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Abstract—In this paper, we consider the practical problem of
scheduling traffic lights to reduce the average vehicle waiting
times. We find that existing scheduling algorithms have lack-
luster performance. Instead, we introduce two algorithms. First,
extended CMSM (eCMSM), which extends CMSM from a switch
scheduling model to a general traffic-light scheduling model. We
prove that eCMSM can optimally schedule any traffic batch.
Second, we introduce Front-Pressure (FP), which aims to further
reduce the average waiting time at general intersections. We then
evaluate empirically these two algorithms. We find that when
using them, the best average waiting time can be improved in 98%
of the simulations when compared to several existing algorithms,
most significantly in congested settings.

I. INTRODUCTION

Motivation. Traffic congestion in signalized intersections is
a major challenge, especially in dense urban areas, where
congestion at one intersection may spread to neighboring
intersections. The long waiting times of the vehicles directly
affect the productivity of the passengers, and result in annual
cost penalties of at least hundreds of billions of dollars [1].

Nowadays, most traffic lights are controlled offline using a
predetermined policy. This policy sets a specific time sequence
of traffic-light phases (i.e., allowed configurations). However,
improved sensors in signalized intersections can now estimate
in real-time the state of the intersection and enable online
policies [2], with a major potential impact on the economy
[3]. Ideally, an online state-aware policy would optimize the
average waiting time across a whole city, but this proves
impractical. Therefore, we focus on a single intersection.
Related work. Scheduling intersections has been the focus
of much recent research in the field of traffic control [4]. A
notable algorithm is the Max-Pressure algorithm [5], which
maximizes the number of vehicles in lanes given a green light.
The phases can be either hand-crafted or computed automat-
ically [6]. Other approaches such as Stochastic Planning [4],
Linear Programming [7] and Machine Learning [8] have also
been applied to the problem of traffic control.

In addition, the problem of finding a scheduling policy in
traffic intersections is closely related to that of packet schedul-
ing in computer networks. Network routers also need to sched-
ule packets that are destined to different router ports, such that
there is no collision between packets. However, scheduling
in road intersections involves additional constraints; e.g., in
each scheduled phase, lanes should not cross each other to
avoid vehicle collision. In particular, the general Back-Pressure
(BP) algorithm [9], also known as Maximum Weight Matching
(MWM) in a limited switch setting, is a similar algorithm

to Max-Pressure. It was shown to achieve 100% throughput
under independent arrival processes with admissible arrival
rates. Unfortunately, it can also cause significant starvation and
unfairness among queues, especially with reactive traffic [10]–
[13]. Another common scheduling approach is Maximum
Size Matching (MSM), which maximizes the instantaneous
throughput of the switch by choosing a set with the high-
est number of occupied queues at each time-slot. Although
it maximizes the instantaneous throughput, MSM does not
achieve 100% throughput in general and may be unstable
for specific rates of arrival [14]. Another related problem
is Time Slots Assignment (TSA) in satellite switching. TSA
periodically accumulates traffic and then schedules each re-
sulting batch without considering ongoing arrivals. Critical
Maximum Size Matching (CMSM) was proved to solve the
TSA problem by reaching a schedule that needs a minimal
number of time-slots [15]. Furthermore, like BP, CMSM
achieves 100% throughput for any admissible arrival rates
under batch scheduling [16].
Contributions. In this paper, we look for a practical online
scheduling algorithm that reaches a low average waiting time.

In Sec. II, we start by defining our traffic intersection model
by relying on its conflict graph, which represents the sets of
lanes that cannot be scheduled simultaneously.

Then, in Sec. III, we explain why MSM, BP and CMSM do
not fit our goal: MSM and BP have lackluster practical perfor-
mance, while CMSM is ill-defined for the traffic intersection
model. Instead, we can exploit the small size of the single-
intersection problem by exploring more complex algorithms.
We first introduce extended CMSM (eCMSM), an extension
of CMSM that can handle scheduling at traffic intersections.
eCMSM picks a maximum-size phase, but also makes sure to
select at least one lane from each maximum-weight clique. We
prove that eCMSM is optimal for the intersection equivalent
of the TSA problem. Moreover, since we are looking for an
even better practical performance, we introduce our Front-
Pressure (FP) algorithm, which displays better performance
under congestion. FP picks again a maximum-size phase, but
among all such schedules, picks the one with the highest
lexicographic weight, i.e., breaks ties by giving preferential
service to the phase that services the longest queue of vehicles,
and in case of tie, the second-longest queue, and so on.

Finally, in Sec. IV, we evaluate and compare all these
policies. Using a realistic setting, we find that FP and eCMSM
achieve the best average waiting time among all algorithms in
76% and 22% of the cases, respectively.



II. MODEL AND NOTATIONS

We consider the problem of finding a scheduling policy
for a general-shape signalized traffic intersection with n ≥ 2
entrance lanes that are exclusively controlled by traffic lights.

Conflict graph. As Fig. 1 illustrates, we model the intersection
using its conflict graph, i.e., an undirected graph G(V,E)
where each of the |V | = n vertices represents a lane, and an
edge between two vertices exists iff the lanes are conflicting.
For instance, given the T-shaped intersection in Fig. 1a, the
resulting conflict graph is displayed in Fig. 1b. Note that we
can also add a pedestrian cross-walk with a pedestrian traffic
light, simply by augmenting the conflict graph.

Phase. We classically assume a discrete-time model of an
isolated intersection, with periodic scheduling cycles of pre-
determined fixed duration T [17]. Namely, let a phase denote
a group of lanes that can be assigned a green light at the same
time without conflicts. Also define a time-slot as the minimal
time that can be assigned to each phase; for simplicity, we
normalize time so that each time-slot lasts 1. Then every
cycle of T time-slots, we want to schedule a set of T traffic-
light phases that will last for the entire cycle. For instance,
if T = 10, then we can schedule one phase for 7 time-slots,
then another for 3 time-slots. Denote the set of vehicles in
a given lane as a flow. We assume that the schedule is not
delayed, i.e., flows start moving immediately once assigned a
green light, and stop right after the red light.

Queueing. At each lane i, we denote by W (i) ∈ N the
number of vehicles waiting for the green light, also referred
to as queue size or weight. This number is always known,
e.g., via a dedicated sensor. For simplicity, we treat arriving
cars as if they all arrive at the beginning of a cycle. i.e.,
car arrivals are delayed in the model to the next beginning
of a cycle. In addition, when a flow gets a green light, we
assume a constant evacuation rate of 1 [car/time-slot]. We
will say that a scheduling algorithm is stable, or achieves
100% throughput, whenever it stabilizes all the queues of
the intersection under all independent and admissible arrival
rates [16], [18]. However, in this paper, we do not restrict
ourselves to admissible traffic, and are also interested in
scheduling algorithms that can also perform well under non-
admissible arrivals due to congestion.

MIS. Using graph theory, a phase can be seen as an Inde-
pendent Set (IS) of the conflict graph, i.e., a subset of vertices
without any two adjacent vertices, thus guaranteeing that there
are no conflicting flows. In addition, it is natural to schedule
flows from a Maximal Independent Set (MIS), i.e., an IS that
is not a subset of any other IS, which will achieve a greater
throughput than scheduling flows from a non-maximal IS.

Problem statement. Our main objective is to find a scheduling
algorithm that reduces the average waiting time per vehicle.
By Little’s Law (whenever applicable), this is equivalent to
reducing the average queue occupancy.

(a) T-shaped intersection (b) Conflict graph

Fig. 1: (a) T-shaped intersection, with its (b) conflict graph.
For instance, lanes 1 in yellow and 4 in green cannot be
scheduled together in the same phase, because they share the
same destination.

III. ALGORITHMS

Settings. We exploit the small size of the intersection schedul-
ing problem (typically n ≤ 20) to introduce more complex
algorithms. In particular, we assume that all the MISes are first
computed offline once, e.g., by applying the Bron-Kerbosch
algorithm [19] on the conflict graph of the intersection. This
stage is potentially the most time-consuming due to the com-
plexity of computing the MISes, but since it is done offline,
this is not considered as a major problem. Then, online, we
pick a phase among all possible MISes at each cycle.

Challenges. We start by considering three well-known algo-
rithms, which we presented in the Introduction, and explain
why they do not fit our goals.

MSM. First, Maximum Size Matching (MSM) maximizes the
instantaneous throughput by choosing a random maximum-
cardinality MIS at each time-slot. Unfortunately, since it does
not take the queue lengths into account, it does not prioritize
a queue with 100 vehicles over a queue with a single vehicle,
and therefore can result in poor performance [14].

BP. Next, BackPressure (BP), also known as Maximum-Weight
Matching (MWM), maximizes the number of vehicles in lanes
with a green light. While it provides 100% throughput, it tends
to strongly favor the heaviest lanes, and does not always pick a
maximum-cardinality schedule like MSM. As a result, it tends
to spread the traffic jam across more lanes.

Fig. 2 illustrates a BP schedule example. Specifically,
Fig. 2a provides an example of conflict graph and the asso-
ciated queue sizes. For instance, the rightmost lane has 100
vehicles waiting for a green light. Then, Fig. 2b shows the
resulting BP schedule, which strongly favors the long queues
and schedules the lanes with 100 and 10 vehicles. It is not a
maximum-cardinality schedule since it only schedules 2 non-
empty queues instead of 3.

CMSM. Instead, we would like a hybrid algorithm that can
combine the maximum-cardinality of MSM and the priority
given to longer queues by BP, thus unspreading the traffic
jam unlike BP. We start by considering the Critical Maximum
Size Matching (CMSM) algorithm, which (in bipartite graphs)
selects an MSM schedule that picks at least one element from
each maximum-length (critical) source or destination. Unfor-



(a) Conflict graph and queue sizes (b) BP schedule (c) eCMSM schedule (d) FP schedule

Fig. 2: A conflict graph and the potential schedules produced by each algorithm in the first time-slot. Specifically: (a) Conflict
graph, together with the corresponding queue sizes at each lane. (b) BP phase schedule, which maximizes the number of
vehicles in lanes with a green light (here 100 + 10 + 0 = 110), but also picks an empty lane (in grey). (c) eCMSM schedule,
which makes sure to schedule at least one lane in each maximum-weight clique, and in particular picks one of the two lanes
in the maximum clique in a dashed ellipse. Note that the eCMSM schedule is also always a potential MSM schedule. (d) FP
schedule, which picks the MSM schedule with the highest lexicographic order. Here, FP makes sure to schedule the lane with
100 vehicles. Then, if it were to schedule the lane with 10, as for BP, the resulting schedule would not be maximal-size.
Therefore, it schedules the lane with 8, and the remaining leftmost lane with 1.

tunately, CMSM only applies to bipartite graphs, and therefore
does not work on general conflict graphs of intersections.

eCMSM. Consequently, we start by introducing extended
CMSM (eCMSM), which extends CMSM to intersections (and
is equivalent to CMSM when reduced to bipartite graphs). We
exploit the notion of a clique, i.e., a subset of the set of vertices
such that any two subset vertices are adjacent. Let a maximum-
weight clique denote a clique with a maximum weight, i.e.,
a clique that contains a maximum number of vehicles. Then
eCMSM schedules a maximum-cardinality phase (as in MSM)
such that all maximum-weight cliques have at least one
scheduled representative.

For instance, Fig. 2c illustrates a potential eCMSM sched-
ule. This schedule is maximum-cardinality, since it schedules
three non-empty queues, and it also schedules a representative
from the maximum-weight clique (in this case, the represen-
tative with 1 vehicle).

We can prove the following optimality result for eCMSM
in the intersection equivalent of the TSA problem:

Theorem 1. Any intersection with maximum-weight clique
of weight W and no arrivals can be optimally emptied by
eCMSM in W time-slots.

Proof: We start by proving that if the weight of any
maximum-weight clique is W in time-slot t and there are
no arrivals, then under the eCMSM policy, the weight of any
maximum-weight clique C at time-slot t+1 is at most W −1.
Case 1: C is a maximum-weight clique at time t. eCMSM
services at least one representative lane from each maximum-
weight clique at time t, and therefore the weight of any
maximum-weight clique at t+ 1 will be reduced to W − 1.
Case 2: C is a non-maximum-weight clique at t. Cliques that
are not maximum-weight at t have a weight of at most W −1,
and this weight cannot increase.
Finally, by induction, after W time-slots, the weight of any
maximum-weight clique is 0; and therefore all queues are

empty.
We conclude the proof by showing optimality, i.e., no schedul-
ing algorithm can outperform eCMSM: by definition, a
maximum-weight clique of weight W cannot be serviced in
less than W time-slots.

FP. Unfortunately, the eCMSM performance can sometimes
still be lacking, especially in the presence of heavy congestion.
For instance, in Fig. 2c, we can see how eCMSM does not ser-
vice the heavily-congested queue with 100 vehicles. Therefore,
we introduce our Front-Pressure (FP) algorithm. As detailed
in Algorithm 1, at each time-slot, FP picks a maximum-
cardinality MIS by breaking ties using the queue-length
lexicographic order. Namely, like MSM and eCMSM, FP
picks a maximum-cardinality MIS. However, if the maximum-
cardinality MIS is not unique, then it picks the maximum-
cardinality MIS with the longest queue. Else, if there are
several such schedules, it keeps comparing the second-longest
queue, third-longest queue, and so on, until reaching a unique
MIS. If it has compared all queues and there are still several
MISes with equal queue lengths, it picks a random one.

The complexity of the algorithm can be divided into two
parts. The first part is offline and reasonable, so it is not a
major problem for our purposes. The second part is online,
and is governed by the complexity of the sorting problem
among all potential MISes, which can be done efficiently. For
instance, in the example of Fig. 1, the 6 lanes lead to 4 MISes;
and with a cross-shaped intersection with 12 lanes, we get 17
MISes. With these 17 MISes, an unoptimized FP runs in some
10 milliseconds on a simple laptop.

IV. SIMULATIONS

In this section, we present empirical results for our eCMSM
and FP algorithms, and compare them to other algorithms.

Settings. We simulated a general cross-shaped intersection,
with three entering lanes at each direction of the cross, i.e., a
total of twelve entering flows.



Algorithm 1: Front-Pressure

input : conflict graph G, weight vector W , cycle time T
output: set M of all MISes, scheduling vector S

1 initialize S with zeros
2 M ← Find all MISes of G . computed offline
3 while intersection is not empty &

∑
i Si < T do

4 W ← Get remaining weights given S
5 size(m)← m · 1W>0, ∀m ∈M . i.e., inst. throughput
6 M ′ ← sort M by size
7 P ← {m′ ∈M ′

∣∣∣ size(m′) = max
m∈M′

size(m) } . MSM

8 if |P | > 1 then
9 P ′ ← Find (lexicographic) set of maxima in

{sort(m�W )|m ∈ P} . sorted element-wise product
10 if |P ′| > 1 then
11 p← random(P ′) . pick random max element
12 i← index of p in M
13 Si = Si + 1.
14 return M,S

Algorithms. We compared the results to three other algorithms:
Round-Robin [6], MSM [14], and BP [9]. RR is a static
scheduling policy, similar to what is commonly used today,
that repeats periodically a fixed number of phases with prede-
termined green times. This policy is oblivious of the current
queue sizes at the traffic intersection. In particular, in our
implementation, RR cycles in round-robin through the MISes
and allocates the same time for each MIS.

Arrivals. For each simulation, we consider a vector of arrival
rates at each lane. At the beginning of each cycle, the actual
number of vehicles for each lane is sampled from a Poisson
distribution with mean corresponding to the lane’s arrival rate.

Measures. All the congestion plots present the number of cars
queued at the intersection as a function of the cycle number.
For each of the first two plots, we averaged ten simulations.
The bold line presents the mean for each algorithm, and the
standard deviation is given as the transparent envelope of the
line.

Admissible traffic. The first plot (Fig. 3) illustrates a stable
setting with admissible rates, i.e., the intersection can serve
all the vehicles without causing congestion. The cycle time
for this simulation was 120 time-slots, and the arrival rates
per cycle were [(33, 9, 5), (5, 24, 28), (38, 14, 33), (47, 9, 14)],
where each of the four triplets represents the rates from each
of the four source roads to each of the three other destination
roads, in the same order. Both RR and MSM are unstable and
experience a near-linear increase of the queue lengths over
time, while BP, eCMSM and FP keep a stable behavior, with
eCMSM having a slightly higher number of vehicles.

Non-admissible traffic. The second plot (Fig. 4) illustrates
an unstable setting with non-admissible rates, i.e., vehi-
cles are arriving too quickly for any intersection sched-
ule to evacuate them all, so congestion is building up
at the intersection. The cycle time for this simulation
was 120 time-slots, and the arrival rates per cycle were
[(39, 11, 6), (6, 28, 34), (45, 17, 39), (56, 11, 17)]. As expected,

Fig. 3: Simulation with admissible rates.

Fig. 4: Simulation with non-admissible rates.

congestion builds up in all algorithms. FP builds up the least
congestion, maintaining the shorter average queue size and
therefore shorter waiting time (by Little’s Law); and eCMSM
displays the second-best performance.

Throughout the day. The last evaluation attempts to illustrate
a real-world scenario. In a real intersection, congestion usually
occurs in the hours of the day where people go to work or get
back from work. As shown in Fig. 5a, we start from a real-
world daily congestion graph of Mexico City obtained from
[20]. We then model a cross-shaped intersection with twelve
flows, where the arrival rates at each cycle are normalized
by making them proportional to the congestion value in the
corresponding hour. Namely, there is more congestion at 9:00
and 19:00, and less at 6:00.

We tested this realistic pattern of congestion over 2,000
simulations. In each simulation the vector of arrival rates was
sampled from an i.i.d. uniform distribution, and the average
waiting time was calculated for each algorithm. Fig. 5b plots
the results of one simulation that showed more significant dif-
ferences, and Table I synthesizes the results of all simulations.

Fig. 5b shows how the general behavior of all algorithms
is the same over the day (excluding RR, which behaves
particularly badly). FP clearly exhibits the best performance,
as can be seen most clearly in the peak evening hours. The
dashed straight lines represent the average number of vehicles
over the whole simulation. FP achieves the smaller average
number of vehicles and the shorter average waiting time.

Table I provides the average waiting times over the 2,000
simulations. As expected, RR performs the worst. Then,



(a) Measured vehicle congestion in Mexico City.

(b) A Mexico-City simulated intersection under different policies.

Fig. 5: Simulation based on Mexico City real-world data.

Policy Average waiting time

RR 109.08
MSM 15.55
BP 12.62
eCMSM 12.42
FP 12.11

TABLE I: Average statistics over 2,000 simulations

MSM, BP, eCMSM and FP provide increasingly better average
performance. eCMSM manages to improve the waiting time
over BP by 1.6%, and FP outperforms BP by 4.2%. This
relatively-small apparent increase is an average between many
simulations with little congestion and negligible improvement,
and a few simulations with a larger congestion and a more
distinct improvement (as in Fig. 5b). In fact, FP is the best
policy in 76% of all simulations, eCMSM in 22% of all
simulations, and BP in the remaining 2%.

V. CONCLUSION

In this paper, we used a graph-based model for traffic inter-
sections, and computed the phases automatically based on the
intersection model. We presented two scheduling algorithms
for traffic lights at an isolated intersection, and compared their
performance to other known algorithms. The first algorithm,
eCMSM, is an extension of CMSM to intersection settings,
and extends the notion of a critical source or destination in
a bipartite graph to a critical clique in a general graph. We

further prove that eCMSM can optimally schedule any traffic
batch. Our second algorithm, FP, maximizes the instantaneous
throughput, but also has a tie-breaking mechanism that favors
longer queues. We showed how eCMSM and especially FP
outperform existing algorithms in our evaluations, especially
in heavily congested intersections. We also argued why we
believe that they are ready for implementation in real inter-
sections.
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