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Abstract—Consistent hashing (CH) is a crucial building block
for load-balancers. It enables packets of the same flow to keep
being mapped to the same server whenever possible. Load-
balancers implement heterogeneous CH to deal with the varying
server speeds. However, they mostly rely on the old Ring
algorithm, suffering from practical scalability and stability issues,
as well as from a lack of theoretical stability guarantees.

This paper presents a new framework for heterogeneous CH.
The framework relies on quantization using virtual servers,
and on a min-max fairness-based mapping algorithm denoted
M3. The paper establishes necessary and sufficient conditions
to guarantee stability for any arbitrary heterogeneous server
service rate. We also explain why M3 presents better scalability
properties than all heterogeneous CH alternatives, including a
faster key lookup rate and a lower memory footprint. Finally,
evaluations show that M3 also offers a significantly increased
stability region.

I. INTRODUCTION

Heterogeneous CH. Consistent hashing (CH) maps the keys

(identifiers) of incoming objects into a set of servers, while

attempting to achieve (1) minimal disruption, i.e., minimum

mapping changes as servers are arbitrarily removed or added,

and (2) balance, i.e., even load-balancing of the keys across

servers such that no server is overloaded [1]–[4]. For example,

assume a hash function h that uniformly maps any key to

a number in [1, 1024]. If we have 8 servers, a naive load-

balancing method would map any key x to server number

s = h(x) mod 8. This method achieves balance because h is

uniform. Assume now that some server s′ ̸= s fails and we

are left with 7 servers. This method would attempt to remap

key x to server (h(x) mod 7), and therefore would most likely

terminate the connection associated with the key x even though

the server s of this connection did not fail. Therefore, this

naive method does not achieve minimal disruption and is not

CH.

Today, CH is a crucial building block in datacenter load-

balancing [5]–[8]. L4 load-balancers use CH to evenly forward

incoming packets to servers, while maintaining the affinity

of TCP connections as servers are removed or added. CH is

also used in many other applications, from distributed storage

to content delivery networks, and from equal-cost multi-path

(ECMP) routing to distributed hash tables [9]–[15].

Datacenter load-balancers need heterogeneous CH, as they

rely on servers with vastly different service rates. These

service-rate differences may be permanent: e.g., if the servers

belong to different server generations; rely on different hard-

ware to process packets (CPU, GPU, SmartNIC, FPGA,

ASIC); or have different memory access speeds (hard disk

drives vs. flash memory). The differences may also be tem-

porary: e.g., if the servers suffer from varying levels of

network congestion; host additional virtual machines for other

applications, arbitrarily affecting their effective service rate;

or are rebooting and gradually increasing their service rate

while checking that everything runs as expected (a common

feature called slow start but unrelated to TCP’s slow start) [8].

The load-balancer is expected to be able to periodically update

each of the expected server rates, then run an heterogeneous

CH algorithm that seamlessly fits these updated rates.

Related work. Table I summarizes the main existing CH

algorithms. Unfortunately, most of the literature focuses on

homogeneous CH, as shown in the first four lines with Ring,

Dynamo (strategy 3, an extension of Ring), MaglevHash, and

AnchorHash [1], [4], [6], [13], [16]–[19].

To implement heterogeneous CH, papers in the literature [2],

[3], [13], [20] and industry load-balancers [7], [8], [21], [22]

mostly use a heuristic weighted Ring hashing algorithm, which

relies on virtual servers to fall back on the homogeneous-CH

Ring algorithm [16]. For instance, assume we want to load-

balance between two servers 1 and 2 with respective service

rates µ1 = 1/3 and µ2 = 2/3. Because of the well-known

poor balance properties of the Ring algorithm [21], a common

approach is to assign a large proportional number of virtual

servers to each (e.g., 100 virtual servers to server 1 and 200 to

server 2, using a total of q = 300 virtual servers), and then run

homogeneous CH on the q = 300 virtual servers. Any packet

mapped to a virtual server of server i will then be forwarded to

server i. Unfortunately, weighted-Ring solutions share many

issues. First, the number of virtual servers is always chosen

arbitrarily, without stability guarantee. Second, the weighted-

Ring structure constrains the lookup rate: in our example with

300 virtual servers, organizing them as an ordered binary tree

would yield an expected number of at least log2(300) lookups

per key. Finally, we show in evaluations that the poor balance

in weighted-Ring solutions leads to instability.

There are many weighted-Ring solutions. As shown in the

fifth line of the table, ACH [2] is an algorithm for storage-

related load-balancing. It assigns each server a number of

virtual servers that is equal to the ratio of its storage capacity

by an arbitrary fixed constant (Cthrottle).

The weighted Ring is also implemented in Ketama [22],978-1-6654-8234-9/22/$31.00 ©2023 IEEE



TABLE I. Performance comparison between known CH algorithms.
Ring [16], Dynamo (strategy 3) [13], MaglevHash [6] and AnchorHash [1]
are designed for homogeneous systems only. Weighted-Ring approaches like
ACH [2] support heterogeneity, but suffer from sub-optimal lookup speed,
memory footprint, and especially balance, affecting their stability. HRW [17]
supports both heterogeneity and consistency but has a prohibitive key-lookup
rate. Our algorithm M3 attempts to provide both scalability and stability, at
the cost of a non-ideal balance, since it only guarantees stability up to some
load ρ that can be set arbitrarily close to 1 (Eq. (1)).

Hetero. Scalability Consistency

Lookup rate Memory Min. disrupt. Balance

Ring × ✓– ✓– ✓ ×

Dynamo (strategy 3) × ✓ ✓ ✓ ✓–

MaglevHash × ✓ ✓–

× ✓–

AnchorHash × ✓ ✓ ✓ ✓

ACH (weighted Ring) ✓ ✓– ✓– ✓ ×

HRW ✓ × ✓ ✓ ✓

M3 ✓ ✓ ✓ ✓ ✓–

[23], the CH library in the NGINX platform [7], [21], and

apparently also in the HAProxy platform [8], although details

are lacking.

Hierarchical CH [3] uses two different hash rings to treat

two types of servers (SSDs vs. HDDs), however this setup is

very limited and not suitable for most heterogeneous systems.

Weighted DxHash [24] suggests to assign a different number

of virtual nodes to each physical server, but does not mention

how many to assign to each physical node. Beyond the

weighted-Ring approach, the only other published heteroge-

neous CH algorithm is HRW [17] (sixth line). HRW achieves

an excellent balance, but with a prohibitive lookup rate that

makes it impractical for real-world systems. Additional ho-

mogeneous CH papers like Maglev mention the possibility

of heterogeneity support but keep any heterogeneous version

undisclosed [6], [13].

Beyond heterogeneous CH, optimally load-balancing balls

into non-uniform bins is a well-known problem that can

be tackled using several algorithms [25]. However, these

algorithms do not address the online variant with bin addi-

tions and deletions, which is crucial for CH. Furthermore,

there has been a large recent literature on load-balancing to

heterogeneous servers without the CH constraint, although it

tackles different fundamental questions [26]–[36]. Finally,

both homogeneous and heterogeneous CH can add connection

tracking to maximize per-connection consistency when the

server set changes [37].

Contributions. In this paper, we argue that heterogeneous

CH is a crucial building block in the load-balancer industry

component, yet it currently lacks any sound fundamental basis

and achieves poor results. Our goal is to solve two significant

issues in the predominant weighted-Ring approach. First, on

the fundamental side, given an arbitrary set of server rates

{µi}, there is no known stability guarantee linking the number

q of virtual servers, the number n of servers, and the maximum

stable load ρ. Second, on the practical side, the weighted-Ring

approach displays poor stability and scalability properties that

hinder the adoption of large-scale heterogeneous CH.

We start by defining a new formal framework for hetero-

Fig. 1. Classical heterogeneous load-balancing system, including a load-
balancer of normalized arrival rate λ, and n physical servers of normalized
service rates µi.

geneous CH with virtual servers, denoted as the Hash&Map

(H&M) framework. This framework consists of two simple

stages: a hashing stage that maps an incoming key to a virtual

server, then a mapping stage that forwards any key of this

virtual server to a given physical server.

We introduce the Min-Max Mapping (M3) algorithm for

allocating virtual servers in the H&M framework. We prove

that M3 is optimal, i.e., no other algorithm can achieve a better

stability region in the H&M framework. We further show that

since M3 operates within the H&M framework and the load

is split between an integer number q of virtual servers, then

M3 needs to deal with quantization constraints that derive

from this integer number. Given a goal of guaranteeing a large

stable load ρ, we prove the main fundamental result (Thm. 3),

providing a simple sufficient and necessary condition for M3

to achieve stability over the entire set of all heterogeneous

systems. Formally, Thm. 3 establishes that the M3 algorithm

is guaranteed to be stable at load ρ given any heterogeneous

server service rates {µi}
n
i=1

, iff:

q > (n− 1) ·
ρ

1− ρ
. (1)

For instance, for n = 100 servers and ρ < 0.99, M3

guarantees stability given any arbitrary service rates as long

as it can use q = (100−1) · 0.99
1−0.99

+1 = 9, 802 virtual servers

(well below typical industry numbers of 65K to 650K [6]).

Furthermore, we compare our suggested M3 algorithm

against two algorithms from the literature: NGINX’s Ke-

tama library [22] and ACH [2]. Both algorithms rely on a

weighted Ring approach. We run evaluations in load-balancer

and distributed-storage configurations. We find that M3 can

achieve high loads, while both other algorithms suffer from

intrinsic stability issues, especially with a high number of

servers. In addition, M3 is more scalable, with a higher lookup

rate (O(1) lookup cost vs. O(log2 q)) and a lower memory

footprint (by up to two orders of magnitude).

The full code for this paper is available online [38].

II. MODEL

System. As Fig. 1 illustrates, we consider a heterogeneous

load-balancing system where a load-balancer spreads the in-

coming packets among n servers. Each server has its own

2



queue and follows a first-come-first-served discipline. Let µi

denote the service rate of server i. For simplicity, we use a

normalized notation such that the total service rate is 1, i.e.,

µ ≡
∑n

i=1
µi = 1. We denote by µ̄ ≡ {µi}

n
i=1

the service rate

vector. Likewise, we denote by λ the packet arrival rate at the

system, and by ρ ≡ λ
µ

the load. Due to the normalization,

ρ = λ since µ = 1. In the remainder, we use either λ or ρ,

depending on whichever makes formulas more intuitive.

Load-balancer. Each packet has a key. We assume that the

Simple Uniform Hashing Assumption (SUHA) holds [1], [39],

i.e., that the output of the hashing function of the packet

keys is distributed uniformly across its codomain. We further

assume that the load-balancer assigns each server i a constant

fraction of the incoming traffic, such that at each server i the

(normalized) incoming rate is λi with
∑n

i=1
λi = λ, and the

server load is ρi =
λi

µi
.

Stability. To keep the queueing model general, we assume that

the queueing model for each server i satisfies the following

property: server i is stable iff its arrival rate is strictly smaller

than its service rate, i.e., µi − λi > 0. This is satisfied for

instance in the M/M/1 and M/D/1 queueing models. Likewise,

a system with a given load-balancing algorithm is stable (or,

in short, its algorithm is stable) iff all its servers are stable. A

system is admissible iff its arrival rate is smaller than its total

service rate, i.e.,
∑n

i=1
µi − λ = 1− λ > 0. In the paper, we

always assume admissibility.

Homogeneous CH. We define an homogeneous load-

balancing algorithm as CH iff it satisfies:

(1) Minimal Disruption: Any change in the number of servers

leads to a minimal amount of key re-mappings. Namely, when

a server is removed, only the keys that were assigned to that

server should be re-mapped; and when a server is added, only

keys that are newly assigned to the new server should be re-

mapped.

(2) Balance: Any key chosen u.a.r. (uniformly at random) in

the set of keys has an equal probability of being assigned to

each physical server.

In heterogeneous systems, the minimal-disruption property

is desirable too. However, since heterogeneous systems have

non-identical servers, uniformly balancing the load among

them can lead to instability.

III. H&M FRAMEWORK

Design goals: scalability and heterogeneity. In this section,

our goal is to design a scalable CH for heterogeneous systems.

We want to achieve scalability along two important metrics:

(1) a high key-lookup rate, by minimizing the number of hash

operations per key, and (2) a low memory footprint, even when

there is a large number of servers. At the same time, we

want a system that is flexible enough to fit a large degree

of heterogeneity in the service rates of the servers.

H&M framework. As Fig. 2 illustrates, to achieve both

scalability and heterogeneity, we intuitively leverage the idea

of using indirection, and introduce a middle-layer set of

q ∈ N
∗ virtual servers. Thus, we split our system into two

Fig. 2. H&M framework, consisting of two stages: first, the load-balancer
hashes uniformly to q identical virtual servers. Next, each virtual server is
mapped to one of the physical servers by the algorithm described in Sec. IV-B.

stages: first, a hashing stage; then, a mapping stage. We denote

this general architecture as a Hash&Map (H&M) framework.

Hashing stage. Specifically, using standard uniform hashing,

the load-balancer first hashes the keys of incoming packets into

the set of q virtual servers, so a given key is always mapped

to the same virtual server. Thus, each virtual server receives

the same average load of λ
q

(according to the SUHA principle

in Sec. II).

Mapping stage. In the second stage, we map each virtual

server into a unique physical server, so a key that is always

mapped to the same virtual server is now also always mapped

to the same physical server. As discussed in the next section,

the mapping algorithm attempts to match more virtual servers

to servers with a larger service rate, so as to provide more

traffic to stronger servers. Specifically, let qi ∈ N denote the

number of virtual servers mapped to physical server i, with
∑n

i=1
qi = q. Then stronger servers should get a higher qi.

Note that H&M can store the second-stage mapping as a single

array of q values in [1, n].

Key lookups. When packets arrive at the H&M system,

they are assigned to their physical server using two single

operations:

1) The load-balancer hashes their key to one of the virtual

servers using a single uniform hashing operation.

2) The load-balancer accesses once the array of q elements

and finds the server i that the virtual server is mapped

to. It then sends the packet to server i.

Scalability. The H&M framework fits our two scalability

design goals: (1) High lookup rate: For each packet, it only

needs one hashing operation and one memory-read access.

Thus it achieves an O(1) complexity, vs. O(log q) in weighted

Ring for example. (2) Low memory footprint: beyond the

above array, which needs one memory word per virtual server,

the memory footprint is negligible.
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IV. M3 ALGORITHM

We have found that the H&M framework fits our scalability

goals. In this section, we focus on the second-stage mapping

algorithm in the H&M framework and show how it can help

adapt to the heterogeneous service rates.

A. Challenges

The use of indirection through the middle-layer of virtual

servers introduces quantization. We saw that each virtual

server contributes a rate quantum of λ
q

. Therefore, if qi virtual

servers are mapped to a given physical server, its incoming

rate is λi = λ · qi
q

.

Quantization challenge 1: irrational service rates. Con-

sider the case of two servers with irrational service rates

µ̄ =
(

1

e
, 1− 1

e

)

. No finite quantization with a finite q can

provide full balance, because a rational number qi
q

with a

finite denominator q cannot approximate an irrational number

arbitrarily close. Specifically, the load of each server i is

ρi ≡ λi

µi
=

λ·
qi
q

µi
. At full heterogeneous balance, we would

want ρ1 = ρ2, which can be rewritten as q1
q2

= µ1

µ2
. The left

side is rational, and the right side is irrational, thus a perfect

load balancing is impossible.

Quantization challenge 2: non-monotonicity. Fig. 3 illus-

trates the stability challenges in the H&M framework. First,

Fig. 3(a) shows an unstable system at load λ = ρ = 0.8.

Each of the q = 10 virtual servers distributes a quantum of

exactly 10% of the load, i.e., λ
q

= 0.08. We can see that

no matter the mapping of the last virtual server (as shown

by the dashed red lines), all choices lead to instability. For

example, server 1 is stable iff λ1 = λ · q1
q
< µ1 = 0.15. Since

λ · 2

q
= 0.16 > 0.15, server 1 cannot be assigned a second

virtual server. Likewise, server 2 cannot be assigned a third

virtual server (3 · 0.08 > 0.23), and servers 3 and 4 cannot

be assigned a fourth (4 · 0.08 > 0.31). Due to quantization,

there is no feasible mapping of the ten virtual servers that can

stabilize all four physical servers.

Fig. 3(b) illustrates the same system but with q = 20 virtual

servers. Now the additional virtual servers provide smaller

quanta that enable stability.

Fig. 3(c) shows the same system with q = 6 virtual servers.

Even though q has decreased when compared to Fig. 3(a)

and therefore the quantization is coarser, the system is stable.

Therefore, the stability property is not monotonic with q: the

relationship is more complex than appears at first.

In fact, Table II illustrates the values of q for which the

system reaches stability, and shows how the result is not

obvious to the eye.

Definition. The above examples show that providing system

stability is not always possible within the quantized H&M

framework. As a result, we redefine the goal of the H&M

mapping algorithm: within the quantization constraint estab-

lished by a given q, it should provide system stability to

the heterogeneous servers whenever possible, i.e., whenever

at least one other algorithm can provide it under the same

constraints. This is reflected in the following definition:

TABLE II. Stability of the system in Fig. 3 as a function of the number q
of virtual servers

q 1 2 3 4 5 6 7 8 9 10 11 12 13

Stability × × × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓

Definition 1 (quantized consistent hashing). Within the

H&M framework, a mapping algorithm satisfies the quantized

CH property iff it achieves:

1) Minimal disruption: As in the homogeneous CH def-

inition, a change in the number of servers causes a

minimum number of mapping changes.

2) Maximal stability: Whenever possible given the quanti-

zation parameter q, the load at each server i must be

admissible, i.e., ρi < 1.

We later introduce an algorithm that satisfies this definition,

and prove that in the homogeneous case where all server rates

are equal, if we assume that q is a multiple of n, then it also

satisfies the traditional definition for homogeneous CH based

on balance. Thus, the above definition can intuitively be seen

as generalizing the classical homogeneous definition to take

into account both heterogeneity and quantization.

Stability challenges. The above maximal-stability condition

in Def. 1 states that we want to achieve stability whenever

possible. Since we have stability at server i when ρi < 1, it

makes sense to roughly equalize the server loads ρi across

the different servers so that none will exceed 1. To do so, we

would intuitively want to minimize the maximal server load

and make sure it is under 1. We formally define this max-load

minimization policy as follows:

Definition 2 (Min-max fairness). A server load vector ρ̄m is

min-max fair iff

max ρ̄m ≤ max ρ̄

for any feasible load vector ρ̄, i.e., any ρ̄ that results from a

feasible second-stage mapping in the H&M framework.

B. The M3 Algorithm

We now describe the Min-Max Mapping (M3) algorithm,

which is designed to satisfy the min-max fairness definition

(Def. 2). We later prove that it also satisfies the two properties

of the quantized-CH definition (Def. 1). M3 consists of two

steps: first, computing the number qi of virtual servers that

should be mapped to each physical server; then, obtaining an

exact mapping from the set of virtual servers to the set of

physical servers that indeed maps qi virtual servers to server

i.

Step 1: computing qi. The M3 algorithm starts by computing

the number qi of virtual servers that should be mapped to

each physical server. M3 follows a greedy min-max fairness

algorithm, similar to a weighted water-filling approach. It does

so in an iterative manner, from the first virtual server to the

last: for each considered virtual server, it compares the result

of mapping it to each of the n servers, and picks the server

that greedily minimizes the resulting maximum server load.
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1

= 0.15


2

= 0.23


3

= 0.31


4

= 0.31

?

λ = 0.8

(a) q = 10: unstable system

λ = 0.8


1

= 0.15


2

= 0.23


3

= 0.31


4

= 0.31

(b) q = 20: stable system

λ = 0.8


1

= 0.15


2

= 0.23


3

= 0.31


4

= 0.31

(c) q = 6: stable system

Fig. 3. Non-monotonicity of the stability condition: Illustration of the same system with three different values for the number q of virtual servers. With
(a) q = 10, no mapping can achieve stability. However, with (b) q = 20 and (c) q = 6, the same system does achieve stability.

Specifically, for each physical server i, it assumes that it is

assigned this additional virtual server, thus getting qi+1 virtual

servers and a resulting load of ρi ≡
λi

µi
=

λ·
qi+1

q

µi
. Then, since

λ and q do not depend on i, to find the physical server that

would least suffer from the additional load of an extra virtual

server, it finds the i that minimizes qi+1

µi
among the various

i’s, and assigns it this virtual server. (In case of tie-break, M3

picks the first index that achieves this minimum.)

Example for step 1. Fig. 4 illustrates how M3 operates in

the setting of Fig. 3(b), i.e., how it greedily assigns the q =
20 virtual servers to the four physical servers. Fig. 4(a) first

shows how it assigns the initial virtual server. M3 computes

the ratio qi+1

µi
= 1

µi
for each physical server i, looking at the

consequence of assigning it this first virtual server. Servers

3 and 4 have the smallest ratio, meaning that they can best

handle an additional load, since they have the largest service

rate µi. Therefore, M3 assigns the first virtual server to server

3.

Next, Fig. 4(b) shows how M3 assigns the last virtual server

in the same manner. This time the second server gets the

smallest ratio. The final number of virtual servers for each

physical server is {3, 5, 6, 6}, respectively, summing up to

q = 20 and corresponding indeed to the allocation in Fig. 3(b).

Step 2: obtaining a mapping. Once M3 has computed qi
for each physical server, it uses these values to compute a

mapping (denoted M) between the virtual and physical servers

so that each physical server i is indeed assigned qi virtual

servers. This is a simple step: for instance, the first server

is simply assigned the set of virtual servers {1, . . . , q1}, the

second server is assigned {q1 + 1, . . . , q1 + q2}, and so on.

As a general formula, each server i is assigned virtual servers
{(

∑j=i−1

j=1
qj

)

+ 1, . . . ,
∑j=i

j=1
qj

}

.

Mapping implementation. As previously mentioned, H&M

can store the second-stage mapping M as a single array of q
values in [1, n]. Thus, note that the regularity or contiguity of

M is not an issue. In addition, to speed up operations during

server changes, we also store the reverse mapping, i.e., for

each physical server i, we remember its mapped virtual servers

using a small stack data structure. The update operation of this

stack is done effectively by pushing (respectively popping) the

added (resp. deleted) virtual servers.

Server failures and additions. An important feature of

(a) First M3 iteration.

(b) Last M3 iteration.

Fig. 4. Illustration of how M3 iteratively assigns q = 20 virtual servers to
four physical servers, using the settings of Fig. 3(b). (a) In the first iteration,
it picks the third server. (b) In the last iteration, it picks the second server.

consistent hashing is the ability to quickly react to unexpected

changes of the server set (e.g., server failure or addition). In

addition, we want to react rapidly to changes in the server

service rates. Hence, upon any change of either the number of

servers n or their service rate vector µ̄, the M3 algorithm

first updates their values, then updates the values of {qi},

and finally updates the mapping M of the virtual to physical

servers. Specifically, to update the mapping, we first consider

the servers i for which qi has strictly decreased. For each such

server i, we pop from the virtual-server stack a number of

virtual servers corresponding to the qi decrease. We push all

these popped orphan virtual servers into a temporary stack.

Finally, we consider the servers i for which qi has strictly

increased. Using this temporary stack, we greedily allocate
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each such server i a number of virtual servers corresponding

to the qi increase. Since
∑

qi = q is constant, all virtual

servers are exactly allocated in the mapping.

Min-max acceleration. M3 can run an improved greedy

fairness sub-routine that substantially accelerates its run-time.

For instance, in the example above where it needs to split

q = 20 virtual servers between four servers with service

rates µ̄ = (0.15, 0.23, 0.31, 0.31), it can reduce the 20 needed

steps to a single one. To do so, it starts by pre-allocating

qi = ⌊µi · q⌋ for each server i, obtaining ⌊µ1 · q⌋ = 3 virtual

servers to the first server, ⌊µ2 · q⌋ = 4 to the second, and

⌊µ3 · q⌋ = 6 for the third and the fourth, with a total of

3+4+6+6 = 19 pre-allocated virtual servers, and thus only

needs the last step of Fig. 4(b) to determine how to assign the

20th virtual server.

The intuition for this pre-allocation is that ideally, we would

like to assign the real number µi · q of virtual servers to each

physical server to achieve the perfect balance. If we assign

any lesser integer number, there is no risk of exceeding the

min-max server load achieved by M3, and further iterations

converge to the same final allocation. For space reasons, we do

not include the full proof of the correctness of this accelerated

sub-routine.

M3 is quantized CH. The following theorem states that M3

satisfies the quantized-CH definition (Def. 1):

Theorem 1 (quantized CH). The M3 algorithm is quantized

CH.

Proof Outline. We need to prove that M3 satisfies both the

minimal-disruption and maximal-stability properties (Def. 1).

We proceed in three steps:

Step 1: minimal-disruption. We start by proving the minimal-

disruption property. We first assume that any change in the

cluster is atomic (i.e., consists of a change of at most one

server, which can either join or depart the cluster), or can be

represented by cascading atomic changes (i.e., adding three

physical servers is equivalent to three consecutive atomic

server additions). We then show that upon any atomic change,

once we distribute the virtual servers according to the M3

algorithm, the following statements are invariant and always

stay true:

• Upon adding a physical server and re-mapping the virtual

servers across the new cluster, the number of virtual

servers mapped to each of the old (existing) physical

servers cannot increase. Intuitively, this is because their

share of the total service rate cannot increase, so M3 will

not assign them more virtual servers.

• Upon removing a physical server and re-mapping the

virtual servers across the new cluster, the number of

virtual servers mapped to each of the remaining physical

servers cannot decrease. This follows the same intuition.

Then, we use induction to prove that the previous statements

are true also for non-atomic changes using consecutive atomic

changes. Finally, we conclude that in each case of adding

(respectively removing) servers, the keys that need to be

remapped to different physical servers are only the ones that

are now (resp. were previously) mapped to the newly added

(resp. removed) servers.

Step 2: min-max fairness. We then prove that M3 is min-max

fair (Def. 2). We first consider the initial greedy approach. We

mathematically prove that the M3 assignment of virtual servers

is min-max fair after the first step. Then, using induction,

we prove that each succeeding assignment is also min-max

fair, including the qth (last) assignment. Finally, we show

that server additions and deletions do not affect the min-max

fairness property.

Step 3: maximal-stability. We complete the proof by showing

that any algorithm that is min-max fair is also maximally

stable (Def. 1). To do so, we show that the maximal load

of a min-max fair algorithm cannot exceed that of any other

algorithm. Therefore, if another algorithm is stable, i.e., its

maximal load is strictly under 1, then a min-max fair algorithm

is also necessarily stable, concluding the proof.

In addition, the following theorem proves that in the homo-

geneous case, when q is a multiple of n, M3 also satisfies the

traditional homogeneous-CH definition.

Theorem 2 (homogeneous CH). In the homogeneous case,

when q is a multiple of n, min-max fairness is equivalent to

balance and M3 also achieves homogeneous CH.

Proof. We show that for a homogeneous set, a min-max fair

relative load vector (ρ̄fair) is always equal to the balanced

relative load vector (ρ̄balanced). A balanced relative load vector

is computed by mapping the same number of virtual servers

to all physical servers:

ρi,balanced =
λi,balanced

µi

=

( q

n )
q

· ρ

µi

=
ρ
n
1

n

= ρ, ∀i

Now we assume by contradiction that the load from the min-

max fair mapping is not the same as that from the balanced

mapping, i.e., ρ̄fair ̸= ρ̄balanced. Hence ∃i : ρi,fair ̸=
ρi,balanced and ∃i : λi,fair ̸= λi,balanced. This inequality

implies that there exists an index j ∈ (1 . . . n) s.t. λj,fair >
λj,balanced and ρj,fair > ρj,balanced = ρ. So the following

holds:

max ρ̄fair ≥ ρj,fair > ρj,balanced = ρ = max ρ̄balanced.

This stands in contradiction to the definition of min-max

fairness. Hence the correctness of the theorem.

Complexity. The initial pre-allocation step of the accelerated

algorithm consists of n assignments qi = ⌊µi · q⌋, each in

O (1) time. We then have

q −

n
∑

i=1

⌊µi · q⌋ =

n
∑

i=1

(µi · q − ⌊µi · q⌋) ≤

n
∑

i=1

1 = n

steps. At each step, as in Fig. 4, we determine an i′ with

the minimum qi+1

µi
value, and then increase qi′ by one. Thus,

we can build a binary search tree in O (n log n) complexity,
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then use it to determine and update this i′ in O (log n)
complexity at each step. Overall, the total run-time complexity

is in O (n log n). The total space complexity needed for the

mapping implementation is in O (q).

V. STABILITY GUARANTEES

Throughout this section, we analyze the fundamental prop-

erties of the M3 algorithm. We start with our main result,

which provides stability guarantees when we allow for any

arbitrary heterogeneous service rates (Sec. V-A). We also look

at the implications for (1) system loads that achieve system

stability, (2) a variable number of servers and variable load,

and (3) the overprovision factor (Sec. V-B). Finally, we focus

on a single heterogeneous service rate vector

A. Main result: guaranteed stability for any service rates

We start with the main fundamental result of this paper.

We want the H&M architecture to be able to deal with any

arbitrary heterogeneous service rate vector. For instance, we

could envision that each server periodically measures and

sends the exponentially-weighted average of its service rate

to the load-balancer. The load-balancer will then run the M3

algorithm based on the new normalized service rate vector

and on a pre-determined total number q of virtual servers, and

reassign virtual servers to each physical server.

The parameter q can vary by several orders of magnitude.

Intuitively, a larger q provides a finer-grained quantization,

but also hinders scalability. Today, there exists no stability

guarantee to help the network designer when setting q. The

following theorem provides a necessary and sufficient condi-

tion for M3 to be able to achieve stability given any arbitrary

heterogeneous service rate vector in the H&M framework. The

condition links the load ρ, the number of virtual servers n and

the number of physical servers q. The proof also shows that

for any service vector, no other algorithm could do better than

M3.

Theorem 3 (stability for any vector). The M3 algorithm is

guaranteed to be stable for any service rate vector µ̄ iff:

q > (n− 1) ·
ρ

1− ρ
. (2)

Example. Consider again the four-server example of Fig. 3.

Applying Thm. 3 to that specific case with ρ = 0.8 and n = 4,

we get that the value of q needed to maintain stability for any

µ̄ would be q > (n− 1) · ρ
1−ρ

= 3 · 0.8
1−0.8

= 12, i.e., the

system is guaranteed to be stable for any µ̄ iff q ≥ 13.

Clearly, from Table II, we know that the system can be

stable with a lower q for this specific µ̄. However, Thm. 3

states that for q ∈ {6, 7, 8, 9, 11, 12}, even though the system

is stable in this specific case, there are other µ̄s that provide

counter-examples and will cause instability. There will not be

a counter-example iff q ≥ 13.

Proof Outline. We first show that the condition in Eq. (2) is

sufficient for the M3 algorithm to reach stability, then establish

that it is also necessary for stability.

First direction: sufficiency. We introduce a new algorithm,

denoted as baseline policy, for which Eq. (2) suffices to

always reach stability. The baseline policy essentially attemps

to assign the maximal number q̂i of virtual servers that can

be mapped to a physical server without overloading it. Using

simple arithmetic, we prove that q̂i =
⌈

µi·q
λ

⌉

−1, i.e., a server

i is stable iff

qi ≤ q̂i ≡
⌈µi · q

λ

⌉

− 1. (3)

In addition, we are careful to define qi such that the sum

of all qi’s never exceeds the total number q of available

virtual servers, i.e.,
∑i

j=1
qj should never exceed q. Thus,

the baseline policy’s qi assignments are formally defined as

follows:
{

qi = min
(

⌈

µi·q
λ

⌉

− 1, q −
∑i−1

j=1
qj

)

if i < n,

qn = q −
∑n−1

j=1
qj .

(4)

We show that the baseline policy is always stable whenever

Eq. (2) is satisfied.

Since we already know that M3 is maximally stable

(Thm. 1) and that the baseline policy stabilizes the system

in H&M, then M3 necessarily stabilizes that system too.

Second direction: necessity. In order to prove that Eq. (2) is

also necessary to achieve stability, we assume by contradiction

that Eq. (2) does not hold:

q ≤ (n− 1) ·
λ

1− λ
,

which we can rephrase by defining a non-negative ε:

ε ≡ (n− 1) · λ− q · (1− λ) ≥ 0.

We now provide a constructive counter-example in the form

of an admissible system that cannot be stabilized given any

number q̃ of virtual servers that satisfies q̃ ≤ q. First, we set

the first n− 1 servers to be identical:

µi = µ0 =
λ

q̃
·

(

1−
ε

n− 1

)

∀i ∈ {1 . . . n− 1} ,

and after assuming that each of the first n−1 servers are stable,

we arithmetically show that the nth server cannot be stable.

In such a case, no algorithm can stabilize the provided system

under our initial assumption, including the M3 algorithm.

B. Corollary Results

We now turn to emphasizing different aspects resulting from

Thm. 3, presenting first two direct corollaries, then a more

general theorem on the overprovision factor.

Maximum stable load. We can rearrange the formula of

Thm. 3 and provide a clearer condition on the maximum

stable system load ρ, showing why q needs to be quite larger

than n − 1 to reach a high stable load. For instance, a

ratio of q
n−1

= 100 will result in a stable load whenever

ρ < 1− 1

101
≈ 0.99.
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Corollary 1 (maximum stable load). The M3 algorithm is

guaranteed to be stable for any service rate vector µ̄ iff:

ρ <
q

q + n− 1
= 1−

1
q

n−1
+ 1

Proof Outline. By rearranging the terms of Eq. (2) in Thm. 3.

Variable parameters. Since the H&M framework is used for

quantized CH, it needs to be flexible to changes in the server

set (Def. 1), therefore the number of servers n is variable. In

addition, in a real-world system, the load may be varying as

well. The following corollary ensures that this has no impact

on the validity of Thm. 3.

Corollary 2 (variable (n, ρ)). Assume the system’s parame-

ters (n, ρ) are allowed to vary arbitrarily within [1, nmax]×
[0, ρmax], with ρmax < 1. The M3 algorithm is guaranteed to

be stable for any n, ρ and any service rate vector µ̄ iff

q > (nmax − 1) ·
ρmax

1− ρmax

.

Proof. We denote ns, ρs as the current system’s parameters

satisfying ns ∈ [1, nmax], ρs ∈ [0, ρmax]. Since the function

f(n, ρ) = (n−1) · ρ
1−ρ

is monotonic in both of its parameters,

q > (nmax − 1) ·
ρmax

1− ρmax

≥ (ns − 1) ·
ρs

1− ρs
.

According to Thm. 3, the algorithm is thus guaranteed to be

stable, proving the sufficiency. The necessity is directly proved

by assigning (n, ρ) = (nmax, ρmax).

Overprovision. In the load-balancing industry, a metric for the

quality of a load-balancer is its overprovision factor, defined

as maxi

(

ρi

ρ

)

[6]. A perfectly balanced system achieves an

overprovision of 1. The following theorem quantifies the

additional degree of overprovision that is due to quantization

(ignoring additional effects that are independent of our model,

such as an uneven key distribution and a poor hash function).

It shows again why q needs to be quite larger than n − 1.

For instance, a ratio of 100 will result in a 1.01 guaranteed

overprovision upper-bound.

Theorem 4 (overprovision). M3 satisfies:

max
i

(

ρi
ρ

)

≤ 1 +
n− 1

q
.

Proof Outline. In its iterative greedy search, M3 always as-

signs the next virtual server to the physical server that will be

least loaded after the addition. We use the notation qki for the

number of virtual servers mapped to physical server i after

iteration k where i ∈ {1, . . . , n} and k ∈ {1, . . . , q}. We also

assume q0i = 0, ∀i.
Since the M3 algorithm assigns the virtual servers one-by-

one using q iterations, it is known by definition that physical

server i is selected at iteration k if:

qk−1

i + 1

µi

= min
j∈{1,...,n}

qk−1

j + 1

µj

, (5)

and after iteration k, we have:

qki =

{

qk−1

i + 1, server i was selected at iteration k

qk−1

i , else.
(6)

By definition:
∑

i

qki = k. (7)

Let’s denote a sequence of indices i1,...,q s.t. ik is the physical

server selected at iteration k. Now we use the fact
∑

i µi = 1,

together with Eq. (5), Eq. (6) and Eq. (7), to obtain:

qkik
µi

=
qk−1

ik
+ 1

µi

≤
∑

j

µj ·

(

qk−1

j + 1

µj

)

=
∑

j

(

qk−1

j + 1
)

= n+
∑

j

qk−1

j = n+ k − 1.

(8)

We assign k = q in Eq. (8) to get:

qqiq
µiq

≤ q + n− 1. (9)

In addition, we prove by induction the interesting result that

the latest assigned server ik has the highest load amongst all

servers:

ik ∈ argmax
j

{

qkj
µj

}

Combining this result to Eq. (9), the following result also

holds:

max
i

ρi =
λiq

µiq

=

q
q

iq

q
· ρ

µiq

≤ ρ ·

(

q + n− 1

q

)

,

yielding the result.

C. Guaranteed stability for a given service rate vector

After considering sets of possible heterogeneous service rate

vectors, we now turn to characterizing stability when tackling a

single given service rates vector µ̄. In such a case, as illustrated

in Table II, there is no critical q value below which the system

is unstable and above which it is stable. Instead, given some

vector µ̄, we provide a fixed-point equation that characterizes

a stable q.

Theorem 5. Given an arbitrary heterogeneous service rates

vector µ̄, the M3 algorithm is stable iff q satisfies the following

fixed-point equation:

q ≤

n
∑

i=1

q̂i ≡

n
∑

i=1

(⌈

µi · q

ρ

⌉

− 1

)

. (10)

Proof. First direction: sufficiency. Assume Eq. (10) holds. We

first choose a mapping policy that maintains the following

property, and conclude that this mapping policy is stable:

qi ≤ q̂i =

⌈

µi · q

ρ

⌉

− 1, ∀i ∈ {1, . . . , n}. (11)
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Specifically, we use the baseline policy from the proof of

Thm. 3. By definition of the baseline policy (Eq. (4)), servers

{1 . . . n− 1} always satisfy Eq. (11). As for the nth server,

we divide into two cases:

1) The case where all of the n−1 first servers were assigned

a number qi = q̂i of virtual servers, i.e., Eq. (11) is

always an equality. Then

n−1
∑

i=1

qi =

n−1
∑

i=1

(⌈

µi · q

ρ

⌉

− 1

)

.

In this case, we know that qn = q−
∑n−1

i=1

(⌈

µi·q
ρ

⌉

− 1
)

by definition of the baseline policy. Therefore, by

Eq. (10),

qn ≤

⌈

µn · q

ρ

⌉

− 1 = q̂n.

2) Eq. (11) is sometimes a strict inequality. Let j denote

the smallest index for which it is not an equality. In this

case, by definition of the baseline policy (Eq. (4)), all

servers k̃ > j are assigned exactly zero virtual servers,

including the nth server, thus the nth server also satisfies

Eq. (10).

Therefore the baseline policy is stable whenever Eq. (10) is

satisfied. Since M3 is maximally stable (as showed in the proof

of Thm. 1), we deduce that M3 is also stable.

Second direction: necessity. Assume q >
∑n

i=1
q̂i. By defini-

tion, any mapping policy must retain the property
∑n

i=1
qi =

q. Therefore there must exist an i ∈ {1, . . . , n} such that:

qi > q̂i.

In this case, according to the previous results establishing that

q̂i is a strict threshold for stability, server i is unstable. Hence,

the whole system is unstable.

VI. EVALUATIONS

The following evaluations help us confirm the soundness of

the theoretical results, as well as compare the performance of

the M3 algorithm against practical heterogeneous algorithms

from the literature and industry.

A. Maximal load measured across the servers

Settings. Thm. 3 states that for any service rate vector,

the system is stable, i.e., the maximal server load satisfies

maxi ρi < 1, whenever the number q of virtual servers satisfies

q > (n − 1) · ρ
1−ρ

. We want to confirm the soundness of

the result. To do so, we plot maxi ρi as a function of q for

a large number of instances of random service rate vectors.

Specifically, we set n = 3 and ρ = 0.95. We draw 50

random heterogeneous service rate vectors by drawing each

non-normalized service-rate component µ̃i u.a.r. on integer set

[1, 100].

Thm. 3 (main result). Fig. 5 shows the evaluation results.

The left scale illustrates Thm. 3. As established by Thm. 3,

when q > (3 − 1) · 0.95
1−0.95

= 38, M3 is always stable, i.e.,

maxi ρi < 1. We can also see that the typical performance
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m
a
x
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m
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Stability Threshold

M3 (overprovision bound)

Fig. 5. Plots of the maximal load maxi ρi (left scale) and overprovision
factor

maxi ρi
ρ

(right scale), as a function of q in 50 random heterogeneous

systems, with ρ = 0.95 and n = 3. As established by Thm. 4, the red line
is an upper bound.

improves as q grows, although each of the 30 lines does not

decrease monotonically. For a smaller q, some rate vectors

encounter instability, with maxi ρi ≥ 1. Thm. 3 tells us that

there is actually a counter-example with q = 38, but it is not

among our random instances.

Thm. 4 (overprovision). In addition, the right scale of Fig. 5

illustrates a validation of Thm. 4. Its formula follows the

red line, which provides an upper-bound on the overprovision

factor maxi ρi

ρ
. For instance, for q = 100, the overprovision

factor is 1.02.

B. Maximal stable load measured at the load-balancer

Fig. 3 baseline example. We evaluate the performance of

the algorithm in terms of the maximal stable load that can

be asserted upon the load-balancer. We use the settings of

Fig. 3 as a baseline for comparison, with ρ = 0.8, and observe

the impact of q. The blue line represents the maximal stable

load at the load-balancer as measured numerically for each q
value (corresponding to the fixed-point condition of Thm. 5).

In particular, the left side illustrates the results of Table II. For

instance, we can see that for q ∈ [6, 9], the maximal stable ρ
is above 0.8, while for q = 10, ρ = 0.8 would be unstable.

We also compare the results to the result of Thm. 3, re-

written as ρ < q
q+n−1

stating that any load lower than the

right side of the inequality would keep any system stable. The

right side of the inequality for the baseline vector (4-server

system) is represented by the orange plot, and it is a lower

bound on the blue plot, as it guarantees stability for any vector,

and in particular for this baseline vector. For instance, beyond

the dotted vertical line at q = 13, M3 is guaranteed to provide

stability when ρ = 0.8 (Thm. 3). Indeed, the blue plot does

not cross below the value of ρ = 0.8 (horizontal dotted line)

when q ≥ 12 (vertical dotted line).

C. Performance against other algorithms: distributed storage

Settings. We now compare the performance of M3 against

two existing algorithms, both based on the weighted Ring:

NGINX’s Ketama library [22] and ACH [2]. As mentioned in

Table I, there is no other practical heterogeneous CH algorithm
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Fig. 6. Measured maximal stable load ρ (blue line, Thm. 5) as a function of
the number of virtual servers q given the service rate vector of Fig. 3, vs. the
lower bound (orange line, Thm. 3) that is guaranteed by M3 for any service
rate vector.

to compare against. There is also no available benchmark for

heterogeneous CH with a variable number of servers, so we

base our evaluations settings on those from previous papers.

We start with the distributed-storage setting from [2], which

consists of 15 weak storage servers (weight of 2, Intel SSD)

and 15 strong ones (weight of 5, Seagate SATA HDD). We

run 1,000 simulations, and make one change: Before each

simulation, we independently draw the numbers of strong and

weak servers u.a.r. in the integer set [1, 15]. For Ketama, we

assume that weights also indicate the number of virtual servers,

since there is no other indication to the user of how to set this

number. For ACH, we use cthrottle = 0.01 as in the paper [2],

resp. yielding 2/0.01 = 200 and 5/0.01 = 500 virtual servers

per weak and strong storage server. For our M3 algorithm, we

use Thm. 3 with stability guarantees for either all ρ < 0.9
or all ρ < 0.99. In all simulations, the maximal stable ρ
values were measured by brute-force sweep with resolution

of 10−5. For NGINX and ACH, we rely on the crc32 [40]

hash function for the placement of virtual servers on the ring.

Hash collisions are treated as errors and trigger the generation

of new random virtual-server identifiers. For all algorithms,

we follow the SUHA assumption for request keys (Sec. II),

which means that the hash results on the keys are distributed

among the hash space in a perfect uniform way (or in other

words, we assume an infinite number of requests).

Results. Fig. 7(a) and Fig. 7(b) respectively illustrate the CDF

of the measured maximal stable ρ and of the number q of

virtual servers. This empirical CDF is taken over the 1,000

simulations for each of the algorithms. We also focus on the

performance tail at the 1st-percentile for the maximal stable ρ
and the 99th-percentile for q. We can see that NGINX obtains

poor results, with the 1st-percentile stable ρ at 0.24. But it

uses a low number of virtual servers in Fig. 7(b), with a 99th-

percentile at 100. ACH obtains better stability results, with a

1st-percentile stable ρ at 0.821, but it uses a disproportionate

number of virtual servers, with a 99th-percentile at 10,300. M3

obtains better stability results. In the blue plot, M3 guarantees
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Fig. 7. Distributed-storage evaluation with up to n = 30 heterogeneous
storage servers: Empirical CDF of (a) maximal stable ρ load values and
(b) their corresponding number q of virtual servers, comparing ACH, NG-
INX’s Ketama, and M3 for ρ < 0.9 and ρ < 0.99.

stability for any ρ < 0.9, and achieves a 1st-percentile stable ρ
at 0.926, with (30−1)· 0.9

1−0.9
+1 = 262 virtual servers. Finally,

in the green plot, M3 guarantees stability for any ρ < 0.99,

with a high number of (30 − 1) · 0.99
1−0.99

+ 1 = 2872 virtual

servers.

D. Performance against other algorithms: load-balancer

Settings. We now compare the performance of the same

algorithms in a load-balancing framework in two modes:

SUHA and real trace. First, the SUHA mode is implemented

as in the previous evaluation (Fig. 7) and its results are shown

in Fig. 8(b), using the same colors and patterns but in dotted

lines. Second, we also use real traces of requests recorded in

a Facebook datacenter [41]. Contrarily to the SUHA mode, in

the real trace mode we simulate a finite number of requests

(154M unique 4-tuples). In both modes, the heterogeneous CH

load-balancer spreads traffic among n = 100 servers. For each

server in each simulation, we assume that its service rate is

proportional to an integer weight drawn u.a.r. in [1,10]. As in

the previous evaluation, the maximal stable load represents

a worst-case value of load at the load balancer for which

at least one of the servers experiences instability event. This

evaluation involves a higher number of physical servers and

hence the worst-case scenario is expected to be even worse. We

use the FNV-1a hash function for the NGINX, ACH and M3

variants (results were similar for the crc32 hash function). We

run 100 simulations. As previously, for Ketama, we assume

that weights also indicate the number of virtual servers. For

ACH, we use cthrottle =
10·100
65,537

≈ 1

65
, so that there are enough

virtual servers in the worst case, as indicated in the ACH

paper [2]. All other assumptions stay the same.

Results. Fig. 8(a) and Fig. 8(b) respectively illustrate the CDF

of the measured maximal stable ρ and of the number q of

virtual servers. Both NGINX and ACH obtain poor stability

results, in each of the two simulation modes. The real trace

mode degrades the performance of all algorithms but hurts

ACH’s and NGINX’s performance the most. The cause for

the sub-optimal performance in the real trace mode compared

to the SUHA mode is the non-optimal (finite) key distribution

of any hash function (in this case FNV-1a), which distributes

the keys among the hash space in approximately uniform way,

but not exactly uniform for any number of finite keys. Hence,
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Fig. 8. Load-balancer evaluation with n = 100 heterogeneous servers:
Empirical CDF of (a) maximal stable ρ load values and (b) their corresponding
number q of virtual servers, comparing ACH, NGINX’s Ketama, and M3 for
both ρ < 0.9 and ρ < 0.99. The dotted lines represent the maximal stable
ρ when relying on the SUHA assumption, while the solid lines represent
simulations that were run using real traces from Facebook’s datacenter.

the real trace mode provides a more realistic setting, while we

would expect the trace results to converge to the SUHA results

for an infinite trace. It can be clearly seen from the figures

that the Ring-based algorithms are more sensitive to this sub-

optimal phenomenon. NGINX performs with a 1st-percentile

stable ρ at 0.08 in real trace mode and at 0.16 in SUHA

mode. ACH performs with 1st-percentile stable ρ at 0.56 in

real trace mode and at 0.67 in SUHA mode. As in the previous

simulation, we can observe the implication on the max stable

ρ caused by the inherent imbalance of the weighted Ring.

Moreover, simulating the results using real traces and real

hash functions degrades the performance of the weighted ring

algorithms substantially, while the M3 variants were affected

only slightly. M3 with guaranteed stability for ρ < 0.9 (in

blue) achieves a 1st-percentile stable ρ at approx. 0.9 in both

modes, while M3 with guaranteed stability for ρ < 0.99
(in green) achieves a 1st-percentile stable ρ at 0.99 in both

modes, but of course with a larger q. It is worth noting that

although the ACH algorithm makes extensive use of virtual

servers (≈3.5x more than the M3 stringent variant), the ACH

algorithm cannot achieve similar results to any of the M3

variants. A notable observation arising from this evaluation is

that whenever naively using the common industry standard for

heterogeneous load balancing (NGINX), instability events are

very likely to occur if the system load is higher than 20% of its

capacity. However, according to the same evaluation, adapting

a scalable M3 variant in such cases is expected to prevent

instability events completely (100% throughput) whenever the

load is less than 90% of its capacity.

E. Key lessons from the evaluation results

Beyond the compliance of the evaluation results with the

paper’s theoretical results, three key lessons emerge from the

evaluations.

First, the weighted Ring algorithm presents surprisingly

weak stability results, especially when using smaller memory

resources.

Second, these results are even weaker in real-world finite

traces, in which the average load at each given server is

much more variable, especially when compared to often-

used theoretical assumptions with implied infinite streams of

packets (as seen in the solid vs. dotted lines in Fig. 8(a)).

Finally, the M3 algorithm can achieve a strong guaranteed

stability result even with limited memory resources.

VII. CONCLUSION & DISCUSSION

In the paper, we provided a fundamental analysis of hetero-

geneous consistent hashing, a key component of current load-

balancers. We introduced the H&M framework for quantized

heterogeneous CH. Within this framework, we also presented

the M3 algorithm for providing min-max fairness. We then

demonstrated necessary and sufficient conditions for guaran-

teeing stability over the set of all arbitrary normalized hetero-

geneous service rates. Finally, the evaluations illustrate how

existing solutions suffer from significant stability issues, while

our suggested practical M3 algorithm reaches strong stability

performance together with proved stability guarantees.

At the same time, it is worth bearing in mind the following

limitations of M3:

CH limitations. M3 shares some intrinsic limitations of

existing CH algorithms (Table I). It is vulnerable to long-tailed

flows that send many packets to the same server, and long-

tailed packets that may require significantly more processing

than other packets. This is because it is oblivious to the server

queue sizes. Solving this could involve sometimes sending new

flows to other servers than the CH algorithm calls for, together

with a connection tracking mechanism that keeps track of these

changes [37].

Quantization limitations. Given a finite number q of virtual

servers, Cor. 1 establishes that M3 cannot fully reach 100%

throughput for all service rate vectors, even though it can get

close to it.
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