
Configuring a Load-Balanced Switch in Hardware
Srikanth Arekapudi∗, Shang-Tse Chuang∗, Isaac Keslassy∗∗, Nick McKeown∗

{sarek, stchuang, keslassy, nickm}@stanford.edu
∗Computer Systems Laboratory, Stanford University

∗∗Now with the Technion, Haifa, Israel

Abstract— The load-balanced switch architecture is a promis-
ing way to scale router capacity. We explained in [1] how it can
be used to build a 100Tb/s router with no centralized scheduler,
no memory operating faster than the line-rate, no packet mis-
sequencing, a 100% throughput guarantee for all traffic patterns,
and an optical switch fabric that simply spreads traffic evenly
among linecards. This switch fabric uses optical MEMS switches
that are reconfigured only when linecards are added and deleted,
allowing the router to function when any subset of linecards is
present and working.

In [2] we introduced a configuration algorithm that will find a
correct configuration of the MEMS switches in polynomial time.
However, we found that our algorithm takes over 50 seconds
to run in software for a 100Tb/s router. Our goal is to restore
the router to operation within 50ms upon failure. So we modify
our algorithm for implementation in dedicated hardware. In
particular, to simplify the Ford-Fulkerson algorithm in bipartite
matches, we reduce memory accesses and use bit manipulation
schemes. Then, we decompose permutations using the Slepian-
Duguid algorithm and reduce the configuration time with a
simplified memory scheme. Our experimental results show that
it is possible to achieve the 50ms target.

I. I NTRODUCTION

Our goal is to identify router architectures with predictable
throughput and scalable capacity. At the same time, we would
like to identify architectures in which optical technology (for
example optical switches and wavelength division multiplex-
ing) can be used inside the router to increase capacity by
reducing power consumption.

In a previous paper [1] we explained how to build a 100Tb/s
Internet router with a single-rack switch fabric built from
essentially zero-power passive optics, but without sacrificing
throughput guarantees. Compared to routers available today,
this is approximately 40 times more switching capacity than
can be put in a single rack, with throughput guarantees that no
commercial router can match today. The key to the scalability
is the use of theload-balanced switch, first described by C-S.
Changet al. in [3]. In [1] we extended the basic architecture
so that it has provably100% throughput for any traffic pattern,
and doesn’t mis-sequence packets. It is scalable, has no central
scheduler, is amenable to optics, and can simplify the switch
fabric by replacing a frequently scheduled and reconfigured
switch with a single, fixed, passive mesh of WDM channels.

Unfortunately, as mentioned in [2], the number of linecards
present can keep on changing as more and more linecards
are added as the network grows or linecards are removed
as they fail. The load-balanced switch works by uniformly
spreading packets over all linecards, and therefore needs to

be aware of which linecards are present and which are not. If
some linecards are missing, the switch fabric must be able to
schedule the traffic uniformly over the linecards present. In [1]
we described a hybrid electro-optical architecture that solves
this problem, and will operate with any subset of linecards.
[2] describes an algorithm to configure the switch fabric,
and proves that it will always find a valid configuration in
polynomial time.

Upon linecard failure we require a restoration time below
50ms in order to provide a fast recovery [4], [5], [6], [7].
However, the polynomial-time algorithm we described previ-
ously took over 50 seconds to run. A simple conversion to
hardware of the software algorithm would be too slow by at
least an order of magnitude because the algorithm is extremely
memory intensive. The goal of this paper is to show that
a suitably modified hardware implementation can keep the
reconfiguration time below 50ms.

The polynomial-time algorithm requires many repetitions of
two graph matching algorithms. The first finds the maximum
flow in a graph, which is commonly realized using the Ford-
Fulkerson [8] algorithm. The second algorithm decomposes
a matrix into a minimal number of permutations, which is
commonly solved using a Birkhoff-von Neumann [9], [10]
decomposition.

Both the Ford-Fulkerson and the Birkhoff-von Neumann
algorithms require a large number of memory accesses in order
to find matches. Therefore, in order to speed up the running
time, we adapt the original algorithms to minimize memory
accesses. First we modify the Ford-Fulkerson algorithm to
work specifically for bipartite matches. Based on the binary
matrix structure specific to our problem, we can then utilize
bit-manipulation schemes to reduce the time required to search
for new matches.

Second, in order to decompose a matrix into permutations,
the Birkhoff-von Neumann decomposition repeatedly finds a
permutation using either a maximum size match or a simpli-
fied Ford-Fulkerson. By using the Slepian-Duguid algorithm
instead, we find all the permutations at the same time. This
reduces the number of iterations to one, and therefore the
number of pre-processing steps linked with each iteration. In
addition, we provide a simple mechanism to search for the
matrix elements not yet assigned to a permutation.

Finally, the experimental results show that it is possible to
achieve the 50ms target for our 100Tb/s router consisting of
up to 640 linecards.

Here is an outline of this paper. Section II provides an



overview of the algorithm used to configure the switch fabric
of the 100Tb/s router. Then, sections III and IV respectively
present the details of the modified Ford-Fulkerson algorithm
and the Slepian-Duguid algorithm. These sections describe
how these algorithms are memory-intensive, and how bit
manipulation schemes can drastically reduce the number of
memory accesses. Finally, in Section V, the simulation results
show how the reduction of memory accesses makes the 50ms
target feasible.

II. OVERVIEW OF CONFIGURATION ALGORITHM

Although the configuration algorithm is described fully
in [2] (and we assume the reader is familiar with both
references [1], [2]), we give a brief reminder of the algorithm
here.

As explained in [2], there areG groups; groupi contains
Li linecards, and the total number of linecards is:

N =
G∑

i=1

Li.

We will assume thatL1, L2, ..., LG are fixed for a given
linecard arrangement. Our objective is to create a sched-
ule where linecards spread packets evenly across all other
linecards. Therefore, during every frame ofN time-slots each
sending linecard needs to be connected exactly once to each of
the N receiving linecards and vice-versa. This is the classical
time-slot assignment problem, known as a Latin square when
rates are equal. However, the main difference is an additional
constraint which arises from the use of MEMS switches in the
switch fabric architecture. Within each time-slot, the rate from
each transmitting group of linecards to each receiving group of
linecards is limited. Therefore, it is possible that two different
linecards in a transmitting group cannot simultaneously send
to two different linecards in a receiving group.

An algorithm for constructing the schedule was proposed
in [2]. The algorithm constructs three consecutive schedules.
First, it creates a schedule between sending groups and receiv-
ing groups by repeatedly solving the connection assignment
problem defined in Section III. Second, the algorithm creates
a schedule between sending linecards and receiving groups.
Third, the algorithm creates the final schedule between send-
ing linecards and receiving linecards. These last two steps
repeatedly decompose matrices into a minimal number of
permutations as defined in Section IV.

In the next two sections, we will formally define the
connection assignment problem and the matrix decomposition
problem, and then show how they can be efficiently solved in
hardware.

III. C ONNECTION ASSIGNMENTPROBLEM

A. Problem Definition

The configuration algorithm of the load-balanced switch
needs to solve the following connection assignment problem.
Consider2G nodes separated intoG left nodes andG right
nodes. The left nodes are connected to the right nodes using

TABLE I

EXAMPLE OF CONNECTION ASSIGNMENT PROBLEM

C =

(
1 1 1
1 1 1
1 1 0

)
, RL =

(
2
1
1

)
, RR =

(
2
1
1

)

⇒ R =

(
0 1 1
1 0 0
1 0 0

)
.

(b)(a)

SinkSource

L
1

L
2

L
3

R
1

R
2

R
3

L
1

3
R

2
R

1
R

3
L

2
L

Fig. 1. Ford Fulkerson and Modified Ford Fulkerson

a 0-1 capacity matrixC of sizeG×G. The rows of the con-
nection matrix correspond to the left nodes, and the columns
to the right nodes. We want to find a 0-1 connection matrix
R such that it is below capacity and satisfies a target number
of connections per node.RLi represents the target number
of connections needed for left nodei, and RRj similarly
represents the target number of connections needed for right
nodej.

Table I shows an example of the connection assignment
problem withG = 3. For instance, the first left node in this
table needs to make two connections, as specified in the first
element ofRL. Similarly, the second right node needs to
make one connection, as shown in the second element ofRR.
Therefore, the 0-1 solution matrixR has two elements on its
first row, and one element on its second column.

Put mathematically, we want to solve the following problem.
Find a 0-1 matrixR ≤ C such that:





∑G
j′=1 Rij′ = RLi for all i∑G
i′=1 Ri′j = RRj for all j

Rij ∈ {0, 1} for all i, j

Note that the solution is not necessarily unique, and that for
the load-balanced switch configuration the capacity matrix will
always be sufficiently large to guarantee the existence of a
solution [2].

B. Earlier Work

Given a capacity matrix, it was shown in [2] that the
Ford-Fulkerson algorithm can be used to find the solution in
polynomial time. The Ford-Fulkerson algorithm consists of
finding the augmenting paths from the source node to the sink
node until there are no more augmenting paths. The resulting
flow is the maximum flow. Either Breadth First Search (BFS)
or Depth First Search (DFS) can be used.

Our goal is to implement the algorithm in hardware, and
reduce its runtime.



TABLE II

RESULT OF THEGREEDY ALGORITHM

P =

(
1 1 0
1 0 0
0 0 0

)
, RL′ =

(
0
0
1

)
, RR′ =

(
0
0
1

)
,

C′ = C − P =

(
0 0 1
0 1 1
1 1 0

)

C. Modified Ford-Fulkerson Algorithm

Each entry in the capacity matrixC is binary, so C
represents a bipartite graph. Therefore, we can convert the
Ford-Fulkerson graph to only consider the left and right
nodes. Figure 1 shows the difference between a typical Ford-
Fulkerson graph and our modified Ford-Fulkerson graph. The
left nodes are namedL1, L2, L3 and the right nodes are named
R1, R2, R3. Unlike the original Ford-Fulkerson algorithm, we
search from the left nodes to the right nodes, not from the
source to the sink. In addition, we do not allow connections
from the right nodes to the left nodes.

Our modified Ford-Fulkerson algorithm can be subdivided
into two separate parts. The first part uses a greedy approach
to make connections between nodes. The second part uses
back tracing to find the remaining connections. Let’s first
explain the greedy part of the algorithm.

Greedy Algorithm
For each left node, the greedy algorithm keeps adding as

many temporary connections as possible to the right nodes. A
connection can be added if and only if this connection exists
in the binary capacity matrix and the target numbers of left
and right connections are not exceeded.

Table II shows the matrixP of temporary connections after
the greedy algorithm is applied.RL′ and RR′ represent the
remaining target number of connections to be made for the
left and right nodes. Notice that after the greedy algorithm is
applied,L1 is connected toR1 andR2, andL2 is connected
to R1. Therefore, the target number of connections forL1,
L2, R1, andR2 are met. The only connections not yet met are
for L3 andR3 as seen inRL′ andRR′. The greedy algorithm
cannot connectL3 to R3 since the only connections available
in the capacity matrix fromL3 are toR1 and R2. After the
greedy algorithm is applied, the remaining target connections
specified byRL′ andRR′ are made through the back tracing
algorithm. TheC ′ matrix specifies the connections not used
by the greedy algorithm (C ′ = C − P ).

Back Tracing Algorithm
Figure 2 illustrates in our example how the back tracing is

done using a simplified version of the BFS algorithm.
Initially the greedy algorithm finds the connections made

in the P matrix, shown by thin solid lines in Figure 2a.
These edges are the temporary connections currently made.
The connections in theC ′ matrix are shown by the dashed

lines. In our exampleL3 has no connection toR3, but has
connections toR1 andR2.

This is where the back tracing algorithm starts. EitherR1

or R2 can be traced back as shown in Figure 2b by thick
solid lines. AssumeR1 is traced back. FromR1 we can only
trace back toL1 andL2, as shown in Figure 2c. When back
tracing from the right nodes, only temporary connections are
considered. Assume thatL1 is traced back. Notice in Figure 2d
thatL1 has a connection toR3, for which the target number of
connections is not yet achieved. This ends the trace. Temporary
connections are updated and the final connections are shown
in Figure 2e.

This back tracing algorithm is repeated for all other nodes
that do not achieve their targets.

Implementation
Memories are used to keep track of the following elements.

Throughout both the greedy and back tracing algorithms, we
store the current capacity matrixC ′, which keeps track of the
temporary connections made, and the remaining number of
connections needed to be made to each node. In addition, in
the back tracing algorithm, a predecessor memory is needed
to remember the trace.

Let’s see why the greedy algorithm is memory-intensive.
In the greedy algorithm, when connections are added, the
algorithm must search for the next available connection to a
right node. If there areG right nodes, this could require up to
G memory accesses per left node, and therefore a total of up
to G2 memory accesses.

We use bit manipulation schemes to reduce the number of
memory accesses in the greedy algorithm. We first arrange
the current capacity matrixC ′ associated with a left node as
a bitmap of sizeG. We similarly represent theRR′ array as
a bitmap of sizeG, where the bit is set if the corresponding
RR′j is positive. Then, a logical AND between these two
bitmaps gives a bitmap representation of the available connec-
tions. We can then find the next available connection by finding
the first set bit in the resulting bitmap. This can be done in a
single clock cycle by using a priority encoder. Therefore, by
reusing the resulting bitmap, we can reduce the total number
of memory accesses by a factor of up toG.

Now let’s consider why the back tracing algorithm uses
many memory accesses. In back tracing we need to keep track
of the trace. Since we are using a BFS-based back tracing, each
step of the search might require adding up toG nodes to the
predecessor memory. For instance, in one search step of a left
node, up toG right nodes can be considered.

In our implementation we arrange the predecessor memory
as a binary matrix of sizeG ×G. We implement this matrix
by using a memory structure that allows a memory write to
an entire row, and a memory read of an entire column. In
a search step of the BFS algorithm, instead of writing each
node individually, we write the entire set of available nodes
in parallel to the entire row. Then, after a trace is done, in
order to find the predecessor of a node in the trace, we use
an encoder on the entire column of the memory read to find



L2

L1 R1

R3

R22

L1 R1

R3

R2

L3

(d) (e)(c)(b)(a)

L

L3

L22

L3

L2

L1 R1

R3

R

LL1 R1

R3

R2

L3

1 R1

R3

R2

L3

L2

Fig. 2. Back Tracing a) After applying greedy b) Tracing Sending nodeL3 c) TracingR1 backwards d) TracingL1 e) Final Schedule

the position of the single bit set in the column. This position
corresponds to the index of the predecessor. Using this bit
manipulation scheme, we can reduce each search step to a
single memory access. Therefore, we reduce the total number
of memory accesses by a factor of up toG.

Therefore, in both the greedy and back tracing algorithms,
we can reduce the total number of memory accesses by a factor
of up to G by using bit manipulation schemes and encoders.

IV. M ATRIX DECOMPOSITIONPROBLEM

The configuration algorithm of the load-balanced switch
needs to repeatedly decompose matrices into a minimal num-
ber of permutations. In this section we’ll describe the Birkhoff-
von Neumann solution, explain why it is memory-intensive,
and then explain why the Slepian-Duguid algorithm leads to
a more efficient implementation.

A. Problem Definition

Assume that we are given a 0-1 square matrix S and a
positive integern satisfying:




∑
j′ Sij′ = n for all i∑
i′ Si′j = n for all j

Sij ∈ {0, 1} for all i, j

We want to decomposeS into n permutation matrices, i.e.
find n permutation matrices{P k}1≤k≤n such that:





∑
j′ P

k
ij′ = 1 for all i, k∑

i′ P
k
i′j = 1 for all j, k∑

k′ P
k′
ij = n for all i, j

Note that although the decomposition is not necessarily
unique, it always exists because the chromatic number of a
bipartite graph is equal to its maximum degree.

For example, consider the following matrixS:

S =




1 0 1 1 0
1 0 1 0 1
0 1 0 1 1
1 1 1 0 0
0 1 0 1 1




A permutation matrix has exactly one 1 in each row and
column. Given a matrix S, the algorithm can generate the
following permutation matrices.




1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 ,




0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


 ,




0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0




Note that in the load-balanced switch example, the binary
matricesS could be of a size up to640 × 640, and they are
typically sparse, having a maximum of16 ones in each row
and each column.

B. Earlier Work

In [2] the polynomial-time Birkhoff-von Neumann decom-
position algorithm [9], [10] was proposed. In this decompo-
sition, each permutation can be found by applying a bipartite
graph coloring algorithm on theS matrix (e.g. a maximum size
matching algorithm, or the Ford-Fulkerson algorithm). Then,
the permutation is removed from theS matrix. The procedure
is repeated until all then permutations are found.

In our 100Tb/s router the matrix size can be up to640×640,
requiring large memory structures for the coloring algorithms.
Other graph coloring algorithms use smaller data structures
and use parallelism [11], [12], [13], [14], [15]. However, none
are fast enough for us because they all require at least one
occurrence of the maximum size matching algorithm.

C. The Slepian-Duguid Algorithm

Instead we use the Slepian-Duguid [16] algorithm designed
for scheduling calls in a circuit switch.

First, to reduce the size of the memory, we use the sparsity
of the matrices in the load-balanced switch example. In
particular, the ones of the binary matrixS are represented
as a list of (row,column) pairs.

Then, to reduce the number of memory accesses, we
apply an algorithm based on Slepian-Duguid. This algorithm
attempts to producen permutation matrices at once, and uses
the (row,column) pair list structure. The initial part of our
algorithm uses a greedy scheme to assign the easily-matched
elements, and the second part uses the Slepian-Duguid
algorithm to reassign these elements and provide a solution.

Greedy Algorithm
The n permutations are also organized in a sparse manner,

i.e. by using a (row,column) pair list structure. For clarity, we
will refer to rows as inputs and to columns as outputs. Each
permutation is arranged as an array of outputs. For instance,
thei-th element in the array refers to the output that is matched



with input i. Note that a valid permutation will not match
more than one output to the same input. Since we want to
find n permutations, we maintainn such arrays. We arrange
these arrays into a matrixA where each row corresponds to a
different permutation and therefore to a different array.

In the greedy algorithm, the matrixA is initially empty.
Then, the algorithm goes through the list of (input,output)
pairs, denoted(i, o), and tries to assign each such pair to a per-
mutation for which inputi and outputo are both unassigned.
This continues until no more(i, o) pairs can be assigned.

Table III illustrates how the greedy algorithm works. The
matrix Ak shows the state of the permutations after the
k-th (i, o) pair is assigned. For instance, ifo is the (p, i)-th
element ofAk, then thep-th permutation matches inputi to
output o in the k-th step. Since matrixA0 is initially empty,
each element in the matrix is set to0. Let’s now look at how
the (2, 1) pair is assigned in the4-th step. InA4, the (2, 1)
pair can only be assigned to the second or third permutation
since output 1 is already scheduled in the first permutation.
Let’s assume that it is assigned to the second permutation.
It is possible that an(i, o) pair can not be assigned. For
instance, inA8, the (3, 5) pair cannot be assigned since the
only permutation free for input 3 is the third permutation,
and output5 is already assigned in the third permutation.
A15 in Table III shows the final state of the permutations
after the greedy algorithm. Notice that the(3, 5) and (4, 3)
pairs are not yet assigned and need to be assigned in the
Slepian-Duguid algorithm.

Slepian-Duguid Algorithm
For each (input,output) pair(i1, o1) that is left unassigned,

the algorithm works as follows:

1) Identify the permutationsPi1 andPo1 such that inputi1

is not assigned inPi1 and outputo1 is not assigned in
Po1 .

2) Swap the inputi1 with i2, wherei2 is an input such that
(i2, o1) was already assigned inPi1 . Now we need to
track (i2, o1).

3) Swap the outputo1 with o2, whereo2 is an output such
that (i2, o2) was already assigned inPo1 . Now we need
to track (i2, o2).

Repeat steps 2 and 3 until we have unassigned slot for(in, on)
in either of the permutationsPi1 or Po1 .

The Bi matrices are similar to theAi matrices. Table IV
extends the above example to explain how the(3, 5) pair
is assigned. Let’s consider the(3, 5) pair first. Initially we
start with identifying the permutations which have input 3
and output 5 free. As can be seen inB0, P3 (row 3) has
input 3 free andP1 (row 1) has output 5 free. So we assign
(3, 5) in P3 as shown inB1. Now as can be observed in
B1 there are two inputs assigned to output 5 inP3. We
swap output 5 ofP3 with output 3 of P1 for the same
input. B2 shows the resulting matrix. Since output 5 is only
assigned once inP1, the algorithm stops here. Otherwise, it
repeats the procedure of swapping until no permutation has

multiple outputs assigned.B3 shows the final resulting matrix.

Implementation
Memories are used to keep track of which inputs and outputs

are unassigned after each permutation. For each inputi, we
store then permutations in a bitmap of sizen. If input i is not
assigned in a given permutation, we set the bit corresponding
to this permutation in the bitmap. The same is done for each
output. Then, in the greedy algorithm, an (input,output) pair
can easily find a free permutation by taking a logical AND
between the input and output bitmaps. By finding the first
set bit in the resulting bitmap, the (input,output) pair can
be matched to a free permutation in a single clock cycle.
Therefore, by reusing the resulting bitmap, we can reduce the
total number of memory accesses by a factor of up ton.

V. RESULTS

The algorithms have been implemented in hardware and the
results are presented here.

A. Synthesis

The hardware implementations mentioned in the previous
section are implemented using Verilog and synthesized using
a 0.13um process. In this implementation for 40 groups, up to
640 linecards and a maximum of 16 linecards per group, the
modified Ford-Fulkerson algorithm uses 10K gates, 24Kbits of
memory, whereas the core for the Slepian-Duguid algorithm
uses 25K gates, 230Kbits of memory. Based on the synthesis
results, both the cores ran within a 4ns clock cycle time.

Fig. 3. Worst-case Running Time of Simple Hardware Conversion and
Hardware-Specific Implementations



TABLE III

GREEDY ALGORITHM FOR SLEPIAN-DUGUID

A0 =

(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
, A4 =

(
1 0 0 0 0
3 1 0 0 0
4 0 0 0 0

)
, A8 =

(
1 3 2 0 0
3 1 4 0 0
4 5 0 0 0

)
, A15 =

(
1 3 2 0 4
3 1 4 2 5
4 5 0 1 2

)

TABLE IV

BACK TRACING FOR SLEPIAN-DUGUID

B0 =

(
1 3 2 0 4
3 1 4 2 5
4 5 0 1 2

)
, B1 =

(
1 3 2 0 4
3 1 4 2 5
4 5 5 1 2

)
, B2 =

(
1 5 2 0 4
3 1 4 2 5
4 3 5 1 2

)
, B3 =

(
1 5 2 3 4
3 1 4 2 5
4 3 5 1 2

)

B. Simulations

Because of the number of experiments we wanted to run,
and the complexity of the algorithm, running our Verilog
implementation was too slow. Instead, we developed a cycle-
accurate C-model and verified its accuracy by comparing it
with the Verilog implementation. We then used the C-model to
run a large number of tests. The C-model reports the number of
clock cycles the simulation would run for in Verilog. Because
of the constraints in the load-balanced switch [1], we generate
different sets of results over 1000 iterations with different
ranges of linecards between 0 and 640, spread overG = 40
groups. Linecards are randomly spread across the 40 groups
where the maximum number of linecards in a group is 16. For
each range, the worst case running time of the simulations is
obtained.

A processor is assumed to be connected to the cores
uploading and downloading the necessary information into the
memories. The times to transfer the initial matrices and to
obtain the final results to/from the processor are not considered
in the results. We compare the simple conversion to hardware
of existing algorithms with our implementation using the total
number of memory accesses. We assume that memories can be
accessed in a pipelined manner and that each memory access
requires one clock cycle. We measure the number of hardware
clock cycles needed. Figure 3 shows the time spent for the
simple conversion and our implementation assuming a 4 ns
clock cycle time. The graph plots the largest number of clock
cycles needed, in any of the tests we ran. We use a logarithmic
scale so as to represent both plots on the same graph. Since the
algorithms are polynomial, the plots appear logarithmic. Note
that we did not attempt to pipeline the Verilog implementation
and believe that we can reduce the time by an additional factor
of at least two. Even without complete pipelining, our results
show that our implementation meets the 50ms target over the
range of linecards needed in [1].

VI. CONCLUSIONS

This paper implements the configuration algorithms of the
load-balanced switch introduced in [2]. The implementation
meets the 50ms recovery time imposed by network operators.

Our hardware implementation relies on bitmap manipu-
lation schemes with priority encoders to drastically reduce
the memory intensive operations. Further improvements can
be achieved by pipelining, using multiport memories and
by exploiting some of the parallelism in the greedy parts
of the algorithms. We believe that these schemes can be
generalized to accelerate hardware implementations of other
graph coloring algorithms.

REFERENCES

[1] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,
N. McKeown, “Scaling Internet routers using optics,”ACM SIGCOMM
2003, Karlsruhe, Germany, Sept. 2003.

[2] I. Keslassy, S.-T. Chuang, N. McKeown, “A load-balanced switch with
an arbitrary number of linecards,”Proceedings of IEEE Infocom ’04,
Hong Kong, March 2004.

[3] C.-S. Chang, D.-S. Lee and Y.-S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering,”IEEE HPSR ’01, Dallas,
May 2001.

[4] Telcordia, GR-499 CORE, “Transport systems generic requirements
(TSGR): common requirements criteria,” Issue 2, Dec. 1998.

[5] Telcordia, GR-253 CORE, “Synchronous optical network (SONET)
transport systems: common generic criteria,” Issue 3, Sept. 2000.

[6] ANSI (American National Standards Institute), T1.TR.68-2001, “En-
hanced network survivability performance,” February 2001.

[7] ITU-T (International Telecommunication Union Standardization Sector),
Recommendation G.841, “Types and characteristics of SDH network
protection architectures,” July 1995.

[8] L.R. Ford and D.R. Fulkerson, “Flows in Networks”, Princeton Univer-
sity Press, 1962.

[9] C.S. Chang, J.W. Chen, and H.Y. Huang, “On service guarantees for
input-buffered crossbar switches: a capacity decomposition approach by
Birkhoff and Von Neumann,”IEEE IWQoS, London, 1999.

[10] G. D. Birkhoff, “Tres observaciones sobre el algebra lineal,”Universidad
Nacional de Tucuman Revista, Serie A, vol. 5, pp. 147-151, 1946.

[11] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multigraphs in
O(E log D) time,” Combinatorica, vol. 21, pp. 5-12, 2001.

[12] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multigraphs in
O(E log D) time,”New York University Technical Report NYU-TR1999-
792, New York, Sep. 1999.

[13] N. Alon, “A simple algorithm for edge-coloring bipartite multigraphs,”
Information Processing Letters, vol. 85, issue 6, pp. 301-302, March
2003.

[14] A. Schrijver, “Bipartite edge-coloring in O(∆m) time,” SIAM J. Com-
put., vol. 28, pp. 841-846, 1999.

[15] A. Schrijver, “A course in combinatorial optimization,” available at
http://www.cwi.nl/˜lex/files/dict.ps, Feb. 2003.

[16] J. Hui,Switching and Traffic Theory for Integrated Broadband Networks,
Kluwer Academic Publishers, Boston, 1990.


