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Abstract—Counting Bloom Filters (CBFs) are widely used in
networking device algorithms. They implement fast set represen-
tations to support membership queries with limited error, and
support element deletions unlike Bloom Filters. However, they
consume significant amounts of memory.

In this paper we introduce a new general method based on
variable increments to improve the efficiency of CBFs and their
variants. Unlike CBFs, at each element insertion, the hashed
counters are incremented by a hashed variable increment instead
of a unit increment. Then, to query an element, the exact value of
a counter is considered and not just its positiveness. We present
two simple schemes based on this method. We demonstrate that
this method can always achieve a lower false positive rate and a
lower overflow probability bound than CBF in practical systems.
We also show how it can be easily implemented in hardware,
with limited added complexity and memory overhead. We further
explain how this method can extend many variants of CBF that
have been published in the literature. Last, using simulations, we
show how it can improve the false positive rate of CBFs by up
to an order of magnitude given the same amount of memory.

I. INTRODUCTION

A. Motivation

CBF (Counting Bloom Filter) variants are increasingly used

in networking device algorithms, in fields as diverse as ac-

counting, monitoring, load-balancing, caching, policy enforce-

ment, routing, filtering, security, and differentiated services.

For instance, for a given flow, they can determine whether

it has at least one packet currently queued (set membership),

how many of its packets are queued (counter representation),

whether it is in a given state (state representation), or where

to forward its packets (IP lookups) [1]–[6].

CBFs are often used because they can be easily imple-

mented in hardware. In particular, element insertions, deletions

and queries can be implemented in CBFs using a constant

complexity that is essentially independent of the number of

elements for a given bits-per-element ratio. However, CBFs

also consume significant amounts of memory. For instance,

using four bits per entry and ten entries per element yields a

needed memory space in bits that is 40 times larger than the

number of inserted elements.

This paper is about a general method to improve the

memory efficiency of CBFs with limited added hardware

complexity. We introduce a novel method based on variable

increments to reduce the amount of memory used by CBFs for

a given false positive rate. This method can also implement

element insertions, deletions and queries using a constant

complexity per element. It has a low hardware implementation

overhead when compared to CBFs, and can replace CBFs as a

sub-module in any algorithm implementation without required

outside changes.

B. Intuition for Variable Increments

We now provide some intuition for variable increments

by comparing Bloom Filters (BFs), Counting Bloom Filters

(CBFs) and Variable-Increment Counting Bloom Filters (VI-

CBFs).

A Bloom Filter (BF) is a well-known simple data structure

used to represent a set of n elements S = {x1, . . . , xn}
elements from a universe U using an array of m bits [7].

However, it is not designed to support deletions of elements,

which are often needed in networking device algorithms.

As illustrated in Figure 1(a), BF uses k uniformly-

distributed hash functions over the range {1, . . . ,m} of its m-

bit filter. For each element x ∈ S, k hash entries are calculated

using the hash functions and the corresponding bits are set to

one. For instance, in the figure, the bits of x and y are set

to one. In order to check whether an element z is in S, we

check whether all of its k corresponding bit locations hi(z)
are set to one. If this is not the case, we know that z is not

in S. If all of them are set, as in Figure 1(a), we state that

z ∈ S, although this might be a false positive error. For each

z /∈ S, the false positive rate, i.e. the probability of a false

positive error, is (1 − p0)
k, where p0 = (1 − 1/m)nk is the

probability that a specific bit is still zero after the insertion of

n elements. Since BF does not support deletions of elements,

it cannot for instance be used to represent the current set of

packets of a flow in a router where flows might dynamically

change.

The Counting Bloom Filter (CBF) suggested by Fan et

al. [1] is a generalization of BF, in which each hash entry

contains a counter with a fixed size of b bits, instead of a

single bit in BF. Unfortunately, while supporting deletions,

CBF also needs large amounts of memory space (i.e. b times

the memory space consumed by BF), which is often valuable

in networking devices.

As shown in Figure 1(b), to insert an element, all the corre-

sponding hashed counters are incremented by one. Likewise,

to delete it, all of its hashed counters are decremented. To

determine if an element z ∈ S, we check if all of its hashed

entries are positive. For instance, in Figure 1(b), we state that

z ∈ S, which might be a false positive as in BF. Given only

insertions, the false positive rate of CBF is the same as for BF

with the mentioned increase in memory space. CBF might also

suffer from counter overflows with a probability that depends



(a) BF (Bloom Filter) (b) CBF (Counting Bloom Filter) (c) V I − CBF (Variable-Increment CBF)

Fig. 1. Comparison of the concepts behind BF, CBF and our proposed V I − CBF , using S = {x, y} and a query of element z /∈ S. In this example, BF
and CBF yield false positives while V I − CBF does not.

on its counter size b, although b = 4 is sufficient to practically

obtain a negligible overflow probability [1].

We now want to introduce the use of variable increments.

We notice that CBF does not store much information in

its counter values. When querying an element, it does not

distinguish between any counter values greater than zero, and

only considers their positiveness. In this paper, we use the

specific value of a counter in order to give a more complete

answer to the query.

The Variable-Increment Counting Bloom Filter, denoted as

V I − CBF , is a generalization of CBF that uses variable

increments to update each entry. We first define a set of

possible variable increments D. Then, for each counter update

by an element, we hash the element into a value of D and use

it to increment the counter. Likewise, to delete an element, we

decrement by its hashed value in D. Last, to determine if an

element z ∈ S, we check in each of its counters if its hashed

value in D could be part of the sum. If this is not the case

in at least one counter, then necessarily z 6∈ S. Otherwise, as

for BF and CBF, we state that z ∈ S, which might be a false

positive.

Figure 1(c) illustrates V I − CBF with D = {4, 5, 6, 7}.

First, x and y increment their corresponding counters by their

corresponding hashed values in D. For instance, x increments

its first counter value by 7 ∈ D. Consider now a query of

whether z is in S. The second hashed entry of z has counter

value 9, while for this entry z hashes to increment 7 ∈ D.

Since 9 − 7 = 2 cannot be presented as a sum of elements

of D, the increment 7 cannot be part of the sum 9, and we

deduce that necessarily z /∈ S, avoiding the false positive that

occurred in CBF (Figure 1(b)). Note that we could have known

that as well from the third hashed entry of z (since 6 > 5),

but not from its first entry (because x and z hash to the same

increment, so the sum of 5 can be composed of the increment

5).

C. Related Work: Applications of the Variable-Increment

Method

The variable-increment method is a generic approach that

can actually be implemented to improve or extend most

variants of CBF. In this paper, we detail and evaluate its

application to both CBF and ML-HCBF.

• CBF [1]: As presented above.

• ML-HCBF (MultiLayer Hashed CBF) [6]: This algorithm

uses a hierarchical compression of CBF filters to achieve

better performance. We explain in Section V how the

same hierarchical compression idea could be combined

with V I − CBF , and show in Section VI how this

combination can achieve even better results.

• VL-CBF (Variable Length CBF) [8]: This algorithm uses

a variable-length coding, such as the Huffman coding,

to represent counters with a variable number of bits. A

similar coding can be used for efficient representation of

counters in V I − CBF . Unfortunately, even using index

tables, a lookup in VL-CBF might be 100 times slower

than in the standard BF. Thus, it cannot be implemented

at line rate.

• SBF (Stateful BF) ACSM (Approximate Concurrent State

Machine) [2]: This scheme enables the representation

of dynamically-changing states of flows. Using variable

increments, it is possible to represent the set of two states

hashing into the same entry as the sum of their hashed

values, instead of simply storing a DK (Don’t Know)

value as currently done.

• Fingerprint-based Schemes [2], [3]: Fingerprint-based

schemes typically use multiple-choice hashing schemes

(e.g. d-left) to obtain balanced allocations of elements

into buckets, and then use hashed fingerprints within each

bucket to store information associated with each flow.

While fingerprint-based schemes belong to a different

family of algorithms than CBF, they may also be comple-

mented using the variable-increment idea. For instance,

a fingerprint-based scheme may store up to h states for

each flow, or allow to store up to h flow mini-fingerprints

together with each main fingerprint. By summing these

state values, a variable-increment idea may decrease the

number of bits required to store these values. In addition,

it may behave more gracefully when there are more

than h states, by temporarily losing some information,

but being able to recover it with high probability upon

deletion (i.e. decrement) of some of the states.

• And many additional schemes like Counter Braids [4],

Selective CBF [9] and Access-Efficient Balanced

BF [10].

However, there are also a few variants to CBF that the generic

variable-increment idea does not necessarily improve. For

instance, [11] uses counters to estimate item multiplicities

and the suggested counter updating schemes might make it

impossible to obtain the exact sum of increments in a counter.



Finally, there are many works on Bh sequences, e.g. [12],

[13], yet none have been used in network applications.

D. Contributions

This paper presents an improved Counting Bloom Filter

technique based on variable increments. This technique can

also implement element insertions, deletions and queries using

a constant complexity per element. We suggest two schemes

based on CBFs with variable increments.

We first present the Bh − CBF scheme. This scheme is

based on Bh sequences. To the best of our knowledge, this

is the first time that Bh sequences are used in network

applications. Intuitively, a Bh sequence is a set of integers

with the property that for any h′ ≤ h, all the sums of h′

elements from the set are distinct. Therefore, given a sum of

h′ elements, we can determine whether an element of the Bh

sequence is a part of the sum. In the Bh − CBF scheme we

have in each hash entry a pair of counters: one with fixed

increments, and another one with variable increments that are

selected from the Bh sequence. We illustrate the Bh − CBF
scheme and compute its false positive rate.

Then, we present the V I − CBF scheme. In this scheme,

each hash entry only contains a single counter, as illustrated

above. We analytically show that the V I − CBF scheme can

always achieve a lower false positive rate and a lower overflow

probability bound than CBF in practical systems.

We also provide detailed implementation considerations for

these schemes. We discuss the complexity and throughput

of the schemes, and show that their complexity overhead is

lower than would be expected, especially for the V I − CBF
scheme, which can avoid using any lookup table.

Further, although in each operation both schemes require

calculating 2k hash functions instead of k in CBF, we show

that the relative increase in the number of required random bits

is very small. For instance, the V I − CBF scheme typically

needs k · (⌈log2(m)⌉+ 1) bits instead of k · (⌈log2(m)⌉) in

CBF.

Last, we evaluate all schemes using simulations. We show

that this method can reduce the false positive rate of the

original CBF by up to an order of magnitude, or alternatively

reduce the memory requirements for a requested false positive

rate by 33%.

II. THE Bh − CBF SCHEME

A. Bh Sequences

In this section we introduce the Bh − CBF scheme, a

variable-increment CBF (Counting Bloom Filter) based on

Bh sequences [12]. We start with the formal definition of Bh

sequences. B2 sequences are also called Sidon sequences [13].

Definition 1 (Bh Sequence): Let D = {v1, v2, ..., vℓ} ⊆
N

∗ be a sequence of positive integers. Then D is a Bh

sequence iff all the sums vi1 + vi2 + · · ·+ vih with 1 ≤ i1 ≤
· · · ≤ ih ≤ ℓ are distinct.

Example 1: Let D = {v1, v2, v3, v4} = {1, 4, 8, 13} ⊆ N
∗.

We can see that all the 20 sums of 3 elements of D are distinct:

1 + 1 + 1 = 3, 1 + 1 + 4 = 6, 1 + 1 + 8 = 10, 1 + 1 + 13 =

15, 1+4+4 = 9, 1+4+8 = 13, 1+4+13 = 18, 1+8+8 =
17, 1 + 8 + 13 = 22, 1 + 13 + 13 = 27, 4 + 4 + 4 = 12, 4 +
4 + 8 = 16, 4 + 4 + 13 = 21, 4 + 8 + 8 = 20, 4 + 8 + 13 =
25, 4+13+13 = 30, 8+8+8 = 24, 8+8+13 = 29, 8+13+
13 = 34, 13 + 13 + 13 = 39. Therefore, D is a B3 sequence.

However, 4 + 4 + 4 + 4 = 16 = 1 + 1 + 1 + 13, therefore D
is not a B4 sequence.

We can observe that for any h′ ∈ [1, h] the sums of exactly

h′ elements of the Bh sequence are also distinct.

B. Scheme Principles

We now introduce the Bh − CBF scheme to represent

|S| = n elements using m entries. While in CBF, each

entry contains a single counter with fixed increments of one,

in Bh − CBF , each entry contains a pair of counters: The

first counter, with fixed increments of one, counts the number

of elements hashed into this entry (as in CBF). The second

counter, with variable increments, provides a weighted sum

of these elements. Its variable increments are selected from a

pre-determined Bh sequence D = {v1, v2, ..., vℓ}.

Figure 2 illustrates how these counters are used and updated

given element insertions and queries. Note that in Section IV

we further show how to implement these operations efficiently

in hardware.

Bh − CBF uses two sets of k hash functions. The first

set H = {h1, . . . , hk} uses k hash functions with range

{1, . . . ,m}, i.e. it points to the set of entries. The second

set G = {g1, . . . , gk} uses k functions with range {1, . . . , ℓ},

i.e. it points to the set D.

Insertion — Upon insertion, an element x is hashed into the

k hash entries pointed by {h1, . . . , hk}. At each entry hi(x),
Bh − CBF updates the pair of counters as follows. The first

counter, with fixed increments, is incremented by one. The

second counter, with variable increments, is incremented by

the element vgi(x) of the Bh sequence D, where gi is the

corresponding hash function of G.

Upon deletion, the counters are decremented similarly.

Example 2: Figure 2(a) illustrates the insertion of two ele-

ments u and v. It uses the B3 sequence D = {v1, v2, v3, v4}
= {1, 4, 8, 13} from Example 1, and each element is hashed

into k = 2 entries. In this example, {h1(u), h2(u)} =
{1, 3} and {g1(u), g2(u)} = {3, 2}. The packet belonging

to flow u is hashed into entries 1, 3 using hash functions

h1, h2. It increments the first counter of each entry by one.

It also increments the second counters of these entries by

(vg1(u), vg2(u)) = (v3, v2) = (8, 4), respectively. Similarly, a

packet of flow v is hashed into entries 5 and 7 and increments

their variable-increment counters by 13 and 4, respectively.

Query — To query whether an element y is in S,

Bh − CBF uses the unique properties of the Bh sequence.

For i ∈ [1, k], let c1(i) and c2(i) be the values of the fixed-

increment and variable-increment counters in entry hi(y),
respectively. Bh − CBF asks whether y might have been

inserted in this entry in the past. Namely, if y is hashed

into value vgi(y), it asks whether c2(i) can be a sum of c1(i)
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Fig. 2. Examples of insertion and query in Bh − CBF with the B3 sequence D = {1, 4, 8, 13}.

elements including vgi(y). Specifically, in each entry hi(y), it

considers several cases depending on the value of c1(i):
• If c1(i) = 0, then as in CBF, Bh − CBF determines that

y /∈ S.

• If c1(i) ∈ [1, h], Bh − CBF considers the exact values

of both the counters. In this case, no more than h elements

were hashed into the hash entry hi(y). Therefore, c2(i) is a

sum of c1(i) ≤ h elements of D. Since D is a Bh sequence,

Bh − CBF can deduce the elements of D used in the sum

c2(i) (i.e. in the insertions of these elements into this hash

entry). In particular, Bh − CBF can determine whether vgi(y)
is part of the sum c2(i). Otherwise, necessarily y /∈ S.

• If c1(i) > h, Bh − CBF considers the entry as useless.

The value of c2(i) is not used and we cannot determine that

y /∈ S based on the current hash entry.

If Bh − CBF cannot determine that y /∈ S based on any

of the k hash functions, it determines that y ∈ S. With some

probability, Bh − CBF might be wrong and yield a false

positive. More precisely, in case y /∈ S, the false positive

occurs if for each of the k hash functions, either there are more

than h elements hashed into the corresponding hash entry, or

the corresponding element of the Bh sequence was used by

another element hashed into the same entry.

Example 3: As illustrated in Figure 2(b), we look at three

queries for the Bh − CBF introduced in Example 2. In this

figure, we assume that for x, y, z the hash entries selected

by the hash functions h1 and h2 are provided by their left

and right outgoing arrows, respectively. For each element a ∈
{x, y, z}, we denote the values of the two counters in the hash

entry hi(a) by ca1(i), c
a
2(i).

First, in order to determine whether x ∈ S, we start by

looking at the hash entry h1(x). Since cx1(1) = 0, Bh − CBF
can determine immediately that x /∈ S. We now consider y.

In its first hashed entry, h1(y), the number of elements is

cy1(1) = 3. Since we use a Bh sequence D with h = 3, then

Bh − CBF can determine the components of the weighted

sum by definition of the Bh sequence. In this case, Bh − CBF
can deduce that cy2(1) = 25 is comprised of 4 + 8+ 13 = 25.

Since y increments this counter by vg1(y) = 4, Bh − CBF
cannot exclude y ∈ S based on this hash entry. However,

since cy1(2) = 3 ≤ h as well, the variable-increment counter

cy2(2) = 30 = 4+13+13 is not comprised of vg2(y) = 8. Thus,

Bh − CBF can also determine that y /∈ S. Finally, applying

the above method to z, Bh − CBF cannot deduce that z /∈ S

based on the two hash entries since cz1(1), c
z
1(2) = 4 > h.

Therefore, Bh − CBF determines that z ∈ S. This might of

course yield a false positive if z /∈ S. (In fact, using a more

careful examination, it is possible to determine that indeed z /∈
S, as detailed below with the improved Bh − CBF scheme.)

C. False Positive Rate

We now provide the false positive rate of Bh − CBF . As

shown in the literature, in real-world systems, practical hash

functions usually work as if they were fully random [14]. We

assume in our proofs that the hash functions map items to

random numbers uniformly distributed over their given range,

and that the inserted elements and the elements in the query

are independent.

Theorem 1: The false positive rate of Bh − CBF is given

by:

FPR =

(

1−

h
∑

j=0

(

nk

j

)

( ℓ− 1

ℓm

)j(

1−
1

m

)nk−j

)k

. (1)

Proof: Let X denote the number of elements hashed into

an arbitrary entry. The probability of the event X = j is given

by

Pr(X = j) =

(

nk

j

)

( 1

m

)j(

1−
1

m

)nk−j

. (2)

When exactly X = j elements are hashed into an entry, a

specific value of the Bh sequence is not used by any of them

with probability
(

1 − 1
ℓ

)j

. Therefore, the false positive rate

FPR, i.e. the probability that for an element y /∈ S we cannot

deduce from each of the k hash entries that y /∈ S, is

FPR =
(

1−

h
∑

j=0

Pr(X = j)
(

1−
1

ℓ

)j)k

, (3)

yielding the result.

Note that by adopting a more complex query scheme, we

can further decrease the false positive rate. This improved

Bh − CBF scheme analyzes the hash entry even when there

are more than h hashed elements. In such a case, the Bh

sequence definition does not directly help anymore, because

the elements in the sum c2(i) are not necessarily unique when

there are more than h elements. However, by examining all the



possible variable increments that can lead to the sum c2(i), we

can still conclude that an element cannot have been inserted

into this entry. For instance, in Figure 2(b), the first hashed

entry of z indicates that there are cz1(1) = 4 > h values

totaling cz2(1) = 13. In addition, the first hashed value of z is

8. But 8 cannot be possible part of this sum, since the other

cz1(1)− 1 = 4− 1 = 3 values of the sum would need to total

cz2(1)− vg1(z) = 13− 8 = 5, and this is impossible, as shown

in Example 1. So z 6∈ S.

III. THE V I − CBF SCHEME

A. Scheme Description

The Bh − CBF scheme suggested above uses two counters

per entry instead of a single counter. This nearly doubles the

needed number of bits (neglecting the differences in counter

sizes). Consequently, we introduce V I − CBF (Variable-

Increment Counting Bloom Filter), which also uses variable

increments but only relies on a single variable-increment

counter per entry, without the additional counter that indicates

the number of hashed elements.

Specifically, as previously illustrated in Figure 1(c), we use

again an array of m entries to represent |S| = n elements.

In each array entry, the single variable-increment counter is

updated exactly like the second counter in the Bh − CBF
scheme, using variable increments selected from a set D =
{v1, v2, ..., vℓ}. We use again two sets of k hash functions,

H = {h1, . . . , hk} and G = {g1, . . . , gk}. Upon insertion,

at each corresponding array position hi(x), the counter is

incremented by the element vgi(x) of the set D. Likewise,

upon deletion, counter hi(x) is decremented by vgi(x) ∈ D.

We now want to find an appropriate set D for the

V I − CBF scheme. A problem in the V I − CBF scheme

is that it cannot directly use Bh sequences anymore. This

is because the Bh sequence definition requires to know the

number of elements in a sum. However, unlike the Bh − CBF
scheme, the V I − CBF scheme cannot obtain it because it

does not have a small counter that provides the number of

elements hashed into a given entry.

B. A Simple Option for D: DL = [L, 2L− 1]

In the general case, to query whether an element is hashed

into an entry, the implementation of the Bh − CBF and

V I − CBF schemes requires the use of a predetermined two-

dimensional binary table based on the set D (see Section IV).

However, we will now present a set D = DL that does not

need such a lookup table. Therefore, DL is easier to implement

in hardware.

In the next subsections, we first analyze the V I − CBF
scheme given D = DL. In Section IV we show that for this

case, no additional memory is required. We then provide an

exact calculation of the false positive rate of this detailed

scheme. We also show that it always improves the false

positive rate of CBF given a number m ≥ 10 of memory

entries and a number n of inserted elements.

Let L ≥ 2 be a positive integer of the form L = 2i. We

define the set DL of size L as DL = [L, 2L− 1] = {L,L+
1, ..., 2L− 1}.

We now want to compute the false positive rate of the

V I − CBF scheme. First, if an element y /∈ S hashes into

an entry counter hi(y) of value c, we want to determine the

probability that we will be able to tell that y /∈ S given c. Note

that the entry counter value c is defined as a sum of elements

of DL. To do so, we distinguish different values of c using

the following lemma.

Lemma 1: Let y be an element whose i-th hash function

hi(y) hashes into an entry of value c. If
(

c − vgi(y)

)

∈

(−∞,−1] ∪ [1, L− 1] then y /∈ S.

Proof: We distinguish different values of c:
• If c = 0, then the number of elements in the sum is zero,

and therefore y /∈ S.

• If c ∈ [L, 2L− 1], we can deduce that c is composed of

a single element of DL, because the minimal value of a sum

of two or more elements is L+L = 2L. Further, this element

is of course c. Therefore if vgi(y) 6= c, then y /∈ S.

• If c ∈ [2L, ..., 3L−1], we must have that c is a sum of two

elements, because the maximal value of one element is 2L−1
and the minimal value of three elements is 3L. For instance,

c = L+(c−L), or c = (L+1)+(c−L−1), etc. Therefore, c
can be comprised of any of the elements {L,L+1, ..., c−L},

but not of any x ∈ {c − L + 1, ..., 2L − 1}, since in such a

case (c − x) < L. So if vgi(y) /∈ {L,L + 1, ..., c − L} (i.e.

(c− vgi(y)) < L), then y /∈ S.

• If c ≥ 3L, c can be comprised of any of the elements in

DL, since (c− vgi(y)) > L for any vgi(y) ∈ [L, 2L− 1].
Summarizing the cases above, we cannot exclude that y ∈ S

if c = vgi(y) or (c− vgi(y)) ≥ L, hence the result.

In the next theorem we present the false positive rate of this

case.

Theorem 2: The false positive rate of the V I − CBF
scheme using D = DL is given by:

FPR =

(

1−
(

1−
1

m

)nk

−
L− 1

L

(

nk

1

)

1

m

(

1−
1

m

)nk−1

(4)

−
(L− 1)(L+ 1)

6L2

(

nk

2

)

( 1

m

)2(

1−
1

m

)nk−2
)k

.

Proof: Let y /∈ S be an input to a query. As usual, since

there are k hashed entries, the false positive rate FPR is given

by

(1− p)k, (5)

where p is the probability that by considering one of the k
hash entries used by hash function hi, we can determine that

y /∈ S. Let X denote again the number of elements hashed

into this entry and let c be the resulting counter value, i.e. the

weighted sum of X elements of DL. We distinguish several

cases based on X .

As explained earlier, if X = 0 then clearly y /∈ S.



If X = 1, then c has one of the L values of DL, each with

the same probability of 1
L

. Therefore c has one of the L − 1
values that differ from vgi(y) w.p. L−1

L
·Pr(X = 1), in which

case we can deduce that y /∈ S.

If X = 2, there are L2 possible ordered pairs of increments.

Further, there are L3 combinations of the values of the two

increments and the corresponding increment vgi(y) of the

examined element, each having an equal probability of 1/L3.

We now distinguish depending on the value of c. First, as

explained in the proof of Lemma 1, if c ∈ [2L, ..., 3L − 1],
there are exactly c− 2L+1 options to obtain a sum of c with

two addends of DL: The possibilities are {(L)+(c−L), (L+
1)+(c−L− 1), ..., (c−L)+ (L)}. Also, the sum of c cannot

be comprised of (3L− c− 1) of the values in DL. Therefore,

out of the L3 combinations above, in

3L−1
∑

c=2L

(c− 2L+ 1)(3L− c− 1) =

L−1
∑

i=1

i(L− i)

of them, we can determine that y /∈ S. In addition, if c ≥ 3L,

then the value of X is not necessarily known and c can be

comprised of any of the L values of DL. Thus, the current

entry is not used to determine that y /∈ S.

If X ≥ 3 then c ≥ 3L and the current entry is not used

again to determine that y /∈ S.

Combining all cases for X , we obtain the following formula

for the probability p that we can determine y /∈ S using c.

p = Pr(X = 0) +
L− 1

L
Pr(X = 1)+

1

L3
Pr(X = 2)

L−1
∑

i=1

i(L− i).

Simplifying p, using Equations (2) and (5), we obtain the

result.

C. Improving the False Positive Rate of CBF

We now demonstrate that V I − CBF can always improve

the false positive rate of CBF as the system is scaled. For

a fair comparison, we assume that the two schemes use the

same amount of memory for the same number of inserted

elements. In addition, since this false positive rate computation

does not take into account the counter overflow probability, we

also show that the V I − CBF scheme always obtains a lower

overflow probability bound than CBF.

Assume that CBF uses four bits per counter (a common

assumption, initially suggested by Fan et al. [1]). Let α
denote the memory bit-per-element ratio, so that for every

number of elements n, the memory size is αn bits with

m = ⌈αn
4 ⌉ counters. Then the following theorem compares

the performances of V I − CBF and CBF as n is scaled and

both schemes use the same memory size.

Theorem 3: While keeping the same bit-per-element ratio

α > 0 (and, as a consequence, also the same total memory

size), V I − CBF satisfies the following properties when

compared to CBF:

(i) V I − CBF obtains a lower false positive rate than CBF

with m counters for any m ≥ m0 = 10.

(ii) When α goes to infinity, i.e. the two systems are made

increasingly efficient, the ratio of their false positive rates goes

to 0.

(iii) V I − CBF obtains a lower counter overflow probability

bound than the classical bound for CBF from [1].

Proof Outline: (The full proof is longer, and can be found

in [15].) Given a CBF with m ≥ m0 = 10 counters of four bits

and k hash functions, we build a V I − CBF with DL=4 =
{L,L + 1, ..., 2L − 1} = {4, 5, 6, 7}, m′ = ⌊m

2 ⌋ counters

of eight bits and the same number k of hash functions. This

V I − CBF can fit within the same total memory size as CBF.

We first show, by comparing the false positive rate of CBF

with Theorem 2, that while the false positive rate of CBF is

FPR(CBF ) =

(

1−

(

1−
1

m

)kn
)k

>
(1

2

)k

,

the false positive rate of V I − CBF is

FPR(V I − CBF ) = (1− p)k < (1/2)k

for some p ≥ p0 > 1
2 , for fixed p0.

Likewise, we show that when α goes to infinity, the optimal

number of hash functions k for CBF also goes to infinity. Thus,

FPR(V I − CBF )

FPR(CBF )
≤

(

1− p0
1/2

)k
k→∞

−−−−→ 0.

Last, since the maximal increment is 2L − 1 = 7 and

counters of eight bits are used, at least ⌈ 256
7 ⌉ = 37 insertions

to the same counter are required to encounter an overflow,

instead of only 16 in CBF. We finally show that although the

number of counters in CBF is twice as large, this observation

leads to an improved overflow probability.

IV. IMPLEMENTATION CONSIDERATIONS

In this section we discuss the implementation of the

Bh − CBF and V I − CBF schemes in comparison with

CBF. We consider several issues such as logic complexity,

memory throughput and hashing complexity.

Pipeline Complexity — The insertion, deletion and query

of each element can be organized in a pipeline manner, so

that each operation is implemented at line rate. We assume

for simplicity that there are no conflicts between elements at

different steps of the pipeline. Note also that the set D is

fixed, and therefore the pipeline is also fixed and there is no

need to recompute online any of the values related to the Bh

sequences.

Figure 3 illustrates the logical pipeline implemented to go

through a query of packet x. It focuses on one of k parallel

pipelines, shown on k parallel planes, and corresponding to

the k hash entries.

Figure 3(a) presents the implementation of CBF in which

the flow ID of the packet is hashed into one of the CBF array

entries. The corresponding counter value c in considered. If

it equals zero, CBF determines that x /∈ S. Otherwise, CBF

continues to check the next hash entry.
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Fig. 3. Logical View of Hardware Implementation. Components that also appear in CBF are presented in gray, while white ones are new.

Figure 3(b) illustrates the implementation of Bh − CBF .

Components that also appear in CBF are presented in gray,

and the additional components in white. Bh − CBF uses two

hash functions instead of one. The first points to an entry in

the Bh − CBF array with the pair of counters (c1, c2). The

second points to an increment from the set D denoted by v.

In order to efficiently determine whether the weighted sum

c2 can be comprised of v using exactly c1 addends, we suggest

using a predetermined two-dimensional binary table A that

is based on D. The bit A[i][j] is set if there is a sum of i
addends from D that equals j. We notice that the value c2
can be comprised of v using c1 addends for c1 ≥ 1 only if

there is a sum of exactly c1 − 1 addends that equals the value

c2 − v, i.e. if the bit value A[c1 − 1][c2 − v] is set. The cases

out of the table boundary (c1 = 0 and c1 > h) can easily be

defined in the lookup procedure. In summary, if c1 > h or if

the relevant bit value is set, Bh − CBF continues to the next

hash entry. Otherwise, it determines that x /∈ S
Note that Bh − CBF enters table A only for cases where

c1 ∈ [1, h]. Therefore the first dimension index is c1−1 ≤ h−1
and the maximal possible value of the weighted sum is at most

(c1 − 1) · max(D) ≤ (h − 1) · vℓ. Thus, the memory size of

the table A is at most h · ((h− 1) · vℓ + 1) ≤ h2 · vℓ bits.

Next, we consider the implementation of the V I − CBF
scheme given the set D = DL. As explained in Section III-B

a lookup table is not required in this case. As in the previous

scheme, two hash functions are calculated. The first points

to an entry in the V I − CBF array with a counter c and

the second points again to an increment v ∈ D. Instead of

the lookup operation, we just check whether c − v = 0 or

(c − v) ≥ L (Lemma 1). If so, V I − CBF continues to the

next hash entry. Otherwise, it determines that x /∈ S.

Memory Throughput — In order to increase the memory

throughput, we can implement the two schemes using the

ideas implemented in the Blocked Bloom Filter [16]. For each

element, all hash functions are mapped into a single block

in the memory, i.e. a single memory word. Although this

technique suffers from a higher false positive rate, it is clearly

energy-efficient and improves the memory throughput, because

there is a single memory word access instead of up to k.

Hashing Complexity — In each operation of insertion,

deletion or query, the two suggested schemes require the com-

putation of 2k hash functions instead of k in CBF. However,

the total required number of random bits is much less than

twice the number in CBF. In order to point to a random

element in D, only ⌈log2(|D|)⌉ = ⌈log2(ℓ)⌉ random bits are

required. Since the selection of D with small cardinality (such

as ℓ = 4) is enough to have an improved false positive rate, as

explained in the proof of Theorem 3, we can reduce to two the

number of random bits generated by each of G = {g1, . . . , gk}
hash functions. In addition, given the same overall memory

size, the number of counters in V I − CBF is reduced by a

factor of two, because they are twice larger, therefore they need

one less bit for each counter selection. Thus, V I − CBF typ-

ically needs k · (2 + (⌈log2(m)⌉ − 1)) = k · (⌈log2(m)⌉+ 1)
bits instead of k · (⌈log2(m)⌉) in CBF.

V. COMBINING WITH THE ML-HCBF

In this section we show that V I − CBF can be combined

with the MultiLayer Hashed CBF scheme (ML-HCBF) [6] to

further decrease its memory requirements for a requested false

positive rate.

Instead of using one level with a constant number of bits

per counter, ML-HCBF uses a hierarchical structure of several

layers with narrower counters such that the number of counters

is a decreasing function of the level number. The number of

counters in the first level is a baseline number of counters, and

their number in each additional level is based on the overflow

probability of counters in the previous level. During insertion,

a counter in the first level is examined. If it is not saturated, it

is simply incremented. If it is saturated, the counter position is

hashed to obtain an address of a counter in the next levels. If

it is also saturated, the procedure continues in the next levels

until a non-saturated counter is found.

A similar concept can be implemented using variable in-

crements, as in V I − CBF . We denote it ML-VI-HCBF. We

increment a counter in the first level by a variable increment till

it reaches its maximal value. If it was saturated, we continue

and increment another counter in the next level by the rest of

the increment, such that the sum of their increments equals

the requested one. By using perfect hashing as in [6], the

actual value of a counter can be calculated as the sum of the

corresponding counters in one or more levels. For instance,

instead of using counters of 8 bits as for the V I − CBF , we

can have a hierarchical structure of 4 levels with (4, 3, 3, 3)
bits per counter, i.e. only four bits per counter in the first level

and three bits per counter in all the other levels.

VI. EXPERIMENTAL RESULTS

A. Trace-Driven Simulation

We conduct experiments using real-life traces recorded on a

single direction of an OC192 backbone link [17], and rely on

a 64-bit mix hash function [18] of the IP 5-tuple to implement

the requested hash functions.



Spectral Improved ML- ML-

CBF BF dlCBF ML-HCBF Bh-CBF Bh-CBF VI-HCBF, VI-CBF, VI-CBF, VI-HCBF,

D = DL D = DL general D general D
Main Structure (KB) 14.1 8.12 5.2 7.14 12.07 11.31 10.97 6.27 9.28 5.80

Secondary Structure (KB) - - - 0.41 - - - 0.33 - 0.82
Additional Tables (KB) - 4 - - 0.02 0.07 - - 0.03 0.03

Total Size (KB) 14.1 12.12 5.2 7.55 12.09 11.38 10.97 6.60 9.31 6.65

False Positive Rate 10−3 10−3 1.5 · 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

TABLE I
MEMORY REQUIREMENTS COMPARISON. THE RESULTS OF FOUR STATE-OF-THE-ART ALGORITHMS ARE PRESENTED ON THE LEFT SIDE OF THE TABLE,

AS IN [6], AND THE RESULTS OF SIX SUGGESTED SCHEMES APPEAR ON THE RIGHT SIDE.
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Fig. 4. Comparison of the false positive rates of CBF, V I − CBF
and Bh − CBF schemes and the theoretical models from Theorem 1 and
Theorem 2.

Figure 4 plots the false positive rate of various schemes as

a function of the memory size (in bits per element). It also

compares the experimental values with the values obtained by

theory. For Bh − CBF , we use D = {1, 4, 13, 15}, which

was found to yield a low false positive rate on synthetic

inputs, and compare the false positive rate of the basic scheme

with Theorem 1. We also present the results of the improved

Bh − CBF scheme that we introduced after Theorem 1. For

V I − CBF , we first use D = DL with L = 4, where the

false positive rate is given by Theorem 2, and later also

use the more general set D = {8, 12, 14, 15} (that was

again found to be a good set) to compare the two sets. We

classically assume four bits per counter for CBF, and for the

two Bh − CBF schemes, twelve bits per hash entry (four

and eight bits for the fixed-increment and variable-increment

counters, respectively). For the V I − CBF , we use seven bits

per counter for the V I − CBF with D = D4 and eight bits

per counter for the general D.

First, the simulation results confirm the theory from Theo-

rem 1 and Theorem 2. Further, all the suggested schemes im-

prove upon CBF. In addition, the two variants of V I − CBF
outperform the Bh − CBF and the improved Bh − CBF .

V I − CBF with the general set D yields the best perfor-

mance, and the improvement is especially significant for larger

numbers of bits per element. For instance, for 30 bits per

element, the false positive rate for CBF, Bh − CBF , improved

Bh − CBF , V I − CBF with D = DL and V I − CBF
with a general D are 0.02803, 0.01521, 0.00970, 0.00825

and 0.00383, respectively, thus obtaining an improvement by

a factor of 7. Likewise, for 50 bits we have 0.00258, 0.00092,

0.00048, 0.00031 and 0.00011 respectively, thus improving the

result by over an order of magnitude. Of course, as mentioned,

V I − CBF with D = DL is easier to implement in hardware

than V I − CBF with a general D, hence there is a clear

tradeoff between efficiency and complexity.

Alternatively, for the same false positive rate of CBF with

50 bits per element, V I − CBF with a general D requires

approximately 32 bits per element, hence a reduction of about

a third in the memory requirement.

B. Comparison with State-of-the-Art Algorithms

We adopt the same settings as in [6] to examine the

memory requirements of our suggested schemes in comparison

with several well-known schemes such as CBF [1], Spectral

BF [11], dlCBF [3] and ML-HCBF [6]. Specifically, we

compare the total memory size required to obtain a false

positive rate of 10−3 when |S| = n = 2000 elements are

represented.

The performance results of the previous schemes are

taken from [6]. We present the results of six new schemes:

Bh − CBF , the improved Bh − CBF , V I − CBF with

D = DL, V I − CBF with a general D and each of these

two versions of ML-VI-HCBF, i.e. V I − CBF combined with

ML-HCBF. For Bh − CBF and V I − CBF , we use the same

set D and the same number of bits per counter as in the

previous simulation. Table I summarizes the results.

For the new schemes, we consider the additional size of

the lookup table, when required. For instance, as explained in

Section IV, the Bh − CBF requires a table of size h2 · vℓ =
33 · 15 = 135 bits ≈ 0.02 KB. For the improved Bh − CBF
we base, in this simulation, the query decision on counters

with up to 2 · h = 6. Thus, the table size is (2h)2 · vℓ ≈ 0.07
KB. For V I − CBF scheme given the set D = DL, a lookup

table is not required. For the general set D, the size is at most

15 · 15 = 225 bits ≈ 0.03 KB.

In Bh − CBF , the required memory size is 12.09 KB, and

it drops to 11.38 KB in the Improved Bh − CBF . V I − CBF
with D = D4 requires 12842 counters of seven bits, while

with the general D, 9500 counters of eight bits are used in

addition to the lookup table. This yields a total memory size

of 10.97 KB and 9.31 KB, respectively, i.e. improvements of

22.2% and 34.0% in comparison with CBF. All these schemes
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Fig. 5. False positive rate of the V I − CBF with D = DL for various L
values.

present lower memory requirements than CBF and the Spectral

BF, but higher than those of the dlCBF. However, dlCBF may

have additional issues, like overflows and complexity [6]. As

mentioned in the Introduction, improving dlCBF in the same

way by using variable increments is left to future work.

For ML-VI-HCBF with D = D4, we use four layers with

12842 counters in the first level (as in the original scheme),

802 in the second, 100 in the third and 6 in the fourth

levels. In these four levels, 4, 3, 3 and 3 bits per counter were

used, respectively. ML-VI-HCBF uses a total memory size

of 6.60 KB, an improvement of 40% in comparison with

V I − CBF , and a 2x improvement (precisely, 53%) in com-

parison with CBF. Likewise, when the set D = {8, 12, 14, 15}
is considered, we have four levels of 5, 5, 5, 4 bits with an

almost similar memory consumption of 6.65 KB. Both of these

hierarchical schemes also perform better than ML-HCBF.

C. Optimizing the V I − CBF Parameters

We want to examine the effect of the parameter L for the

V I − CBF scheme with D = DL on the false positive rate.

On the one hand, increasing L makes it easier to exclude

membership of a non-member element based on one counter,

while on the other hand it requires more bits per counter and

thus reduces their number.

We now assume a set with n = 1024 elements and variable

numbers of bits per elements. We examine the values 2, 4, 8, 16
for L and for each value we use the optimal number k of

hashed functions. Further, for each value of L, we use 4 +
⌈log2(vℓ)⌉ = 4+⌈log2(2L− 1)⌉ bits per counter. For instance,

for L = 4, we have 4+ 3 = 7 bits. The false positive rates of

the optimal values of k are presented in Figure 5.

We can see that the performances of DL with L = 4 and

L = 8 are similar and are much better than the cases of L = 2
and L = 16. For example, for 30 bits per element we have

false positive rates of 0.01388, 0.00825, 0.00841, 0.01105 for

L = 2, 4, 8, 16, respectively.

VII. CONCLUSION

In this paper we presented a novel method based on vari-

able increments to improve the efficiency of CBFs and their

variants. We also demonstrated that this method can always

achieve a lower false positive rate and a lower overflow prob-

ability bound than CBF in practical systems. More generally,

we explained how this method can extend many variants of

CBF published in the literature.

To our knowledge, this is the first time that Bh sequences

are used in network applications. We believe that this is a

first step towards a more general use, because they seem to

fit increasingly-complex coding needs in networking appli-

cations. These applications often require both a scalability

in the number of states to encode, yet also low hardware

complexity—and indeed, as explained in this paper, Bh se-

quences efficiently compress sets of h states, yet can also

be readily encoded and decoded at line rates using fixed

translation tables.
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