
Optimal Load-Balancing
Isaac Keslassy1 Cheng-Shang Chang2 Nick McKeown3 Duan-Shin Lee2

1Technion 2National Tsing Hua University 3Stanford University
Haifa, Israel Hsinchu, Taiwan, R.O.C. Stanford, CA, U.S.A.
isaac@ee.technion.ac.il {cschang@ee,lds@cs}.nthu.edu.tw nickm@stanford.edu

Abstract— This paper is about load-balancing packets across
multiple paths inside a switch, or across a network. It is motivated
by the recent interest in load-balanced switches. Load-balanced
switches provide an appealing alternative to crossbars with
centralized schedulers. A load-balanced switch has no scheduler,
is particularly amenable to optics, and – most relevant here –
guarantees 100% throughput. A uniform mesh is used to load-
balance packets uniformly across all 2-hop paths in the switch.
In this paper we explore whether this particular method of load-
balancing is optimal in the sense that it achieves the highest
throughput for a given capacity of interconnect. The method
we use allows the load-balanced switch to be compared with
ring, torus and hypercube interconnects, too. We prove that for
a given interconnect capacity, the load-balancing mesh has the
maximum throughput. Perhaps surprisingly, we find that the best
mesh is slightly non-uniform, or biased, and has a throughput
of N/(2N − 1), where N is the number of nodes.

I. INTRODUCTION

A. From Scheduling to Load-Balanced Routing

Current Internet core routers commonly implement com-
bined input and output queueing (CIOQ) with a centralized
scheduler. Numerous centralized scheduling algorithms have
been proposed in the literature [1], [2], [3], [4]. Nevertheless,
although these scheduling algorithms can theoretically provide
a guaranteed throughput of 50% to 100% ([5], [6], [7]), they
are becoming impractical as the line rates and number of ports
grow, because of their complexity and/or the speedup of the
buffer memory.

There has been recent interest in a new approach, which
eliminates scheduling, using a load-balanced switch architec-
ture [8], [9], [10], [11], [12], [13], [14]. As shown in [12],
this architecture appears to be a practical way to scale In-
ternet routers to very high capacities, and achieve throughput
guarantees for all traffic patterns.

Figure 1 shows the load-balanced switch architecture based
on two fully-interconnected meshes, with N = 4 linecards
interconnected by N2 links. It consists of a single stage of
buffers sandwiched by two identical stages of switching, where
each switch is built from a uniform mesh. Each linecard in the

This research was supported by the Wakerly Stanford Graduate Fellowship,
by the ATS-WD Career Development Chair, by the National Science Council,
Taiwan, R.O.C., under contract NSC-91-2219-E007-003, by the Program for
Promoting Academic Excellence of Universities, under contract NSC-94-
2752-E-007-002-PAE, by the NSF Large ITR grant under contract NSF 02-
168, by the DARPA/MARCO Center for Circuits, Systems and Software under
MARCO contract 2001-CT-888 and DARPA grant MDA972-02-1-0004, and
by Cisco Systems.

Fig. 1. Load-balanced switch architecture

Fig. 2. Generic architecture of a load-balanced switch and of a load-balanced
routing network

first stage is connected to each linecard in the center stage by
a channel at rate R/N , where R is the line rate and N is
the number of linecards. Likewise, each linecard in the center
stage is connected to each linecard in the final stage by a
channel at rate R/N . The buffer at each center stage is par-
titioned into N virtual output queues (VOQs). To understand
its operation, consider a stream of packets from a given input
to a given output. The first mesh sends packets in round-robin
to all intermediate inputs, load-balancing traffic across them.
Each packet is put into the VOQ in the intermediate input
according to its eventual output. The second mesh services
each VOQ at fixed rate R/N , regardless of its occupancy.
Each packet is transferred across the second mesh to its output,
from where it departs the system. Thus, the two meshes work
identically, but perform two different functions: the first one
load-balances packets across the center stages, sending 1/N -
th of the traffic to each intermediate input, and the second one
switches packets to their correct destination by servicing each
VOQ at fixed rate R/N .

Although Figure 1 appears to show 3N linecards (N for

each stage), a real implementation would have N linecards,
and each linecard would contain three logical parts (input,
intermediate input and output). This means that the two meshes
can be replaced by a single mesh running twice as fast,
as shown in Figure 2. Every packet traverses the switch
fabric twice: once from the input linecard to a VOQ in the
intermediate linecard, then a second time from the VOQ to
the output linecard.

B. The Throughput of Load-Balanced Switching

Perhaps the most interesting characteristic of the load-
balanced switch is that it provably achieves 50% throughput
(and therefore 100% throughput with a speedup of two)
for a broad class of weakly mixing, stochastic arrivals [8].
Intuitively, the first stage makes traffic (just) uniform enough
for the second stage to provide the throughput guarantee.

It is not immediately obvious why a load-balancing stage
built from a uniform mesh with N inputs and outputs can make
the traffic uniform enough, regardless of the traffic matrix
or the burstiness of the arrivals. And it’s even less obvious
whether the mesh needs to be uniform (i.e. all links have the
same capacity R/N); how does the throughput change if the
mesh is non-uniform? What arrangement of link capacities
maximizes the throughput?

More generally, we’re interested in comparing the architec-
ture with other well known ways to interconnect linecards.
For example, a ring, a torus or a hypercube. We’ll compare
them by considering an interconnection network with a given
total capacity. Packets are routed through the network to create
a load-balanced switch, a ring, torus, or hypercube. We then
determine which arrangement has the highest throughput.

To make the comparison, we’ll use an arbitrary network
with fixed capacities that we’ll call a load-balanced routing
network. As in the load-balanced switch, linecards are inter-
connected using a network with a fixed configuration and
fixed capacities (Figure 2). Each incoming flow can be load-
balanced across the different possible paths to its output, as
long as the rate needed on each link is within its capacity.
For each flow, a decision has to be made: how should it be
load-balanced across the different possible paths?

Consider the example in Figure 3. It shows a simple load-
balanced routing network where all the capacities between
linecards are either zero (no link) or c. If linecard 1 wants
to send traffic to linecard 4, it could send it directly using the
link 1 → 4 (with capacity c). It could also choose to load-
balance traffic using the paths 1 → 2 → 4, 1 → 3 → 4, or
1 → 3 → 2 → 4. We’ll allow it to choose any path, even if
it’s obviously not useful, such as 1 → 3 → 2 → 1 → 4 or
1 → 1 → 1 → 4 → 4.

Essentially, what is normally a scheduling decision inside
the router is transformed into a routing decision. While a
centralized scheduler needs to decide how to configure a
crossbar depending on the queue state, the linecards in a load-
balanced routing network need to decide how to route flows
across the different possible internal paths.

The general class of load-balanced routing networks ap-
pears in many areas of networking. Perhaps most commonly,

Fig. 3. Example of load-balanced routing network

load-balanced routing networks are an example of multi-
path routing [15], [16], [17] in a network, or Internet, of
routers. They are also commonly used in torus and hyper-
cube networks [18], [19] for the implementation of multi-
stage, distributed switches inside routers [20], multiprocessor
interconnection networks [21] and I/O interconnects [22]. For
each flow, the path taken by the packets might then be pre-
determined without regard to the state of the system (also
called oblivious routing [23], which includes Valiant’s random-
ized routing [24]); or adaptive (where routing is dependent
on the queue state [25]). Load-balanced routing networks
can also be used in fixed ad-hoc networks, such as sensor
networks [26], [27]. Finally, load-balanced routing networks
are a specific type of multi-commodity network that often
appears in the networking literature. Understanding their the-
oretical bounds would be useful to the general class of multi-
commodity network problems.

C. Main Results

We will analyze the throughput of load-balanced routing
networks. The main findings of this paper are as follows.
First, the throughput as a function of the capacity of load-
balanced routing networks is concave, strictly increasing, and
scales linearly. Second, a switch based on a uniform mesh has
a guaranteed throughput of 50%, and so needs a speedup of
two (or two meshes) to achieve 100% throughput. The uniform
mesh is close, but not equal to, the interconnection with the
highest throughput. A slightly biased, non-uniform mesh has a
slightly higher throughput. In particular, the following is true:

Theorem 1: The capacity matrix with the best throughput
exists and is unique. It is

Ĉ =
1

2N − 1
·




1 2 2

2 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 2

2 2 1




,

and its throughput is N/(2N − 1) > 1/2.
The reason is quite simple: In a uniform mesh, each node

spreads traffic - and so routes packets - equally to all other
nodes. But spreading to itself is redundant and inefficient. For
instance, if node 1 has traffic to send to node 2 and the direct

link 1 → 2 is congested, it can use load-balancing by sending
part of this traffic to node 3, which will forward it to node
2. However, it is useless to send part of this traffic to node 1
for load-balancing, since this action just makes some packets
come back to their starting point. Therefore, a link from a node
to itself needs less capacity than a link from a node to another
one, resulting in a non-uniform mesh. But asymptotically, for
large N , the throughputs of the uniform and optimal meshes
are the same.

In what follows we start by formulating more precisely the
optimization problem in Section II, illustrate the definition of
the guaranteed throughput in Section III, and provide its main
properties in Section IV. Then, we describe the biased full
mesh and compute its guaranteed throughput in Section V,
show that its guaranteed throughput is optimal in Section VI,
and prove that it is the only architecture with such a guaranteed
throughput in Section VII. Finally, we analyze the load-
balancing gain of an arbitrary architecture in Section VIII.
All the proofs are in the Appendix.

II. PROBLEM FORMULATION

A. Notations and Assumptions

Consider a network with N identical nodes, where N ≥ 2.
We define a doubly stochastic matrix to be a non-negative
square matrix with all row and column sums equal to 1.
Similarly, we define an admissible (or doubly sub-stochastic)
matrix to be a non-negative square matrix with all row and
column sums upper-bounded by 1. Finally, we define the time
unit such that each node can send and receive at most one bit
per second (if the maximum node speed is R, scale the time
unit by a factor 1

R).
A link of fixed capacity Cij connects node i to node j,

where 1 ≤ i, j ≤ N . The matrix C = [Cij]1≤i,j≤N is the
capacity matrix, and any node l can send up to

∑N
j=1 Clj

(and likewise receive at most
∑N

i=1 Cil) bits per time unit to
and from the N nodes (including itself). Since every node l can
send and receive at most one bit per time unit,

∑N
i=1 Cil ≤ 1

and
∑N

j=1 Clj ≤ 1; therefore, the matrix C is admissible.
The capacity matrix C defines the architecture; for example,
the uniform mesh architecture (in which nodes are connected
to each other with equal-capacity links), corresponds to the
uniform matrix C where Cij = 1/N. Similarly, a ring could
be defined by Cij = 1{j=i+1 mod N}.

Denote by T the arrival traffic rate matrix, with Tij being
the arrival rate at node i of packets destined for node j. We
will assume that T is admissible, since it cannot be supported
otherwise: each node can send and receive at most one bit per
second. Suppose we want to load-balance these packets across
multiple paths, each path having an arbitrary number of hops.
If P (i, j) is the set of paths between nodes i and j, then
any path p ∈ P (i, j) can be represented as (i → node1 →
node2 → . . . → j). Let T p

ij be the rate of the flow carried by p.
If the arrival traffic rate matrix T is feasible (i.e., the network
has 100% throughput for T), it is possible to decompose T
into several paths p, and therefore for all i, j,

Tij =
∑

p∈P (i,j)

T p
ij . (1)

Similarly, we will define the effective load matrix L using for
all i, j:

Lij =
∑

{p:(i→j)∈p}
T p

ij . (2)

The effective load of a link is the sum of the loads of the paths
sharing the link. A solution is feasible if and only if we can
find a decomposition of T such that L ≤ C, i.e., no link is
over-booked.

B. Problem Intuition

Suppose that N = 2 and that we use a uniform mesh
architecture, with capacity matrix

C =
(

0.5 0.5
0.5 0.5

)
.

We will use this example to gain some intuition about the
throughput of interconnection networks.

If the arrival rate matrix is

T1 =
(

0.9 0
0 0

)
then we cannot send traffic at rate 0.9 on the path 1 → 1,
because the capacity is limited by C11 = 0.5. Therefore, we
need to load-balance the traffic by using the spare capacity of
other links. We will send 0.5 on the direct path 1 → 1, and
the remaining 0.4 on the alternative path 1 → 2 → 1. The
resulting load matrix is

L1 =
(

0.5 0.4
0.4 0

)
,

and L1 ≤ C. Clearly, the direct path is not always sufficient
to carry the required rate matrix, but in this case it is possible
to use a load-balanced path in order to carry it.

Not all rate matrices are feasible, i.e., the throughput is not
always 100%. Consider the arrival rate matrix

T2 =
(

0.9 0
0 0.9

)
.

Sending 0.5 on 1 → 1, 0.4 on 1 → 2 → 1, 0.5 on 2 → 2 and
0.4 on 2 → 1 → 2, the load matrix is

L2 =
(

0.5 0.8
0.8 0.5

)
,

and so L2 �≤ C. In this particular case, we need to scale down
T2 to (

0.75 0
0 0.75

)
for the solution to be feasible.

Finally, load-balancing does not always help, particularly in
small matrices when there are not many paths to divert traffic
away from congested links. And it is always useless to divert
traffic to oneself. For example, consider the rate matrix

T3 =
(

0 0.5 + ε
0.5 0

)
,

where ε > 0. Sending traffic on the path 1 → 1 → 2 does
not divert traffic from the congested link 1 → 2; therefore,

T3 is not feasible. This teaches us that when sending traffic
from node i to node j �= i, it is clearly useless to use the link
i → i, because traffic is transferred across the network with
no benefit. By comparing T1, T2 and T3, this example also
shows that finding the maximum throughput of a given rate
matrix is not straightforward, even when N = 2. Moreover,
since the number of cases to consider increases with N , such
a problem is increasingly difficult to solve as N grows.

C. Problem Definition

Our objective is to find the load-balanced network with the
largest throughput guarantee. In other words, we want to find
a network with a guaranteed throughput θ∗, where θ∗ satisfies
two properties. First, given any admissible arrival traffic, the
network guarantees a throughput θ∗, i.e., it will switch a
fraction θ∗ of the traffic for any input-output flow. And second,
no other network can have a better guaranteed throughput
than θ∗. We will define the problem by decomposing it into
three successive optimization problems. First, we will find
the throughput for a given network and a given rate matrix.
Then, we will obtain the worst-case throughput of a network,
which can be achieved for any rate matrix. Finally, we will
provide θ∗, which is the best guaranteed throughput among all
networks.

In the first optimization, we want to find the maximum
throughput for a given network and a given rate matrix. In
other words, given capacity matrix C and rate matrix T , we
want to find the best possible throughput θ(C, T), such that
the scaled-down rate demand matrix θ(C, T) × T is feasible.
Put mathematically,

θ(C, T) ≡ max
θ

(θ), subject to:

(i)
∑P (i,j)

p=1 T p
ij = θ × Tij ∀i, j

(ii) L(i, j) ≡∑{p:(i→j)∈p} T p
ij ≤ Cij ∀i, j

(iii) T p
ij ≥ 0 ∀i, j, p

In words, the throughput θ(C, T) is the maximum of the set
of throughputs θ that satisfy three feasibility conditions. First,
the arriving traffic is a scaled-down version of T by a factor
θ, such that it can be decomposed into several paths p. The
second condition is that the sum of the loads of the paths must
be less than C, i.e., that the load matrix is feasible. The last
condition is that the rate on each path must be nonnegative.

The second optimization finds the guaranteed maximum
throughput θ(C) for the network. This is the throughput that
is achievable by any rate matrix in the network, and, therefore,

θ(C) ≡ min
T admissible

(θ(C, T)). (3)

Note that we allow for any admissible rate matrix T , because
the network should be able to support any traffic shape, as long
as the traffic originating from (and destined to) each node does
not exceed one bit per second.

Finally, we find the maximum possible guaranteed through-
put for any network, yielding a guaranteed throughput θ∗,
where

θ∗ ≡ max
C admissible

(θ(C)). (4)

III. EXAMPLES OF GUARANTEED THROUGHPUT

A. Guaranteed Throughput of the Uniform Mesh

The uniform mesh is an architecture in which all links have
the same capacity, i.e., Cij = 1/N for all i, j. We will show
that the maximum guaranteed throughput of the uniform mesh
is 50%.

We saw already in the Introduction why the uniform mesh
guarantees at least 50% throughput, although the proof was
based on slightly different assumptions. This guarantee was
first shown by Valiant [28]. In short, each packet goes through
both the load-balancing stage and the forwarding stage, and
therefore through two hops. Consequently, the link between
node i and node j can receive load in two possible ways. Either
node i is sending traffic to some node k and spreads it using
the intermediate node j, or some node l sends traffic to node j
and spreads it using the intermediate node i. Mathematically,
Lij =

∑
k Tik +

∑
l Tlj ≤ 2 with an admissible T . Therefore,

θ(C) ≥ 50%.
The following example shows that it is not possible to

do better using a different load-balanced routing algorithm.
Assume that

T =




0 x 0 . . . 0

0 0 x
. . .

...
...

. . .
. . . 0

0 0 x
x 0 . . . 0 0




,

where x ≥ 1/2. A node i can send at most Ci(i+1 mod N) =
1/N amount of traffic directly.1 It also needs to send the
remaining x − 1/N amount of traffic to load-balanced paths,
with each of these paths using at least two links. Hence, the
total traffic load contributed by each node to the system is
at least (1/N) + 2(x − 1/N), which implies that the total
traffic load contributed by the N nodes is N(1/N + 2(x −
1/N)) = 2Nx − 1. As we saw earlier, diagonal elements do
not help load-balancing, and with this rate matrix they are
also useless for direct paths. Hence, the total useful traffic
capacity is the sum of all non-diagonal elements of C, i.e.,
N · (1 − 1/N) = N − 1. For the solution to be feasible, we
need 2Nx − 1 ≤ N − 1, which translates into x ≤ 1/2. And
so there exists a traffic rate matrix that is only feasible with a
throughput of at most 50%. This implies θ(C) ≤ 50%. Since
we found that the two-hop algorithm provides a throughput of
50%, it follows that

θ(C) = 50%. (5)

Further, it is not possible to improve on the two-hop algorithm.

B. Guaranteed Throughput of a Ring

As a second example, consider a network in which the nodes
are connected in a uni-directional ring, i.e., node i is connected
to node (i + 1) mod N . Recall that we assumed that each
packet needs to go at least once through the network. In the

1The modulo function takes values in {1, ..., N} when nodes are numbered
{1, ..., N}.

worst case, T is the identity matrix so that nodes only send
traffic to themselves through the ring. Therefore, all packets
cross N links, and the throughput θ(Cring, T) is equal to 1/N .
This T is the worst case, since packets do not need to use more
than N links to reach their destination. Therefore,

θ(Cring) = 1/N, (6)

which — as expected — is much lower than for the uniform
mesh.

C. Guaranteed Throughput of a Permutation Matrix

The ring is a special case of a permutation matrix σ of the
set {1, ..., N}, where σ is the capacity matrix of a network.
The matrix σ can be represented as a 0−1 matrix with exactly
one 1 in each row and column; i.e., σij = 1 if σ(i) = j,
and σij = 0 otherwise. Since σ is a permutation, it can be
decomposed as a product of disjoint cycles (the decomposition
is unique up to the order of the cycles).

If σ can be written as a single cycle of length N , we can
assume without loss of generality that σ(1) = 2, σ(2) = 3,...,
σ(N) = 1, and so σ is the capacity matrix of a ring, with
θ(σ) = 1/N .

Alternatively, if σ can be written as the product of two or
more cycles, then there are two nodes i and j such that node i
is in the first cycle and node j is in the second one. It is then
impossible to reach node j from node i (the capacity graph is
not connected), hence the throughput for any matrix T such
that Tij = 1 is zero, and θ(σ) = 0.

This example illustrates that the throughput of a capacity
matrix is sensitive to its coefficients; and that the throughput
of a disconnected graph is zero.

IV. PROPERTIES OF THE GUARANTEED THROUGHPUT

In the above examples, we computed the throughputs of
several capacity matrices, but found that it is not straight-
forward in general to compute throughput directly. Since we
want to find the capacity matrix with the largest guaranteed
throughput, we will use general properties of the throughput
function. We will start by showing that it is concave in C,
scales linearly, and is strictly increasing.

A. Concavity

First, we show that throughput is concave in C. Assume
that two capacity matrices C1 and C2 achieve throughputs of
θ(C1, T) and θ(C2, T) for a rate matrix T . Then, applying
the definition of throughput, for any λ ∈ [0, 1], the matrix
C = λC1 +(1−λ)C2 will achieve a throughput of θ(C, T) ≥
λθ(C1, T) + (1 − λ)θ(C2, T). This can be seen by using the
paths from C1 for a fraction λ of the traffic, and the paths
from C2 for a fraction 1−λ. As a consequence, we also have
θ(C) ≥ λθ(C1) + (1 − λ)θ(C2). This leads to the following
proposition.

Proposition 2: The guaranteed throughput function θ(C) is
concave in C.

B. Linear Scaling

Given any positive λ, we can find a feasible rate allocation
for λC from the rate allocation for C (and vice versa) by scal-
ing the rate assigned to each path by a factor λ (respectively
by 1

λ). Therefore, we get the following proposition:
Proposition 3: The guaranteed throughput function θ is

linear with respect to scaling, i.e.,

θ(λ · C) = λ · θ(C).

C. Strictly Increasing

Clearly θ is a non-decreasing function in the space of
admissible capacity matrices. In other words, having more
capacity cannot decrease the throughput. If C and D are two
admissible capacity matrices, where C ≤ D (i.e., for all i, j,
Cij ≤ Dij , defining a partial order relation), then from the
definition of θ: θ(C) ≤ θ(D).

Now, if D > C, there exists ε such that

D ≥ C + εCuniform,

where Cuniform is the capacity matrix of the uniform mesh.
Hence

θ(D)
(a)

≥ θ((1 + ε)(
1

1 + ε
C +

ε

1 + ε
Cuniform))

(b)
= (1 + ε) × θ(

1
1 + ε

C +
ε

1 + ε
Cuniform))

(c)

≥ (1 + ε)(
1

1 + ε
θ(C) +

ε

1 + ε
θ(Cuniform))

(d)
= (1 + ε)(

1
1 + ε

θ(C) +
ε

1 + ε

1
2
))

> θ(C),

where (a) uses the fact that θ is non-decreasing, (b) uses the
equality θ(λ ·C) = λθ(C), (c) uses the concavity of θ and (d)
uses the value of θ(Cuniform). Therefore, we obtain:

Proposition 4: The guaranteed throughput function θ is
strictly increasing, i.e., if C < D then θ(C) < θ(D).

V. THE BIASED MESH

A. Definition

We have already seen that the uniform mesh has a through-
put of 50%, even though a node potentially spreads traffic over
the useless links to itself. We can therefore expect a modified
mesh — i.e., a mesh that does not spread traffic to itself —
to have higher throughput. This is indeed the case; in fact, it
is the network with the highest guaranteed throughput.

In this modified mesh, a link from a node to itself is only
used to send traffic directly, and not for spreading. However,
a link from a node to another one is used for sending traffic
directly as well as for spreading. Therefore, intuitively, a link
from a node to another one should have twice as much capacity
as a link from a node to itself, because it will be used for two
functions instead of one. We will call such a modified mesh
the biased mesh. Its capacity matrix Ĉ is given by

Ĉ =




c 2c 2c

2c c
. . .

...
...

. . .
. . .

. . .
...

...
. . . c 2c

2c 2c c




,

where c = 1/(2N − 1).
In the remainder (Propositions 6, 7 and 8), we will show

that Ĉ uniquely achieves the highest guaranteed throughput,
using three consecutive steps. First, we will show that Ĉ
achieves a throughput of N/(2N − 1). Then, we will prove
that this is the largest achievable throughput for any network.
Finally, we will demonstrate that the biased mesh is the only
network to achieve this throughput.

B. Guaranteed Throughput of the Biased Mesh

Our first objective is to show that the guaranteed throughput
of the biased mesh with the capacity matrix Ĉ is at least
N/(2N−1). Using the definition of the guaranteed throughput,
we need to consider all admissible rate matrices T . The
following proposition significantly restricts the number of rate
matrices T we need to consider. It is proved in Appendix I.

Proposition 5: The guaranteed throughput θ(C) defined
in (3) can be found by considering the set of permutation
matrices, i.e.,

θ(C) = min
T permutation

(θ(C, T)). (7)

Proposition 5 restricts to the set of permutation matrices
the set of rate matrices we need to consider. To show that
the throughput of Ĉ is at least N/(2N − 1), we just need to
show that a throughput of N/(2N −1) can be achieved for all
the permutation matrices. It leads to the following proposition,
proved in Appendix I.

Proposition 6: The guaranteed throughput of the biased
mesh with capacity matrix Ĉ is at least N/(2N − 1).

VI. OPTIMALITY OF THE BIASED MESH

We have just found that the biased mesh guarantees a
throughput of at least N

2N−1 . The following proposition shows
that the biased mesh achieves the maximum possible guaran-
teed throughput for any admissible capacity matrix.

Proposition 7: If the capacity matrix C is admissible, then
its guaranteed throughput satisfies

θ(C) ≤ N

2N − 1
.

The proof for Proposition 7 is in Appendix II.

VII. UNIQUENESS OF THE OPTIMAL CAPACITY MATRIX

Since we proved that the biased mesh achieves the optimal
throughput N/(2N−1), we will now demonstrate that it is the
only capacity matrix to do so. This is done in Proposition 8,
proved in Appendix III.

Proposition 8: The only capacity matrix C that can achieve
the optimal throughput N/(2N − 1) is the capacity matrix Ĉ
of the biased mesh.

In conjunction with Propositions 6, 7 and 8, we have,
therefore, established the following theorem.

Theorem 9: The biased mesh satisfies the following three
properties:
(i) The guaranteed throughput of the biased mesh is equal

to θ̂ = N/(2N − 1).
(ii) The biased mesh achieves the maximum possible guaran-

teed throughput for any network, i.e., θ(Ĉ) = N/(2N −
1).

(iii) The biased mesh is the only network to achieve this guar-
anteed throughput, i.e., θ(C ′) < θ(Ĉ) for any admissible
capacity matrix C ′ �= Ĉ.

VIII. THE BENEFIT OF LOAD-BALANCING

We can now quantitatively analyze the benefits of load-
balancing in an arbitrary network. Put mathematically, we can
estimate the ratio of the guaranteed throughputs that can be
achieved when load-balancing is allowed and when it is not.
We will call this ratio the load-balancing gain.

A. Guaranteed Throughput without Load-Balancing

Let’s compute the guaranteed throughput without load-
balancing, when only direct links can be used. To go from
node i to node j, a packet must be sent over the unique link
between i and j, and cannot be load-balanced via a third node.
In general, the guaranteed throughput of a non-load-balanced
network will be determined by its weakest link, as can be seen
when using a rate matrix that fully uses the weakest link. Thus,
the guaranteed throughput of a capacity matrix C will be

min
i,j

Cij .

For instance, without load-balancing, the guaranteed through-
put of the uniform full mesh is 1/N , and the guaranteed
throughput of the biased full mesh is 1/(2N − 1).

B. Guaranteed Throughput with Load-Balancing

Let’s now bound the guaranteed throughput with load-
balancing so as to bound the benefit of load-balancing. From
Theorem 9, we know that the guaranteed throughput of a
network is upper-bounded by θ̂, but we need to find a
lower-bound on the guaranteed throughput. We can do it by
comparing the network to the biased full mesh, which has the
highest guaranteed throughput. Using the linear scaling and
monotonicity properties of the throughput function, we find
that for any λ ∈ [0, 1],

C ≥ λĈ ⇒ θ(C) ≥ λθ̂.

In other words, if a given network has at least as much
capacity as the scaled-down version of the biased full mesh,
then it will also provide at least as much guaranteed throughput
as the scaled-down guaranteed throughput of the biased full
mesh. We can obtain the following proposition:

Proposition 10: The guaranteed throughput θ(C) for any
capacity matrix C satisfies:

θ̂ · min
i,j

(Cij

Ĉij

)
≤ θ(C) ≤ θ̂.

C. Load-Balancing Gain

Define the load-balancing gain as the ratio of the guaranteed
throughputs with and without load-balancing. Mathematically,

l.b.gain
�
=

θ(C)
mini,j Cij

.

The load-balancing gain is a measure of the gain in throughput
guarantee achieved by load-balancing. The following Proposi-
tion provides bounds on the load-balancing gain. It is proved
in Appendix IV.

Proposition 11: The load-balancing gain for any capacity
matrix C satisfies the following bounds:

N

2
≤ l.b.gain ≤ θ̂

mini,j Cij
.

Therefore, load-balancing always improves guaranteed
throughput by a factor of at least N/2.

The upper-bound on the load-balancing gain reflects the fact
that a system is forced to rely heavily on load-balancing when
its weakest link cannot carry enough capacity.

For example, let’s apply these bounds to the uniform full
mesh and the biased full mesh. For the uniform full mesh, the
lower-bound is tight, and Proposition 11 becomes:

N

2
≤ l.b.gain ≡ N

2
≤ N

2
· 1
1 − 1

2N

.

For the biased full mesh, the upper-bound is tight, and Propo-
sition 11 becomes:

N

2
≤ l.b.gain ≡ N ≤ N.

As an aside, it is interesting to note that since the uniform
mesh achieves 50% throughput (Equation 5), we know that
the uniform mesh is

θ(Ĉ)
θ(Cuniform)

=
N

2N−1
1
2

=
1

1 − 1
2N

= 1 + o(1) — optimal

for its guaranteed throughput. Therefore, the load-balanced
switch with a uniform mesh is asymptotically optimal. Asymp-
totically with N , it guarantees at least as much throughput as
any other fixed interconnection with an admissible capacity
matrix.

IX. CONCLUSION

When building a router or network we can choose from
among many different interconnection topologies; and can
choose whether or not to use load-balancing. In different
situations, we might want the network to have different prop-
erties; for example, minimize packet delay, maximize network
scalability or ensure no single-point of failure. In this paper we
assumed that we want to maximize the throughput in a system
for which we don’t know a priori what the traffic matrix will
be.

It is often difficult or impossible to analyze the throughput
of complex networks (e.g. sensor networks with arbitrary
topology [26], [27]) or complex packet routing algorithms
(e.g. adaptive algorithms [25]). However, this paper shows

that when the traffic matrix is not known, the guaranteed
throughput of a biased full mesh will always be strictly better
than the guaranteed throughput of any other network using
any routing algorithm.

This is quite a strong result, and should provide guidance to
those designing router interconnects, network topologies, and
multipath routing algorithms.

REFERENCES

[1] M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi and F. Neri,
“Packet scheduling in input-queued cell-based switches,” IEEE Infocom
’01, Anchorage, Alaska, April 2001.

[2] Y. Tamir and H.C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Trans. on Parallel and Distributed Systems,
vol. 4, no. 1, pp. 13-27, 1993.

[3] N. McKeown, ”iSLIP: A Scheduling Algorithm for Input-Queued
Switches” IEEE Transactions on Networking, Vol 7, No.2, April 1999.

[4] T.E. Anderson, S.S. Owicki, J.B. Saxe, and C.P. Thacker, “High speed
switch scheduling for local area networks,” ACM Trans. on Computer
Systems, Vol. 11, No. 4, pp. 319-352, Nov. 1993.

[5] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand, “Achiev-
ing 100% throughput in an input-queued switch,” IEEE Trans. on
Comm., Vol. 47, No. 8, Aug. 1999.

[6] J.G. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” Proc. of the IEEE INFOCOM, Vol. 2, pp. 556-564,
Tel Aviv, Israel, March 2000.

[7] E. Leonardi, M. Mellia, F. Neri and M. A. Marsan, “On the stability
of input-queued switches with speed-up,” IEEE/ ACM Transactions on
Networking, Vol. 9, No. 1, pp. 104-118, Feb. 2001.

[8] C.S. Chang, D.S. Lee and Y.S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering,” IEEE HPSR ’01, Dallas,
May 2001.

[9] C.S. Chang, D.S. Lee and C.M. Lien, “Load balanced Birkhoff-von
Neumann switches, Part II: multi-stage buffering,” Computer Comm.,
Vol. 25, pp. 623-634, 2002.

[10] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” IEEE Infocom, June 2002.

[11] C.S. Chang, D.S. Lee and C.Y. Yue, “Providing guaranteed rate services
in the load balanced Birkhoff-von Neumann switches,” IEEE Infocom,
2003.

[12] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard
and N. McKeown , “Scaling Internet routers using optics,” ACM SIG-
COMM ’03, Karlsruhe, Germany, Aug. 2003.

[13] C.S. Chang, D.S. Lee and Y.J. Shih , “Mailbox switch: a scalable two-
stage switch architecture for conflict resolution of ordered packets,”
IEEE Infocom ’04, Hong Kong, March 2004.

[14] I. Keslassy, S.T. Chuang, N. McKeown, “A load-balanced switch with an
arbitrary number of linecards,” IEEE Infocom ’04, Hong Kong, March
2004.

[15] R. Zhang-Shen and N. McKeown, “Designing a predictable Internet
backbone network,” HotNets III, San Diego, CA, Nov. 2004.

[16] M. Kodialam, T.V. Lakshman and S. Sengupta, “Efficient and robust
routing of highly variable traffic ,” HotNets III, San Diego, CA, Nov.
2004.

[17] S. Vutukury, “Multipath routing mechanisms for traffic engineering and
quality of service in the Internet,” PhD Thesis, March 2001.

[18] William J. Dally, “Performance analysis of k-ary n-cube interconnection
networks,” IEEE Transactions on Computers, Vol. C-39, No. 6, pp. 775-
785, June 1990.

[19] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, and J. Sibeyn, “Packet
routing in fixed-connection networks: a survey,” Journal of Parallel and
Distributed Processing, Vol. 54(2), pp. 77-132, 1998.

[20] W. Dally, P. Carvey, and L. Dennison, “Architecture of the Avici terabit
switch/router,” Proc. Hot Interconnects VI, pp. 4150, Aug. 1998.

[21] S. Scott and G. Thorson, “The Cray T3E network: adaptive routing in
a high performance 3D torus,” Hot Interconnects IV, Aug. 1996.

[22] G. Pfister, “An Introduction to the InfiniBand Architecture,” High
Performance Mass Storage and Parallel I/O, IEEE Press, 2001.

[23] B. Towles and W.J. Dally, “Worst-case traffic for oblivious routing
functions,” ACM Symposium on Parallel Algorithms and Architectures
(SPAA), Winnipeg, Manitoba, Canada, Aug. 2002.

[24] L. Valiant and G. Brebner, “Universal schemes for parallel communica-
tion,” Proc. of the 13th annual symposium on theory of computing, pp.
263-277, May 1981.

[25] A. Singh, W.J. Dally, A.K. Gupta and B. Towles, “GOAL: A load-
balanced adaptive routing algorithm for torus networks,” International
Symposium on Computer Architecture (ISCA), San Diego, CA, USA,
June 2003.

[26] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar, “Next century
challenges: scalable coordination in sensor networks,” MOBICOM ’99,
Washington, Aug. 1999.

[27] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of
wireless microsensor network models,” ACM Mobile Computing and
Communications Review (MC2R), 2002.

[28] L. G. Valiant, “A scheme for fast parallel communication,” SIAM Journal
on Computing, Vol. 11, No. 2, pp. 350–361, 1982.

[29] C.S. Chang, J.W. Chen and H.Y. Huang, “On service guarantees for
input-buffered crossbar switches: a capacity decomposition approach by
Birkhoff and Von Neumann,” IEEE IWQoS, London, 1999.

[30] J. von Neumann, “A certain zero-sum two-person game equivalent to the
optimal assignment problem,” Contributions to the Theory of Games,
vol. 2, pp. 5-12, Princeton University Press, Princeton, NJ, 1953.

[31] G. D. Birkhoff, “Tres observaciones sobre el algebra lineal,” Universidad
Nacional de Tucuman Revista, Serie A, vol. 5, pp. 147-151, 1946.

APPENDIX I
GUARANTEED THROUGHPUT OF THE BIASED MESH

A. Proof of Proposition 5

Proof: For any admissible matrix T , there is at least
one doubly stochastic matrix T such that T ≤ T [29], [30].
Clearly θ(C, T) ≤ θ(C, T), and so we only need to consider
the doubly stochastic rate matrices.

Birkhoff’s theorem states that the set of doubly stochastic
matrices equals the convex hull of the permutation matrices
[31]. The claimed result follows from the definition of through-
put.

B. Proof of Proposition 6

Proof: We will prove that Ĉ achieves a throughput of
N/(2N − 1) when T = σ, with σ a permutation. Let c =
1/(2N−1). We consider a node i, and prove that i can always
send at rate Nc to σ(i). Our objective is to send as much
flow as we can directly, and to uniformly load-balance the
remainder among the non-diagonal elements. We distinguish
two cases: either σ(i) = i or σ(i) �= i.

If σ(i) = i, node i needs to send Nc to itself. Therefore,
node i can send c directly to itself, and load-balance the
remaining rate of (N − 1)c among the other (N − 1) nodes,
then sending c to each node.

If σ(i) �= i, node i needs to send Nc to node σ(i) �= i.
Therefore, node i can send 2c directly to σ(i), and load-
balance the remaining rate of (N − 2)c among the (N − 2)
nodes different from i and σ(i); and each such node then sends
c again to node σ(i).

Let us examine the load on each link. Each diagonal element
Ĉii only receives traffic if it is destined from node i to node
i, and in this case it receives exactly c, its capacity.

Moreover, each non-diagonal element Ĉij can only receive
traffic in two distinct cases, which cannot happen at the same
time. If j = σ(i), Ĉij receives exactly 2c, its capacity.
Otherwise j �= σ(i), and Ĉij receives c from the load-balanced
path i → j → σ(i), and c from the load-balanced path
σ−1(j) → i → j, summing to 2c, its capacity.

The load on each link is therefore always bounded by its
capacity; hence, this solution is feasible and the guaranteed
throughput of Ĉ is at least Nc = N/(2N − 1).

Fig. 4. Load-balancing example illustrating Proposition 12. The dashed line
between i and j is a direct path. The two other paths are load-balanced paths
in PLB(i, j). In the first load-balanced path k1 = l1, in the second k2 �= l2.

APPENDIX II
OPTIMALITY OF THE BIASED MESH (PROPOSITION 7)

In this Appendix, we will prove that the biased mesh
achieves the maximum possible guaranteed throughput for any
possible admissible capacity matrix by establishing Proposi-
tion 7. To do so, we will first prove several useful Lemmas
and Propositions by considering rate matrices that are also
permutation matrices.

A. Throughput Bounds over the Set of Permutation Rate
Matrices

It helps to study how the load-balancing is done. Let the
set of load-balanced paths

PLB(i, j) = {p ∈ P (i, j) : (i → j) �∈ p}
be the set of paths p between nodes i and j such that the
link i → j is not in p. We will call paths not in PLB(i, j)
direct paths. For instance, 1 → 3 → 2 is a load-balanced path
between node 1 and node 2, whereas 1 → 2 and 1 → 1 →
2 → 2 are direct paths.

Proposition 12: Any path p ∈ P (i, j) satisfies one of the
following two cases:
(i) If p is a direct path then (i → j) ∈ p, or

(ii) If p is a load-balanced path then there exist two nodes k
and l, possibly equal, such that k �= i, k �= j, l �= i and
l �= j, such that p contains i → k and l → j.
Proof: (i) clearly follows from the definition of

PLB(i, j). In (ii), by definition of PLB(i, j), at least one node
is different from i, and if node k is the first node in path p
that is different from i, then k �= j also. Similarly, if node l
is the last node in path p that is different from j, then l �= i
also.

Using this characterization of load-balanced paths, we con-
sider all the rate matrices that are also permutation matrices,
such that each node sends all its traffic to some other node.
For a permutation σ, let

S1(σ) = {i : σ(i) = i}
denote the set of nodes invariant to σ, and let

S2(σ) = {i : σ(i) �= i} = {1, ..., N} \ S1

denote the remaining nodes. The following lemma proves a
general upper bound on the throughput θ(C) by considering
the set of rate matrices that are permutation matrices.

Lemma 13: Given a capacity matrix C, the throughput
θ(C) has the following upper bound taken over the set of
permutations:

θ(C) ≤ 1
2

+
1

2N
×

min
σ permut.


 ∑

i∈S1(σ)

Cii +
∑

i∈S2(σ)

(Ciσ(i) − Cii)




Proof: By definition of the throughput θ(C), for any
permutation σ,

θ(C) ≤ θ(C, σ).

Therefore, we only need to show that for any permutation σ,

θ(C, σ) ≤ 1
2

+
1

2N


 ∑

i∈S1(σ)

Cii +
∑

i∈S2(σ)

(Ciσ(i) − Cii)


 .

Consider a given permutation σ. By definition of θ(C, σ),
any node i manages to send traffic at rate θ(C, σ) to node j =
σ(i). (We know that the optimum can be reached because the
throughput θ is defined using continuous functions on compact
sets.)

Consider then a path p between i and j = σ(i), and
distinguish between the following cases.

1) If p �∈ PLB(i, j), then from Proposition 12, p contributes
at least T p

ij to Cij .
2) If p ∈ PLB(i, j), then by Proposition 12 there exists two

nodes k and l such that k �= i, k �= j, l �= i and l �= j,
and such that p contains i → k and l → j. Hence, p
will use a rate of at least T p

ij out of the capacity Cik in
order to carry the link i → k, and will also use a rate
of at least T p

ij out of the capacity Clj in order to carry
the link l → j.
Therefore, p requires a total rate of at least 2 · T p

ij from
the non-diagonal elements of the capacity matrix C.

These two cases show that the link between i and j =
σ(i) can use non-diagonal capacity both with direct and load-
balanced paths.

In particular, the first case studies the direct paths. It shows
that the link between i and j = σ(i) uses a rate of at least∑

p�∈PLB(i,σ(i)) T p
iσ(i) out of Ciσ(i) for the direct paths. This

is a contribution to the non-diagonal capacity if and only if
σ(i) �= i, i.e., i ∈ S2(σ). Also, since the capacity for the direct
link should be greater than its rate in order to be feasible, we
get

Ciσ(i) ≥
∑

p�∈PLB(i,σ(i))

T p
iσ(i). (8)

The second case studies the load-balanced paths. It shows
that the link between i and j = σ(i) uses a rate of at least∑

p∈PLB(i,σ(i)) 2 · T p
iσ(i) out of the non-diagonal elements of

C for the load-balanced paths.
As a feasibility condition, the sum of the capacities of all

the non-diagonal links should be more than the sum of all the

rates required from these non-diagonal links. Therefore, using
the two cases studied above, we get

non-diagonal capacity ≥ non-diagonal required rate,

i.e., ∑
i,j �=i

Cij ≥
∑

i∈S2(σ)

∑
p�∈PLB(i,σ(i))

T p
iσ(i)

+
N∑

i=1

∑
p∈PLB(i,σ(i))

2T p
iσ(i).

We now study the two sides of this equation. On the left
hand side, since C is admissible, we have

N −
∑

i

Cii ≥
∑
i,j �=i

Cij .

On the right hand side, the sum of all the rates required
from these non-diagonal links can be rewritten as∑

i∈S2(σ)

∑
p�∈PLB(i,σ(i))

T p
iσ(i)

+

[
N∑

i=1

(∑
p�∈PLB(i,σ(i))

2T p
iσ(i)

+
∑

p∈PLB(i,σ(i))

2T p
iσ(i)

)
−

N∑
i=1

∑
p�∈PLB(i,σ(i))

2T p
iσ(i)

]

= 2Nθ(C, σ) − 2
∑

i∈S1(σ)

∑
p�∈PLB(i,σ(i))

T p
iσ(i)

−
∑

i∈S2(σ)

∑
p�∈PLB(i,σ(i))

T p
iσ(i),

using T = θ(C, σ) · σ and S1(σ) ∪ S2(σ) = {1, ..., N} in the
last equality. Using Equation (8), the sum of the non-diagonal
rates can therefore be lower bounded by

2Nθ(C, σ) − 2
∑

i∈S1(σ)

Ciσ(i) −
∑

i∈S2(σ)

Ciσ(i).

Finally, we combine the equations and use the definition of
S1(σ): i ∈ S1(σ) iff σ(i) = i. We get

N −
∑

i

Cii ≥ 2Nθ(C, σ) − 2
∑

i∈S1(σ)

Cii −
∑

i∈S2(σ)

Ciσ(i).

Therefore,

θ(C, σ) ≤ 1
2

+
1

2N


 ∑

i∈S1(σ)

Cii +
∑

i∈S2(σ)

(Ciσ(i) − Cii)


 .

B. Throughput Upper-Bound for a Capacity Matrix

We will now provide an upper-bound for the throughput of
a capacity matrix by considering specific permutations. For
0 ≤ k ≤ N − 1, define the permutation σk as the kth sub-
diagonal, i.e., assume that node i destines all its traffic to
σk(i) = i+k mod N . We can then apply Lemma 13 to find the
upper bound corresponding to each permutation, as expressed
in the following lemma.

Lemma 14: Given a capacity matrix C, the throughput
θ(C) has the following upper bounds:

θ(C) ≤ 1
2

+
∑N

i=1 Cii

2N
, (9)

and

θ(C)≤ 1
2

+
min1≤k≤N (

∑N
i=1(Ci(i+k mod N) − Cii))

2N
. (10)

Proof: For k = 0, S1(σk) = {1, ..., N}, hence the upper-

bound from Lemma 13 is 1
2 +

∑N
i=1 Cii

2N . Similarly, for 1 ≤
k ≤ N − 1, S2(σk) = {1, ..., N}, hence this upper-bound is
1
2 +

∑N
i=1(Ciσk(i)−Cii)

2N .
Proposition 15: If the capacity matrix C is admissible,

i.e., C is a doubly sub-stochastic matrix, then its throughput
satisfies

θ(C) ≤ N

2N − 1
.

Proof: We will prove this by contradiction. Suppose that
θ(C) > N

2N−1 . For 0 ≤ k ≤ N − 1, let

xk =
N∑

i=1

Ci(i+k mod N).

It follows from (9) and (10) that

x0 >
N

2N − 1
, (11)

and for k = 1, 2, . . . , N − 1,

xk − x0 >
N

2N − 1
. (12)

Therefore, we have xk > 2N
2N−1 for k = 1, 2, . . . , N − 1.

Summing up for all k yields

N <

N−1∑
k=0

xk =
N∑

i=1

N∑
j=1

Ci,j .

This contradicts the assumption that the capacity matrix C is
a doubly sub-stochastic matrix.

As the biased mesh with capacity matrix Ĉ achieves the
throughput N/(2N − 1), it then follows from Proposition
15 that the biased mesh is optimal among all the admissible
capacity matrices.

APPENDIX III
UNIQUENESS OF THE OPTIMAL CAPACITY MATRIX

(PROPOSITION 8)

In this Appendix, we will prove that the biased mesh is
the only capacity matrix that achieve the optimal throughput
N/(2N − 1), and therefore we will be able to establish
Proposition 8.

Lemma 16: If an admissible capacity matrix C achieves the
optimal throughput N/(2N − 1), then the capacity matrix C
satisfies

N∑
i=1

Cii =
N

2N − 1
, (13)

and for k = 1, 2, . . . , N − 1,

N∑
i=1

Ci(i+k mod N) =
2N

2N − 1
. (14)

Proof: As in the proof of Proposition 7, let

xk =
N∑

i=1

Ci(i+k mod N).

If an admissible capacity matrix C achieves the optimal
throughput N/(2N − 1), then we have from (9) and (10) that

x0 ≥ N

2N − 1
, (15)

and for k = 1, 2, . . . , N − 1,

xk ≥ 2N

2N − 1
. (16)

If one of the inequalities in (15) and (16) is strict, then∑N−1
k=0 xk will be strictly larger than N and this will contradict

to the assumption that C is admissible. Therefore, we conclude
that all the inequalities in (15) and (16) are in fact equalities.

Lemma 17: If an admissible capacity matrix C achieves the
optimal throughput N/(2N − 1), then for any permutation σ,

∑
i∈S2(σ)

(Ciσ(i) − 2Cii) = 0.

Proof: Equation (13) in Lemma 16 provides∑
i∈S1(σ) Cii +

∑
i∈S2(σ) Cii = N/(2N − 1) for any

permutation σ. Hence, using Lemma 13, we get

N

2N − 1
≤ 1

2
+

1
2N

min
σ


 N

2N − 1
+

∑
i∈S2(σ)

(Ciσ(i) − 2Cii)


 ,

where the minimum is taken over the set of permutation
matrices. Therefore,

0 ≤ min
σ


 ∑

i∈S2(σ)

(Ciσ(i) − 2Cii)


 ,

i.e., for any permutation σ,

0 ≤
∑

i∈S2(σ)

(Ciσ(i) − 2Cii).

We now use the fact that there are exactly (N − 1)!
permutations σ such that σ(i) = j for any nodes i and j.
As a consequence, given a node i, there are exactly (N − 1)!
permutations σ such that i �∈ S2(σ), i.e., such that σ(i) = i.
Therefore, there are exactly N ! − (N − 1)! permutations σ

such that i ∈ S2(σ). We can deduce that

∑
σ


 ∑

i∈S2(σ)

(Ciσ(i) − 2Cii)




= (N − 1)!
∑
i,j �=i

Cij − 2(N ! − (N − 1)!)
∑

i

Cii

= (N − 1)!
∑
i,j

Cij − (2N ! − (N − 1)!)
∑

i

Cii

= N ! − (N − 1)! · (2N − 1) · N

2N − 1
= 0,

where we use (13) in the last equality. Therefore, given that
the sum of all these numbers is 0, and that they were all shown
to be nonnegative, this means that they are all null.

The next lemma enables us to determine the exact value of
the diagonal elements of C.

Lemma 18: If an admissible capacity matrix C achieves the
optimal throughput N/(2N − 1), then for all i,

Cii =
1

2N − 1
.

Proof: Pick arbitrarily any node — for instance, node
1 without loss of generality. For any node j �= 1, consider
the permutation σ such that σ(1) = j, σ(j) = 1, and the
restriction of σ to the other elements is the identity. By Lemma
17, C1j + Cj1 = 2(C11 + Cjj). Summing over all such j’s
yields

∑N
j=2(C1j +Cj1) =

∑N
j=2 2(C11 +Cjj). Adding 2C11

on each side of the equation and using (13) and (14) yields

1 + 1 = 2(N − 1)C11 +
2N

2N − 1
.

Hence C11 = 1
2N−1 . Since we picked the first node arbitrarily,

this is similarly true for any node.
Proposition 19: The only matrix C that can achieve the

optimal throughput N/(2N−1) is the capacity matrix Ĉ from
the biased mesh.

Proof: Combining Lemmas 17 and 18, for any permu-
tation σ,

∑
i∈S2(σ) Ciσ(i) = (2 · |S2(σ)|)/(2N − 1), where

|S2(σ)| denotes the number of elements in S2(σ).
Define matrix D such that Dij = Cij for i �= j, and Dii =

2/(2N − 1) = 2Cii. Then all row and column sums of D are
equal to 1 + 1/(2N − 1) (because C is doubly stochastic). In
addition, for any permutation σ,∑

i

Diσ(i) =
∑

i∈S1(σ)

Diσ(i) +
∑

i∈S2(σ)

Diσ(i)

=
∑

i∈S1(σ)

Dii +
∑

i∈S2(σ)

Diσ(i)

=
2 · |S1(σ)|
2N − 1

+
2 · |S2(σ)|
2N − 1

=
2N

2N − 1
.

Hence, any permutation on D has the same sum! For any
two nodes i, j, construct two permutations equal everywhere
except on {D11,Di1,D1j ,Dij}. Then D11+Dij = Di1+D1j .
Therefore, all elements of D can be written as Dij = Di1 +
(D1j − D11) = ui + vj , where u and v are two sequences
defined on {1, ..., N}. Since all row and column sums of D
are the same, all elements of D are equal; therefore, all non-
diagonal elements of C are equal, and finally C = Ĉ.

Therefore, we have finally established Proposition 8.

APPENDIX IV
LOAD-BALANCING GAIN (PROPOSITION 11)

We will now prove the equation in Proposition 11.
Proof: The right-hand-side of the equation comes directly

from Proposition 10. The left-hand-side results from using the
uniform mesh instead of the biased mesh to create the lower
bound in Proposition 10. If Cuniform is the uniform mesh,
θ(Cuniform) = 1/2 and Cuniformij = 1/N , therefore their
ratio is N/2.

