(c)
i = ∆θ

(c)
i ·

(
U

(c)
i

)2

.

(30)

Applying (a) on (b) and deriving with respect to P (c)
i yields:

P
(c)
i = θmax ·B(c)

i,max, (31)

thus establishing the result.

D. Constructing the potential function

Next, using this result, we can finally construct potential
function Φ

(c)
i (t) and formally define how we update the

effective priority. Applying Theorem 1 on the definition of
the priority change regulation function, we obtain:

θmax ·B(c)
i,max = ∆θ

(c)
i ·

(
U

(c)
i

)2

, (32)

i.e.,

∆θ
(c)
i =

θmax ·B(c)
i,max(

U
(c)
i

)2 . (33)

Additionally, we observe that when a priority of a queue is
decreased, the regulation function becomes negative. Using
these observations, we formulate the potential function as
follows:

Φ
(c)
i (t) = θ

(c)
i (t) · U (c)

i (t) , (34)

where we can finally define the effective priority:

θ
(c)
i (t) =

min

{
θ̃

(c)
i (t), θ

(c)
i (t− 1) ·

(
1 +

B
(c)
i,max(t−1)(
U

(c)
i (t−1)

)2

)}
,

(35)

with
B

(c)
i,max (t) = max

τ∈[0,t]
{B(c)

i,max (τ)}. (36)

We finally defined the effective priority θ(c)
i (t). Note that since

B
(c)
i,max might be hard to estimate, Eq. (36) achieves it by

carrying the largest value seen so far1.

1Carrying the largest value of B
(c)
i,max is the result that is obtained from

an analytical point of view. However, in networks where on a rare occasion
these values might be abnormally large, one can regulate them by disregarding
abnormally large values, and still obtain network stability.



7

Next, by applying Theorem 1 to Lemma 1, we obtain:

Corollary 2. Let λ denote a strictly admissible arrival rate
vector. Assume that the potential function of each queue
respects Eq. (34), Eq. (35) and Eq. (36). Then:

lim sup
t→∞

1

t

t−1∑
τ=0

∑
ic

E
(

Φ
(c)
i (τ)

)
≤ θmaxB

ε
.

This result immediately follows from Eq. (26). Again, since
for all t and (i, c) it holds that θ(c)

i (t) > 0, we obtain stability
within the entire capacity region of the network. Interestingly,
this is exactly twice the standard upper bound that is obtained
without allowing dynamic user-defined priority service [7].

E. Convergence rate to the reference priorities

The convergence of the potential function upon a priority
decrease is immediate, as dictated by Eq. (35). However, upon
a priority increase, the convergence rate is bounded by the
congestion experienced by the queue. The intuition for this
asymmetry lies in Eq. (9) that specifies the resource allocation
process employed by the backpressure algorithm at each time
slot. Specifically, an unregulated increase of a queue priority
may cause a suboptimal resource allocation choice from a
throughput perspective, since it may force the algorithm to
serve high-priority queues with little consideration for the
better links offered at that time slot. Note that when a queue
is more congested, then even a small increase in its priority
may be enough to serve it over other less congested queues
with better available links. On the contrary, when a queue’s
priority is decreased, the algorithm can more efficiently take
advantage of the better links.

We proceed to approximate the convergence time of a
queue potential upon a priority increase. We consider a sce-
nario in which at time slot t, the weighted average priority
of a queue increases from θl to θh and remains fixed until it
converges. From Eq. (35), considering a hypothetical state of
a fixed queue length, we obtain:

θ
(c)
i,h = θ

(c)
i,l ·

1 +
B

(c)
i,max(
U

(c)
i

)2


T

, (37)

where T is the number of time slots required for the queue
potential to converge. Taking the logarithm of both sides of
Eq. (37) and rearranging yields:

T =

log

(
θ
(c)
i,h

θ
(c)
i,l

)
log

(
1 +

B
(c)
i,max(
U

(c)
i

)2

) . (38)

From Eq. (38), by considering the Taylor expansion of the
logarithm function and assuming a congested network such

that
B

(c)
i,max(
U

(c)
i

)2 << 1, we obtain that the convergence is slightly

slower:

T ∝

(
U

(c)
i

)2

B
(c)
i,max

.

Conversely, when the network is not highly loaded, T is

proportional to log

(
θ
(c)
i,h

θ
(c)
i,l

)
, thus the potential converges within

a few time slots, and at most O(log(αm/α1)).

V. EVALUATIONS

We now run simulations to evaluate the relative perfor-
mance of three algorithms with user-defined priorities: (a)
the standard Q-BP backpressure algorithm, (b) the m-DRPC
algorithm that combines the DRPC priority-service algorithm
for fixed queue priorities with our m priority-based queues,
and (c) our suggested U-BP algorithm.

A. User-defined priorities over a shared link

This test is partially based on the counter-example provided
by [5] to their priority service algorithm. Specifically, we test
a scenario with two senders sending data to a single receiver.
We use a strict interference model such that only a single
link out of the two can be activated at the same time slot.
The capacity of each link is i.i.d between time slots, and
takes values within {1, 2, 3}. We randomly inject high-priority
and low-priority flows to both sources, such that the high-
priority flows consist of 50% of the total traffic considering
both marking and remarking of flow priorities. The times and
durations of all flows are randomly chosen under the constraint
that their sum is upper-bounded by a Poisson process with
λ = 0.9 for each source to correspond with our model. The
priority weights are set to 1 and 2 for low- and high-priority
flows, respectively.

Figure 2 depicts the evaluation results. Figures 2(a) and
2(b) show the end-to-end delay of packets using U-BP and
Q-BP for high-priority and low-priority flows, respectively. As
expected, the end-to-end delay of our U-BP algorithm for high-
priority flows is significantly lower, while the overall network
performance is roughly the same for both algorithms.

In addition, Figure 2(c) illustrates how m-DRPC cannot
stabilize the network due to the unregulated changes of flow
priorities . This happens even though the load is strictly within
the capacity region of the network.

B. User-defined priorities over a random dynamic network

We create a random network with 16 nodes based on the
scale-free model of [8]. Next, among these 16 nodes, we
randomly choose four nodes as sources and four nodes as
destinations, i.e., create up to 16 potential flows. We fix the
routes among the sources and the destinations and make sure
each route shares at least one link with at least one other route.
All link capacities are i.i.d. and take values within {1, 2, 3}.

Among these sources and destinations, we randomly create
high- and low-priority flows such that the high-priority flows
use 15% of the traffic. We repeated this experiment 100 times,
and consistently obtained similar results in non-trivial topolo-
gies. Since different randomly generated networks produce
routes with different lengths and different loads on bottleneck
links, we choose a representative experiment.

Figure 3 presents the simulation results. First, Figure 3(a)
shows how the end-to-end delay of high-priority flows in U-BP
is significantly lower than in both Q-BP and m-DRPC. In fact,



8

(a) High-priority flows with Q-BP and U-BP. The
mean delays are 5.354 and 3.004 time slots, respec-
tively.

(b) Low-priority flows with Q-BP and U-BP. The
mean delays are 5.615 and 8.107 time slots, respec-
tively.

(c) The m-DRPC algorithm leads to an unstable net-
work with increasing delays as a function of time.

Fig. 2. Performance comparison of Q-BP, m-DRPC and our U-BP when two sources send data to a single receiver under a strict interference model (i.e., only
one of the links can be activated at each time slot).

(a) High-priority flows. The average delay in time slots is 27.54 for Q-BP,
53.4 for m-DRPC and 7.18 for U-BP.

(b) Low-priority flows. The average delay in time slots is 35.87 for Q-BP,
34.23 for m-DRPC and 36.07 for U-BP.

Fig. 3. Performance comparison of Q-BP, m-DRPC and our U-BP in a random network topology with 16 nodes, time-varying link capacities, and random
traffic with 15% of high-priority packets.

(a) High-priority flows. The average delay in time slots is 64.4 for Q-BP, 65.7
for m-DRPC and 15.7 for U-BP.

(b) Low-priority flows. The average delay in time slots is 57.33 for Q-BP,
54.48 for m-DRPC and 62.87 for U-BP.

Fig. 4. Performance comparison in a random network with a strict interference model, such that each node can transmit or receive data using a single link at
each time slot.
due to the moderate load, m-DRPC maintains stability in this
specific scenario (in our experiments we have seen similar
scenarios where m-DRPC could not stabilize the network),
but still presents a long-tailed distribution. This follows from
the fact that the high-priority flows only compose 15% of
the traffic, and thus suffer from long delays because of the
high number of low-priority flows, even though they have a
higher priority. Figure 3(b) shows that the overall performance
is maintained for U-BP. Namely, the low-priority flow delays
are only slightly increased to compensate for the better delays
of the high-priority flows.

C. User-defined priorities over a random dynamic network
with a strict interference model

We repeat the above experiment with the following
changes: (a) The capacities of the links can take values within

{1, . . . , 10}; and (b) we use a strict interference model, i.e., a
node is allowed to transmit and receive data only through a
single available link at each time slot.

Figure 4(a) shows again that the delays of the high-priority
flows are much lower for U-BP. As a tradeoff, Figure 4(b)
shows that the delays of the low-priority flows in U-BP are
slightly larger than in other algorithms. Again, the delays of
the low-priority flows in m-DRPC are lower, but at the expense
of the significantly-long tail delay of the high-priority flows.

VI. RELATED WORK

Backpressure. Q-BP was introduced in the seminal work
of [6] and received much attention in the literature due
to its ability to stabilize a dynamic network within its en-
tire capacity region. Numerous extensions to this technique



9

have been proposed e.g., [6], [7], [9]–[29]. These works in-
clude delay-reduction techniques [9], [11], [12], the drift-plus-
penalty method that stabilizes a network while also minimizing
the time average of a network penalty function [7], [10],
[14], practical wireless protocols based on the backpressure
idea [15]–[17], and many more. Recent works also focus
on incorporating delay considerations into the backpressure
queue potentials [30]–[32]. U-BP is an orthogonal tool to these
approaches, and can potentially be combined with them to
provide user-defined priority capabilities.

User-defined priorities. Several works have investigated
whether some applications can receive special treatment from
the network without conflicting with network neutrality. A re-
cent paper [1] has shown that users do want some applications
to receive a preferential treatment, and that it is practical for
users to temporarily or permanently define high preferences
for some applications. In addition, [2], [3] expose an API
for applications and users to express their preferences, for
example by leveraging software-defined networking capabil-
ities. This recent research has already been applied in the
industry. OnHub, a commercial home WiFi router built by
Google, enables user-defined prioritization of certain devices
and applications [4].

VII. CONCLUSIONS

In this paper we tackled the challenge of providing user-
defined flow-based prioritization while preserving throughput
optimality and overall network performance in term of end-to-
end delay. We introduced U-BP (User-defined BackPressure),
and analytically proved that it achieves optimal throughput.
Using both the dual-layer approach and the gradual priority
update, we have shown through a set of simulations that U-BP
indeed efficiently supports user-defined flow-based prioritiza-
tion while maintaining overall network performance.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Yiannis Yiakoumis for
useful discussions. This work was partly supported by the
Hasso Plattner Institute Research School, the Israel Ministry
of Science and Technology, the Gordon Fund for Systems
Engineering, the Technion Fund for Security Research, and
the Shillman Fund for Global Security.

REFERENCES

[1] Y. Yiakoumis, S. Katti, and N. McKeown, “Neutral net neutrality,” ACM
SIGCOMM, 2016.

[2] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of SDNs,” in
ACM SIGCOMM Computer Communication Review, 2013.

[3] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K. Yap, and
R. Johari, “Putting home users in charge of their network,” in Proceed-
ings of the ACM Conference on Ubiquitous Computing, 2012.

[4] “Google OnHub,” https://on.google.com/hub/.
[5] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation

and routing for time-varying wireless networks,” IEEE Journal on
Selected Areas in Communications, 2005.

[6] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. on Automatic Control, 1992.

[7] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and
cross-layer control in wireless networks. Now Publishers Inc, 2006.

[8] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, 2002.

[9] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and algorithms
for delay reduction in back-pressure scheduling and routing,” in IEEE
Infocom, 2009.

[10] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation, MIT,
2003.

[11] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “LIFO-
backpressure achieves near-optimal utility-delay tradeoff,” IEEE/ACM
ToN, 2013.

[12] L. Huang and M. J. Neely, “Delay reduction via lagrange multipliers in
stochastic network optimization,” IEEE Trans. on Aut. Control, 2011.

[13] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inform.
Theory, 1993.

[14] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM ToN, 2008.

[15] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “Diffq: Practical
differential backlog congestion control for wireless networks,” in IEEE
Infocom, 2009.

[16] A. Sridharan, S. Moeller, B. Krishnamachari, and M. Hsieh, “Im-
plementing backpressure-based rate control in wireless networks,” in
Information Theory and Applications Workshop, 2009.

[17] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, “Routing
without routes: The backpressure collection protocol,” in Proc. IPSN,
2010.

[18] M. J. Neely, “Delay-based network utility maximization,” IEEE/ACM
ToN, 2013.

[19] B. Sadiq and G. De Veciana, “Throughput optimality of delay-driven
maxweight scheduler for a wireless system with flow dynamics,” in
Allerton, 2009.

[20] M. J. Neely, “Queue stability and probability 1 convergence via Lya-
punov optimization,” arXiv preprint arXiv:1008.3519, 2010.

[21] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM ToN, 2011.

[22] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
in IEEE Infocom, 2005.

[23] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proc. 43rd CDC, IEEE, 2004.

[24] A. L. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Systems, 2005.

[25] E. Yeh and R. Berry, “Throughput optimal control of wireless networks
with two-hop cooperative relaying,” in IEEE Trans. Inform. Theory,
2007.

[26] X. Wu, R. Srikant, and J. R. Perkins, “Scheduling efficiency of
distributed greedy scheduling algorithms in wireless networks,” IEEE
TMC, 2007.

[27] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed schedul-
ing algorithms for wireless networks,” IEEE/ACM ToN, 2009.

[28] J. Ni and R. Srikant, “Distributed CSMA/CA algorithms for achieving
maximum throughput in wireless networks,” in Information Theory and
Applications Workshop, 2009.

[29] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks,” IEEE/ACM ToN, 2010.

[30] S. Li, E. Ekici, and N. Shroff, “Throughput-optimal queue length based
csma/ca algorithm for cognitive radio networks,” IEEE Transactions on
Mobile Computing, 2015.

[31] M. Alresaini, K.-L. Wright, B. Krishnamachari, and M. J. Neely,
“Backpressure delay enhancement for encounter-based mobile networks
while sustaining throughput optimality,” IEEE/ACM ToN, 2016.

[32] B. Li, A. Eryilmaz, and R. Srikant, “On the universality of age-based
scheduling in wireless networks,” IEEE Infocom, 2015.


