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Abstract—The network plays a key role in High-Performance
Computing (HPC) system efficiency. Unfortunately, current
HPC routing solutions are not application-aware, and therefore
cannot deal with the sudden HPC traffic bursts and their
resulting congestion peaks.

To address this problem, we introduce Routing Keys, a
scalable routing paradigm for HPC networks that decouples
intra- and inter-application flow contention. Our Application
Routing Key (ARK) algorithm proactively allows each self-aware
application to route its flows according to a predetermined
routing key, i.e., its own intra-application contention-free rout-
ing. In addition, in our Network Routing Key (NRK) algorithm, a
centralized scheduler chooses between several routing keys for
the communication phases of each application, and therefore
reduces inter-application contention while maintaining intra-
application contention-free routing and avoiding scalability
issues. Using extensive evaluations, we show that both ARK
and NRK significantly improve the communication runtime by
up to 2.7x.
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I. INTRODUCTION

Background. As Moore’s law keeps slowing down, High-
Performance Computing (HPC) applications naturally be-
come increasingly parallel and involve an ever-larger number
of hosts. As a result, they need to rely on an efficient and
scalable routing algorithm.

Unfortunately, current routing solutions employed in HPC
networks suffer from performance degradation and/or scal-
ability issues. This is because they are either (a) oblivious
to contention, e.g., DmodK and ECMP [1], [2], often with
poor performance; or (b) centralized [3]–[8], with scalability
issues; or (c) reactive to congestion [9]–[13], [13], [14],
which are often based on outdated information, especially
when the traffic pattern keeps changing [9].

Inter- versus intra-application contention. The perfor-
mance degradation is particularly acute for BSP (Bulk
Synchronous Parallel)-based applications, where common
barriers force the communication phases of different hosts
of the same application to start and end synchronously.
As illustrated by a toy example in Figure 1, this strong
synchronization can result in significant intra-application
contention (e.g., between A1 and A2). As a result, current
routing solutions have trouble handling such barrier-based
applications.

Figure 2(a) illustrates the contention when using a traffic-
pattern-agnostic routing algorithm. Application A runs in

Figure 1. Inter- vs. intra-application contention in a simple example
with two barrier-based applications A and B, each with two hosts. The
computation and communication phases of hosts that belong to the same
application (e.g., A1 and A2) are synchronized, resulting in significant intra-
application contention. On the other hand, communication phases of hosts
that belong to different applications (e.g., A1 and B1) are typically not
synchronized, thus the inter-application contention is weaker.

hosts 0, 1, 4 and 8, referred to as A1, A2, A3 and A4.
Application B runs in hosts 2 and 12, referred to as B1 and
B2. Three different flows contend for the same leftmost link:
two of them (in continuous blue lines) belong to application
A and exhibit intra-application contention. The last one (in
the dashed red line) belongs to application B, and exhibits
inter-application contention with application A. While this
figure exhibits both intra- and inter-application contention,
the intra-application contention between the two flows of
A is typically stronger in practice because of the barrier
synchronization effects.

Contributions. Our key observation is that applications can
proactively prevent intra-application contention by request-
ing contention-free routing paths for their flows. In other
words, instead of independently determining the routing of
each flow of a given application, we can jointly determine
the routing of all the application flows so that they do not
conflict. Our paper targets the wide range of applications that
know their main traffic patterns, e.g., applications based on
stencil or MapReduce.

We further introduce Routing Keys, a new scalable routing
paradigm for HPC networks and software-defined networks
(SDN) that decouples intra- and inter-application flow con-
tention. Within this paradigm, we present two algorithms:

(1) ARK. Our first algorithm is Application Routing Key,
which allows each self-aware application to route its flows
according to a predetermined routing key, i.e., its own intra-
application contention-free routing (Section II-A).

In ARK, at placement time, when an application re-
quests placement and informs the centralized scheduler of



(a) Routing with strong contention (b) ARK intra-application contention-free rout-
ing

(c) NRK optimal routing

Figure 2. Illustration of different routing algorithms for flows of application A (continuous blue lines) and B (dashed red line). (a) Traffic-pattern-agnostic
routing algorithm, resulting in strong contention between different flows. (b) ARK algorithm, yielding an intra-application contention-free routing. (c) NRK
algorithm, resulting in this example in inter- and intra-application contention-free routing.

its computation needs (e.g., n hosts), it can also inform
the scheduler of its communication needs (e.g., stencil or
permutation pattern). The scheduler then not only returns
a list of hosts, but also generates a routing key, i.e., a
contention-free list of specific routes that these hosts will
use to communicate. Thus, ARK proactively prevents any
intra-application contention.

Figure 2(b) illustrates how ARK routing prevents intra-
application contention between flows of application A. How-
ever, since ARK considers each application independently, it
still allows for contention between two flows of applications
A and B on the leftmost link, at the upstream of the first
Top-of-Rack (ToR) switch.

(2) NRK. Our second algorithm is Network Routing Keys
(Section II-B). At placement time of each application, NRK
generates a list of routing keys instead of a single routing key.
Each routing key guarantees an intra-application contention-
free routing for the application flows. Then, at run-time,
at the start of each new communication phase of a given
application, the scheduler can pick a routing key in its
corresponding list that would yield less contention with
other applications. Thus, the centralized scheduler reduces
inter-application contention while keeping intra-application
contention-free routing.

Figure 2(c) illustrates a possible routing produced by
NRK that is both intra- and inter-contention free, i.e., an
optimal routing solution for this placement.

We further provide a detailed description of an Infiniband-
based implementation design of ARK and NRK using
three main architectural components: the scheduler, the
subnet manager and the application-flow manager. We also
leverage the Infiniband LMC mechanism to create different
routing paths between each pair of hosts (Section III).

Finally, we extensively evaluate both ARK and NRK
using a flit-level simulator on a large InfiniBand network.
We extend the simulator to provide MPI semantics for
reproducing its distributed communication patterns. The

evaluations show that both ARK and NRK significantly
reduce communication runtime by up to 2.7× compared to
DmodK [1], [2] and Conga [9] (Section IV).

II. ROUTING KEYS

In this section, we introduce Routing Keys. We first
present our simpler ARK solution, then the more advanced
NRK algorithm. For ease of exposition, we assume a two-
level fat-tree network. We later generalize to a three-level
extended generalized fat-tree (XGFT) network (Section III).
We also discuss routing keys at the application granularity,
but all of our techniques equally apply at the application
communication-phase granularity1, which we also use in our
implementation design (Section III).

A. ARK: Application Routing Key

The ARK algorithm relies on the centralized scheduler,
i.e., the architectural element that handles the placement of
the application hosts. At placement time, each application
informs the scheduler about its computing and networking
requirements. For example, it may mention (a) the number
of ordered hosts that the application requires, and (b) the
communication pattern among these hosts (e.g., stencil or
permutation). Then, the ARK scheduler not only decides
about the placement of the application hosts, but also ex-
ploits the communication pattern to produce a routing key
for this application, i.e., an intra-application contention-free
routing for the application flows.

Consider again Figure 2(b). In that example, applica-
tion A informs the scheduler that it requires four hosts
A1, A2, A3, A4 and that its traffic pattern is (A1 →
A3, A2 → A4). The smaller application B requires only
two hosts B1, B2 and its traffic pattern is (B1 → B2).

1In our evaluations, we create a routing key for each communication
phase of each application. When such a phase begins, the scheduler chooses
the key based on the (application, phase) pair, potentially providing better
performance.



The scheduler decides on the host placement and returns a
routing key.

Compressed key. In order to produce the desired routing key
efficiently at placement time, we design an algorithm based
on the Birkhoff-von Neumann decomposition. Specifically,
we consider a bipartite graph in which the left set of
nodes represents the flow source ToR switches, the right set
represents the flow destination ToR switches, and the edges
represent the requested source-destination application flows.
For example, in application A of Figure 2(b), ToR source 0
is connected to ToR destinations 1 and 2. Once the bipartite
graph is formed, we iteratively decompose it by (1) finding
a maximum-cardinality match using the computationally-
efficient hopcroft-karp algorithm [15], (2) translating this
match into a set of intra-application contention-free routes,
(3) mapping each obtained match to a different middle
(aggregation) switch, and (4) removing the corresponding
edges from the graph. This procedure terminates once there
are no edges left. For instance, in Figure 2(b), at the end of
the procedure, the two flows of application A are mapped
to switches 4 and 5, respectively. We are guaranteed to
terminate with intra-application contention-free routing if
such a contention-free solution exists.

B. NRK: Network Routing Keys

As can be seen in Figure 2(b), while ARK provides intra-
application contention-free routing for each application inde-
pendently, it does not consider inter-application contention.
The goal of the Network Routing Keys (NRK) algorithm
is to greedily minimize inter-application contention while
preserving the intra-application contention-free routing.

Unlike ARK, NRK returns several routing keys, i.e.,
several intra-application contention-free routes, for each
application at placement time. Each application is then
associated with this set of different routing keys. At run-
time, at the start of the communication phase of each
application, the scheduler can dynamically choose which
of its routing keys to employ such that inter-application
contention is minimized.

Simplified key generation. Generally, an application rout-
ing demand can have many potential intra-application
contention-free routing keys. Considering all of them would
be impractical. Instead, NRK returns only a fixed-size subset
of keys for each application. In addition, in many symmetric
topologies (e.g., leaf-spine, folded-Clos, XGFT [16]–[18]),
we can use a single key to generate many different intra-
application contention-free routes. Specifically, we observe
that in such symmetric topologies, the intra-application
contention-free routing depends only on the relative position
of the switches. To illustrate this consider again Figure 2(b).
In that example we have an inter-application contention at
the leftmost link. However, with NRK, we can leverage the
same application routing key that is used by ARK and shift

it by one step to the right. Namely, use aggregation switches
5 and 6 instead of 4 and 5. By doing so, NRK obtains
an optimal solution (i.e., inter- and -intra contention-free
routes), as depicted in Figure 2(c).

We want the NRK scheduler to choose the best routing
key shift to employ given the current network state. To do so,
we consider two optimization criteria: (a) the maximal link
load and (b) the load variance over the links. Next, since an
exhaustive search for the best routing key shift according to
(a) and (b) leads to exponential complexity, we define a fine-
grained shift optimization. We first consider the most loaded
middle switch in the routing key, i.e., the middle switch
with the most application flows. Since we want to balance
the load across the network middle switches, we assign the
flows going through this middle switch to the least-loaded
middle switch in the current network state. Then we do the
same for the second most-loaded switch, and so on. For
instance, assume that a routing key routes all flows through
middle switch 1. Assume also that currently middle switch
7 is unused. Then we can shift the routing key and route
all these flows through middle switch 7 instead of 1. In this
approach, the number of possible shifts for a key grows like
the square of the number of switches.

III. IMPLEMENTATION DESIGN

In this section, we design the Routing Keys implementa-
tion for an InfiniBand cluster with an XGFT topology [16]–
[18]. We rely on three main architectural components: (a) the
scheduler, which is in charge of the placement and the
routing-key generation, (b) the subnet manager (SM), which
controls the switch routing tables, and (c) the application-
flow manager, i.e., a single application host that is responsi-
ble for the key management. We detail the implementation
of NRK, as ARK only uses a subset of the NRK functions.

At placement time. Once an application requests placement,
it also provides a list of its traffic patterns that correspond
to its different communication phases. In the simplest case,
this list may contain only a single pattern, but we allow
applications to report several communication patterns if they
change between phases. In our design, the SM computes
a routing key for each traffic pattern provided by the
application, then sends key identifiers to the application-flow
manager.

At run-time. At run-time, the application-flow manager
sends to the scheduler the required key identifier that cor-
responds to the application’s next communication stage.
The scheduler, in turn, takes the following actions: (a) it
first optimizes the routing key using the fine-grained shift
technique that enables it to generate several alternative
routing keys and pick the best one for the current network
state; then (b) it sends the required LMC (detailed in the next
paragraph) to the application hosts; and finally (c) it requests
the SM to configure the forwarding tables accordingly.



LID Mask Control (LMC). To enable the compatibility
of Routing Keys with an InfiniBand cluster, we leveraged
the LID (Local IDentifier) Mask Control (LMC) mechanism
that is already supported by InfiniBand. LMC enables the
aliasing of the same physical host with an array of LIDs
instead of a single one. This, in turn, allows the creation of
different routing paths between each pair of hosts. Specif-
ically, we code each routing key for a specific application
using a different LMC,2 and notify the application which
LMC to use during its communication stages. When NRK
decides on a route, the SM configures the forwarding tables
for this specific LMC.
SM. We adopted openSM [19] as our SM. We implemented
NRK using the Compressed key technique and the hopcroft-
karp subroutine.
Routing key. Each routing key is designed as a list of
routing paths. For example, consider the following routing
key that corresponds to the example in Figure 2(b):

A1: 0→4→1→DLID(4)
A2: 0→5→2→DLID(8)

It states that A1 is routed through the path: switch 0 →
switch 4 → switch 1, and finally arrives at its destination,
i.e., a host with a Destination LID (DLID) 4.
3-level XGFT. We also extend our key generation al-
gorithms to 3-level XGFTs. Specifically, we reduce the
three-level XGFT algorithm to two-level fat-tree algorithms
using the following reduction. Figure 3 illustrates how each
aggregation-spine sub-tree is represented by a single node.
The reduced tree links have a one-to-one correspondence
with the ToR-to-Aggregation level links. This allows us to
use a two-step approach. First, we apply our two-level key
generation algorithm to the reduced graph and obtain the
upstream and downstream ToR-to-Aggregation links. This
solution serves as an input for the second step. Specifically,
we apply the same algorithm again for the Aggregation-
Spine demand. It is important to note that the second step
allows for a completely parallel/distributed implementation,
as all the sub-trees are independent (this is illustrated in
Figure 3 where each color shows a different sub-tree).
Discussion. Our design can be extended not only to addi-
tional topologies, as explained above for 3-level XGFT, but
also to additional platforms such as Ethernet. In particular,
the routing key creation process is platform-independent.
In Ethernet-based architectures, key usage can be enabled
by algorithms that allocate predetermined routes to specific
flows (e.g., source-routing) [4], [9], [20].

Our techniques require additional router table entries to
store the route for each key. Yet, this does not appear to be
a significant limitation, since the number of required keys is
quite small compared to a typical routing table size.

2Current technology supports up to 7 bits for LMC, allowing up to 128
different LIDs per host.

Figure 3. Reduction of a 3-level XGFT into a 2-level Fat-Tree. Each
color stands for an independent sub-tree.

IV. EVALUATION

In this section, we first conduct a fundamental evaluation
of the load-balancing ability of NRK using a Matlab-based
simulation. Then, we compare the performance of several
algorithms using an InfiniBand-based simulator running MPI
applications.

A. Load-balancing evaluation of NRK

We use a Matlab-based simulation to compare between
the load-balancing abilities of NRK and DmodK, which
is commonly implemented in current HPC networks. At
each network switch of radix k, DmodK routes packets to
destination d through a switch port number that is obtained
by applying a modulo function that depends on d, k, and the
switch level and position in the network [1], [2]. Specifically,
we conduct an experiment in which we increase the number
of hosts, and for each host count, consider a folded-Clos
topology with n hosts and

√
n sources, destinations and

middle switches. This is the minimal number of middle
switches required to make the network to be rearrangeably-
non-blocking. We set the network load to 60% utilization
(e.g., if we have 100 hosts, then at least 60 hosts send
flows to 60 other hosts), and divide the flows into different
applications, with 10 flows per application, on average. The
arrival order of applications is chosen randomly. Finally, we
measure the maximal contention, i.e., maximum number of
allocated flows on a link.

Figure 4 reveals that in DmodK the maximal contention
increases relatively fast with the size of the network (as
could be expected when using a simple balls-and-bins
model), while NRK keeps contention low.

B. Flit-level simulation model with MPI semantics

Simulator. We evaluated ARK and NRK using an Infini-
Band flit-level simulator provided by Mellanox Technologies
that is implemented within the OMNet++ network simula-
tion framework. It has already been extensively used and de-
scribed in the literature [21]–[24]. Its switches are based on



Figure 4. NRK maintains a low contention as the number of hosts
increases, while DmodK shows a continuous contention increase.

forwarding tables generated by OpenSM. It includes credit
propagation times and virtual-output-queue based switching.
MPI support. We updated the simulator to support MPI col-
lectives for HPC applications. Unfortunately, this simulator
has no support for the replay of MPI traces. We addressed
this challenge by extending the simulator and adding this
capability. Specifically, we designed a new file format to rep-
resent MPI program communications, in a way that allows
easy translation of most MPI applications. Moreover, this
file format is presented in a coherent compact view and its
code supports symbolic and dense syntax for defining MPI
application traces. Such a view is useful when analyzing
jobs and constructing test-case jobs. Note that while Open
Trace Format (OTF), an open source standard, may enable
the capture and merging of MPI call traces, it does not
support the collapse of the task-specific trace into a coherent
compact view, and thus, is harder to analyze. Figure 5(a)
illustrates an example of an MPI trace of a 3-dimensional
stencil application. We can observe how the trace provides a
symbolic representation of Cartesian neighbor coordinates,
and recognizes all the MPI communication APIs (collectives,
send/recv and waits).
Route request support. Another needed feature is to enable
the application to request a routing key using the MPI collec-
tive. For that purpose, we define two new Route-On-Demand
commands. The first is RODRequest. Namely, providing a
routing key identifier upon a request for route. The second,
RODDone, is sent when the application has stopped using
the routing key (i.e., finished its communication phase). A
small example is presented in Figure 5(b).

C. Performance evaluation of ARK and NRK

Topology. We verify our design using a 3-level extended
generalized fat-tree (XGFT), as it is a widespread
topology in HPC and datacenter networks [16]–
[18]. The 3-level XGFT definition uses parameters
(h;m1,m2,m3;w1, w2, w3). h is the height of the tree.
Node levels are labeled 0 to 3, where 0 represents the host
level and 3 the spine switch level. Each node in level i has
wi parents and mi−1 children. We simulated two cluster
topologies. First, a small-scale network with 216 nodes

(a) Simple MPI trace. (b) RODrequest.

Figure 5. (a) shows a trace of a 3-dimensional stencil application. SCOPE
ALL represents the openMPI global communicator MPI COMM WORLD
[25]. Calc is compute-time distributed uniformly with extra STD. Send and
Recv operations show the communications along the 3 Cartesian axes and
include message size, tag and communicator. A barrier collective is finally
invoked to synchronize the application phase. (b) shows an example of MPI
trace containing a routing key request for communicator 1 with tag 1000
and requests the route for RKEY(Routing Key) IDENTIFIER. When this
communication phase ends, i.e., after BARRIER ALL, an RODDone is sent.

(hosts) and 108 InfiniBand switches, implemented as a
3-level XGFT with parameters (3; 6, 6, 6; 1, 6, 6). Second,
a large-scale network with 1728 nodes and 432 InfiniBand
switches [23], [26], implemented as a 3-level XGFT with
parameters (3; 12, 12, 12; 1, 12, 12). All links are 40Gbps
links.

Algorithms. To evaluate our design, we implemented both
the key creation and the optimization algorithm as pre-
sented in Section II. We compared ARK and NRK with
two algorithms from the literature: (1) DmodK, which is
commonly implemented today in HPC networks; and (2)
Conga [9], a state-of-the-art load-balancing flowlet-based
algorithm. Since Conga was originally designed for a 2-
level fat-tree, we enhanced its algorithm for a 3-level fat-
tree topology. Specifically, we replicated the algorithm from
2-level into 3-level as described in the original Conga paper.

Workload. In the experiment, we run m applications using
n bare-metal hosts (servers), such that each application runs
on n

m bare-metal hosts. Our benchmark workload iterates
though a Cartesian MPI permutation (+x/-x/+y/-y/+z/-z),
each with a synchronized barrier to ensure that every phase
ends before the next one starts. Different applications are
independent of each other, and each runs the same phases
in a different order.

Mapping. We expect intra-application contention to be the
strongest when application hosts are close to each other. As
a result, we would expect our ARK and NRK algorithms
to perform particularly well when the placement is either
contiguous or semi-contiguous. Instead, we assume a detri-
mental random mapping algorithm to neutralize the effect
of mapping.

Utilization. We define the global network utilization as
the ratio between the communication time and the total
(computation and communication) time, when the network
does not have an impact, i.e., all sources are connected to
all destinations in a full mesh at full link capacity, such that
the propagation time is only due to the transmission time.



Figure 6. An experiment with 216 hosts and 6 running applications. Each
application contains 36 flows spread over the network. The communication
runtime is significantly improved with ARK and even more with NRK when
compared to DmodK and Conga.

Measure. We measure the communication time of all of
the phases of each application, and summarize it to obtain
the total communication time of each application. Then we
compare the maximal (i.e., worst-case) total communication
time across all applications.

Simulations. The first simulation is over the smaller-scale
fat-tree. Each trace contains a mixture of phases with dif-
ferent message sizes, which vary from 4KB up to 256KB,
sent through the MPI trace Cartesian axes. The variation is
based on application distribution analysis from a Facebook
trace [27]. The experiment contains 6 applications each with
36 flows randomly distributed among the hosts. We vary
the global utilization in the different simulation runs while
keeping the amount of data in each communication phase
constant. Therefore, the increase in communication time as
utilization increases is only due to network contention.

Figure 6 shows that Conga performs worse than DmodK,
because it reacts to past congestion and does not adapt
quickly to the fast changes in the traffic pattern. On the
contrary, our simple ARK provides better performance be-
cause it provides intra-application contention-free routing.
In addition, our more advanced NRK optimized algorithm
achieves the best communication times across all utiliza-
tions, since it also tries to minimize inter-application con-
tention. It is particularly interesting that the most significant
improvements are achieved at low utilizations, as these are
the typical operating points of current HPC networks.

The second evaluation is conducted on a larger-scale
topology with 1728 nodes. As a result, we have more oppor-
tunities to divide the flows among the different applications.
We repeat the previous experiment on a larger scale, but with
a varying distribution of the flows among the applications.

Figure 7 illustrates the results. When the number of
applications is small (Figure 7(a)), ARK provides most of
the improvement over both DmodK and Conga, and the
improvement of NRK over ARK is negligible. For instance,
with 10% utilization, both ARK and NRK reduce commu-
nication runtime by 2.7× compared to DmodK and Conga.
As the number of applications increases (i.e., Figures 7(a)

and 7(b)), the dynamic optimizer of NRK further improves
its performance compared to ARK.

Figure 8 illustrates the effect of using a single message
size. In this experiment, message size is always set at 32KB.
As expected, in this scenario, the performance of DmodK
is comparable to our ARK solution, as intra-application
contention is less significant. On the other hand, NRK still
shows an advantage due to its two-stage optimization.

Finally, Figure 9 illustrates the effect of the application
communication-time duty-cycle3 on the different routing al-
gorithms. In this experiment, we send 16K-256KB messages
while keeping the same amount of data being exchanged
across the different runs. We increase the calculation time
accordingly and reduce the number of iterations. Since the
duty-cycle changes, fewer barriers are presented for larger
messages. Therefore, we expect the experiments with larger
message sizes to run faster (less synchronization).

Finally, it is notable that NRK outperforms all other al-
gorithms in various scenarios. In addition, when the number
of jobs is small, even a static solution like ARK can provide
significant improvement over traditional solutions.

V. RELATED WORK

Oblivious routing. The most common way to forward
packets in current HPC clusters is by using a static, obliv-
ious routing algorithm. It could be destination-based (e.g.,
DmodK [1], [2]), source-based, or flow-based (e.g., ECMP).
Such oblivious algorithms are known to provide poor load-
balancing [28]. More recently, Presto [20] has provided an
oblivious load-balancing approach that relies on spreading
packets. Unfortunately, it suffers from packet reordering,
which can be mitigated using the Juggler [29] mechanism.

Adaptive routing. Adaptive routing aims to provide optimal
load-balancing [24]. However, many systems cannot utilize
it due to its inherent out-of-order delivery characteristics.

Centralized routing. Hedera, MicroTE, SWAN, Fastpass
and Flowtune [3]–[8] rely on a centralized scheduler that
maintains the global network state and calculates routes for
network flows. Such algorithms can be slow to react to
changes in traffic patterns at dataplane timescales, and face
significant scalability challenges.

Congestion-aware routing. Recently, there have been many
suggested congestion-aware routing algorithms [9]–[13],
[13], [14]. These algorithms take recent congestion into
account, either directly or indirectly, in order to change the
routing path of packets. Unfortunately, they have had trouble
handling applications with fast-changing traffic patterns,
and cannot guarantee any intra-application contention-free
routing.

Application-aware-routing. Some proposals have been
made to deal with application-aware routing [30]–[35]. How-

3The duty-cycle is defined as the time between barriers.



(a) 2 applications (b) 8 applications (c) 32 applications

Figure 7. Communication time as a function of utilization for 1728 hosts with mixed traffic, when flows are divided into: (a) 2 applications, (b) 8
applications, (c) 32 applications.

(a) 2 applications (b) 8 applications (c) 32 applications

Figure 8. Communication time as a function of utilization for 1728 hosts with single message size of 32KB, when flows are divided into: (a) 2
applications, (b) 8 applications, (c) 32 applications.

(a) 2 applications (b) 8 applications (c) 32 applications

Figure 9. Communication time as a function of message size for 1728 hosts with single message size, when flows are divided into: (a) 2 applications,
(b) 8 applications, (c) 32 applications.

ever, most of them rely on mixed-integer linear program-
ming, which is hard to scale with network demands. Other
approaches do not deal with the whole routing solution,
but instead, act as congestion control. A recent work by
[34] suggested a linear-program based solution, however the
complexity of their algorithm may be as high as a six-
order polynomial with respect to the size of the network.
Our solution reduces complexity by decoupling the inter-
and intra- application contention problems and relies on the
lightweight complexity of the maximal cardinality matching
algorithm. Finally, LaaS [35] introduces a routing with
guaranteed inter-application contention-free routing, at the
expense of a slightly lower host utilization.

Intra-application contention. The differentiation between
intra- and inter-application contention is not new and has
already appeared in the literature, e.g., [36].

MPI-based algorithms. In [37], the authors propose to use
the network closeness between virtual machines to modify
the internal structure of the MPI-based algorithm. This
approach is complimentary to ours, and can reduce network
utilization, although it does not prevent data flows of the
same application from creating intra-job-contention. In ad-
dition, a recent study [38] proposes a proactive separation
of such applications to disjoint buffer resources.

VI. CONCLUSIONS

In this paper, we introduced Routing Keys, a new scalable
routing paradigm for HPC networks that decouples intra- and
inter-application flow contention. We presented both ARK
that provides intra-application contention-free routing, and
the more advanced NRK that significantly reduces inter-
application contention while preserving the intra-application
contention-free routing. Using extensive evaluations, we
showed that both ARK and NRK achieve a significant



improvement in the application performance when applied
to an XGFT topology over InfiniBand.
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