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Abstract -- Packet buffers are an essential part of routers. In high-
end routers these buffers need to store a large amount of data at very
high speeds. To satisfy these requirements, we need a memory with the
the speed of SRAM and the density of DRAM. A typical solution is to
use hybrid packet buffers built from a combination of SRAM and
DRAM, where the SRAM holds the heads and tails of per-flow packet
FIFOs and the DRAM is used for bulk storage. The main challenge
then is to minimize the size of the SRAM while providing reasonable
performance guarantees. In this paper, we analyze a commonly used
hybrid architecture from a statistical perspective, and ask the following
question: if the packet buffer designer is willing to tolerate a certain
drop probability, then how small can the SRAM get? To do so, we
introduce an analytical model for representing the SRAM buffer occu-
pancy, and derive drop probabilities as a function of SRAM size under
a wide range of statistical traffic patterns. As a consequence of our
analysis we show that, for low drop probability, the required SRAM
size is proportional to the number of flows. 

I.  INTRODUCTION

Packet buffers in high-performance routers are challenging to design
because of two factors: memory speed and memory size. 

Packets belonging to different flows (for example, these flows might
correspond to different IP source-destination pairs) arrive and depart at
line rate, and are typically stored in per-flow queues. Consecutive pack-
ets may belong to different flows according to unpredictable patterns.
This requires that the buffer should be able to store as well as retrieve
packets at line rates, in an unpredictable and uncorrelated order. Thus,
the buffer has to match a raw bandwidth (in bits/s) as well as a memory
random access speed (in packets/s) of at least twice the line rate. 

In addition, a widely used rule of thumb indicates that, for TCP to
work well, the buffer should be able to store an amount of data equal to
the product of the line rate and the average round-trip-time [1]. There-
fore, both the speed and size of the memory grow linearly with the line
rate.

As an example, consider a 40Gbits/s linecard. This requires the packet
buffer to have a raw bandwidth of 80Gbits/s. In addition, assuming a
constant stream of 40-byte packets,1 the buffer must read and write a
packet every 8ns (i.e., one memory operation every 4ns - translating to a
random access speed of 250Mpackets/s); and assuming an average
round-trip time of 0.25s [2], the buffer must hold 10Gbits. 

We now investigate the properties of two popular commercially avail-
able memories - SRAM and DRAM - to see if they match these require-
ments.

1. This corresponds to minimum size IP packets containing TCP ACKs.

We note that the state of art SRAMs meet the raw bandwidth require-
ment of 80Gbits/s as well as the random access time requirement of 4ns.
However, these SRAMs can hold a maximum of 32Mbits per device,
while consuming 250mW/Mbit. Thus, an SRAM-only solution would
require over 300 SRAM devices and consume approximately 2.5kW, and
therefore be very costly in terms on board real estate as well as power. 

On the other hand, the state of art DRAMs can hold up to 1Gbits per
device, while consuming 4mW/Mbit. So, a DRAM-only solution would
require only 10 DRAM devices, while consuming 40W, and therefore
can easily meet the real estate and power requirements. However,
DRAM access times haven’t kept up with the line rates - with today’s
DRAM technology, the random access times are in the range 20ns-40ns,
and barely meet the requirements for even a 10Gbits/s line card. This
shortfall is not going to be solved anytime soon since DRAMs are opti-
mized for size rather than random access times, and the random access
times improve by only 10% every 18 months [3]. On the other hand, the
line rate doubles in the same time period [4]. Thus, this problem will get
worse rather than better over time.

Thus, an SRAM-only or a DRAM-only solution cannot meet both the
speed and size requirements simultaneously. Since, overall, we would
like to have a fast and large memory with the speed of SRAM and the
density of DRAM, a solution would be to use both, in a manner very
similar to computer systems where fast SRAMs are used as caches
whereas dense DRAMs hold bulk of data. 
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Figure 1: Hybrid SRAM-DRAM memory architecture.
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A common approach is to use a hybrid SRAM-DRAM architecture
[5][6][7], as shown in Figure 1. We encourage the reader to read [5]
for a detailed background and motivation for this architecture. Under
this architecture, one can envision the memory hierarchy as a large
DRAM containing a set of cell FIFOs with the heads and tails of
FIFOs in a dynamically shared SRAM. 

The SRAM behaves like a cache, holding packets temporarily
when they first arrive and just prior to their departure. Variable size
packets arrive at the SRAM at rate R. They are segmented into fixed-
size cells and are stored into one of the Q tail FIFOs depending on
their flow ID. Later, a Memory Management Algorithm (MMA)
writes cells into the DRAM in blocks of b cells. Similarly, the MMA
transfers blocks of b cells from the DRAM FIFOs to the correspond-
ing head FIFOs in the SRAM. Finally, cells from head FIFOs depart
when requested by an external arbiter. Note that the MMA always
transfers  cells at a time - never less - between an SRAM FIFO and
the corresponding DRAM FIFO. By transferring b cells every b time-
slots, it ensures that the DRAM meets the memory speed requirement
in the long run.2

Note that a cut-through path may exist between the tail and head
caches. However, for simplicity, we analyze the tail and head caches
independently, as tail and head SRAMs, and neglect the effects of the
cut-through path. 

In this paper, we look at the problem of independently sizing the
tail and head SRAMs from a statistical perspective under a wide range
of arrival traffic patterns. We provide models of the SRAM buffers,
present MMAs that would minimize the SRAM sizes for a given drop
probability, and derive formulas relating SRAM sizes to the drop
probability. As a consequence of our analysis we show that, in order
to provide low drop probability, the required SRAM sizes scales lin-
early with . When Q is large, this linear dependence would make
such a buffer hard to implement.3 Therefore, we exhibit an inherent
limitation of this architecture. 

The rest of the paper is organized as follows. Section II presents a
model of the tail SRAM followed by a detailed analysis. Similarly,
Section III presents a model of the head SRAM along with analytical
results. Section IV provides some simulation results and Section V
concludes the paper.

II.  ANALYSIS OF THE TAIL  SRAM 

A.  Tail SRAM Model

In this section, we introduce a queueing model for the tail SRAM,
together with some simplifying assumptions. 

As illustrated in Figure 2, we model the tail SRAM as a single
queue served by a deterministic server of rate 1. For simplicity, we
assume time to be a continuous variable. A similar analysis could be
carried out in discrete time domain as well. We also assume that the
SRAM is dynamically shared among  queues corresponding to 
flows. 

We denote by  the cumulative number of cells arriving at the
SRAM in .  is assumed to be the sum of  arrival pro-
cesses  corresponding to the Q flows.  have rates  such
that .4 We also assume that  are independent and

identically distributed (IID) stationary and ergodic processes.5 We
similarly denote by  the cumulative number of departures in

. We then denote  as the number of cells present in queue
, and  as the total SRAM occupancy at time t.
To find the drop probability, we start by assuming that the SRAM is

infinite. We then obtain the steady state probability that the sum of
queue sizes exceeds  (i.e., ) as a surrogate for the steady
state overflow probability for a SRAM of size .

We assume that the MMA works as follows [5]. Whenever the
DRAM is free, it serves an arbitrary queue from the set of all queues i
satisfying . For example, it could service the longest queue
with at least b cells, or the oldest queue with at least b cells, and so on. 

We refer to this MMA as a b-Work Conserving MMA (BWC-
MMA) since it is work conserving as soon as at least one queue has
occupancy of at least . Because of work conservation, BWC-MMA
minimizes the tail SRAM occupancy among all possible MMAs in
this architecture. Therefore, given a tail SRAM of size S in the hybrid
architecture, BWC-MMA ensures that the drop probability P is mini-
mized. Equivalently, it minimizes S given a fixed P.

Under BWC-MMA, service to an individual queue depends on the
occupancy of all the queues in the system. This makes it hard to ana-
lyze the queues in isolation, and we need to analyze the queue occu-
pancies together. This analysis is extremely challenging due to the
interactions between the queue occupancies.

B.  The Fixed-Batch Decomposition 

In this section, we simplify the analysis by decomposing the sum of
occupancies into elements that can be analyzed independently. 

We start by noting that each  can be written down as

, (1)
where  and  are the quotient and the remainder after

 is divided by . Now the arrival process  can be written as

. (2)

We can also write

, (3)
where  and  are referred to as
the batch arrival process and remainder workload, respectively.

2. With line rate R, DRAM random access time T, and cell size c, we
define . Thus,  time-slots.
3. For example, in edge routers  can be as large as a million.
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Figure 2: The tail SRAM model 
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Having defined the arrival process, we now examine the departure
process. Since cells are serviced by fixed batches of b, 

, (4)
where  represents the cumulative number of batch departures
in . 

Finally, having considered arrivals and departures, we look at the
sum of occupancies , which can simply be written down as

. (5)
Substituting for  and  from Equation (3) and

Equation (4), we get 

(6)
or

, (7)
where  is referred to as the batch work-
load. 

Equation (7) indicates that the system workload  can be
decomposed into two terms. The first term, , is the product
of the batch size and the batch workload. The second term, , is
the simply the remainder workload. 

We now show that the two terms in this decomposition are indepen-
dent. This greatly simplifies the analysis since it is now possible to
study them separately. The independence between the batch workload
and the remainder workload is provided by the following theorem.

Theorem 1: The remainder workload is independent of the batch
workload.

Proof: See Appendix.�
Theorem 1 provides what we call the fixed-batch decomposition. It

indicates that the steady state distribution of the system workload can
be derived simply by convolving the steady state distributions of the
remainder and batch workloads, i.e, 

, (8)

where , , and  are the steady state probability den-
sity functions (PDF) of system, remainder, and batch workloads,
respectively. Thus, Theorem 1 allows us to translate the general queue
analysis to two more tractable problems. 

C.  Steady State Distributions

We first derive the steady-state distributions of remainder and batch
workloads. The fixed-batch decomposition can then be used to obtain
the steady-state distribution of the queue occupancy.

1) Steady State Distribution of the Remainder Workload

The steady state distribution of the remainder workload can be
given by the following theorem.

Theorem 2: As the number of flows increases (i.e., ), the
steady state distribution of the remainder workload tends towards a
Gaussian distr ibution wi th mean  and variance

.

Proof: See Appendix.�
2) Steady State Distribution of the Batch Workload

Having derived the steady state distribution of the remainder work-
load, we now derive the steady state distribution of the batch work-
load. We use the batch queue model shown in Figure 3. In this model,

we analyze arrivals and departures of batches of cells instead of indi-
vidual cells. The batch arrival process is the superposition of  IID
processes , with total rate . Under the BWC-MMA disci-
pline, the batch queue is serviced by a work-conserving server of rate

. 
Using Lindley’s recursion [9], the batch workload can be written as

. (9)

Equation (9) indicates that, given the steady-state distribution of
the batch arrivals, it is theoretically possible to derive the steady-state
distribution of the batch workload. 

For general arrival patterns it is often not easy to find a closed-form
solution. However, for a broad range of arrival traffic patterns, the
superposition of an increasing number of flows can be shown to result
in a steady-state workload distribution that converges towards the
steady-state workload distribution of an M/D/1 queue. 

To do so, we first make the following additional assumptions on the
arrival processes . We assume that each  is a simple point
process satisfying the following properties [10]. First, the expected
value of  is given by . Second, a source cannot send more
than one cell at a time. And third, the probability of many cells arriv-
ing in an arbitrarily small interval  decays fast as . 

These assumptions are fairly general and apply to a variety of traf-
fic sources, including Poisson, Gamma, Weibull, Inverse Weibull,
ExpOn-ExpOff, and ParetoOn-ExpOff. These point processes model
a wide range of observed traffic [10], including wide area network
traffic.

Given these assumptions, we can state the following theorem.

Theorem 3: As the number of flows increases (i.e., ), the
steady state exceedence probability  of the batch work-
load approaches the corresponding exceedence probability with a
Poisson source with the same load.

Proof: See Appendix.�
Theorem 3 shows that as the number of multiplexed IID sources

increases, the exceedence probability approaches the corresponding
probability assuming Poisson sources, which is known explicitly
through the analysis of the resulting  system [11].

3) Steady State Distribution of the System Workload

Using the fixed-batch decomposition,  can easily be derived
as the convolution of  and , which were obtained above.

D t( ) b MD t( )×=

MD t( )
0 t,[ ]

L t( )
L t( ) A t( ) D t( )–=

A t( ) D t( )

L t( ) b MA t( )× R t( )+[ ] b MD t( )×–=

L t( ) b ML t( )× R t( )+=

ML t( ) MA t( ) MD t( )–=

L t( )
b ML t( )×

R t( )

fL x( ) fR x( ) fML x b⁄( )⊗=

fL x( ) fR x( ) fML x( )

Q ∞→

Q b 1–( ) 2⁄
Q b

2
1–( ) 12⁄

MA(t) MD(t)

source 1

source Q

Figure 3: The batch queue model
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We now provide an intuitive analysis of  for a large number
of flows.6 For low values of ,  behaves like an impulse close
to zero. Since a convolution with an impulse at zero produces an out-
put equal to the input,  would very much resemble  for
low values of , and therefore be close to a Gaussian. 

Figure 4 plots  and  as predicted by the theoretical
model and shows that this is indeed the case. At , the plots
corresponding to  and  are indistinguishable. At ,
the plots are still very close. The plots then separate out as the load
increases. 

The main consequence of this observation is that, even for low
loads,  would result in more than 50% drops for an SRAM size
less than , the mean of the Gaussian. However, 
falls very quickly due to the low variance of the Gaussian, and low
drop probabilities can be obtained close to . Therefore, to
give reasonable performance guarantees, the SRAM has to be slightly
more than , or .

III.  A NALYSIS OF THE HEAD SRAM 

A.  Head SRAM Model

As was the case for the tail SRAM, we assume the head SRAM to
be dynamically shared among  flow queues. However, similarities
with the tail SRAM end here. For dynamic sharing to be useful for the
head SRAM, we need to be able to predict the (external) arbiter
request pattern in some way - if we can’t predict the request pattern to
the SRAM buffer, we have to buffer up cells for each queue in a static
way and the advantage of dynamic sharing is lost. Thus, we assume
the presence of a fixed length lookahead buffer, which we use to pre-
dict the request pattern to the SRAM. Note that this assumes that the
arbiter is willing to tolerate a fixed delay  between the arrival of
requests and the delivery of cells from the SRAM buffer.

We use the scheme shown in Figure 5. Incoming requests ( )
from an external arbiter enter the lookahead buffer to the right and
exit to the left after a fixed delay . Based on the requests in the
lookahead buffer and the cells in the SRAM, read requests ( )

are made to the DRAM so as to ensure that the cells ( ) are writ-
ten to the SRAM before the requests exit the lookahead buffer and
cells are read from the SRAM. 

Similar to Section II.A, we define  as the number of cells
present in queue , and  as the total SRAM occu-
pancy at time t. We then define  to be the number of requests
for queue  in the lookahead buffer, and

 to be the deficit (number of unsatis-
fied read requests) for queue  at time . A queue is defined to be
critical at time  if . We also define  to be the
delay through the fetch FIFO.

We assume that the MMA works as follows. Starting from an
empty SRAM, whenever the DRAM is free, it serves the earliest criti-
cal queue from the set of critical queues, provided there is space in the
head SRAM. If there are no critical queues then it doesn’t do any-
thing.

We refer to this MMA as a Deficit Work Conserving MMA (DWC-
MMA) since it is work conserving as soon as at least one queue has
gone critical. Because of the work conservation, DWC-MMA mini-
mizes the head SRAM occupancy among all possible MMAs in this
architecture. Therefore, given a head SRAM of size S in the hybrid
architecture, DWC-MMA ensures that the drop probability P is mini-
mized. Equivalently, it minimizes S given a fixed P.

In what follows we relate the (request) drop probability from the
head SRAM to the size of the lookahead buffer ( ) as well as the
size of the SRAM ( ). This analysis can be extremely challenging
due to the interactions between the lookahead buffer and the SRAM.

B.  Analysis of Head SRAM

The analysis of this complex system can be simplified as follows.
Observe that a request may not be served (or dropped) due to two rea-
sons. First, the lookahead buffer may not be deep enough to bring in
the required cells into the SRAM by the time the request traverses to
the end of the lookahead buffer. Second, even if the lookahead buffer
is deep enough, the SRAM may not be big enough to store the incom-
ing cells from the DRAM. 

We refer to the overflowing of the lookahead buffer and head
SRAMs as events  and , respectively. Now, the (request) drop
probability from the head SRAM of size , using a lookahead buffer
of size , can be given by the following

, (10)
6. In practice, we start observing the convergence indicated in Theorem 2
and Theorem 3 when the number of flows exceeds 100.

fL x( )
λ fML x( )

fL x( ) fR x( )
λ

Figure 4: Theoretical PDF of L(t) for various loads for Q=1024 and
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or

. (11)
We again assume infinite buffers and use  and

 as surrogates for  and , respectively. This lets
us rewrite Equation (11) as

. (12)
Thus, we can analyze  and  separately to get

an upper bound on the drop probability of the head SRAM. It turns
out that both of these can be analyzed in a way very similar to the tail
SRAM. 

C.  A Model of the Queue

Similar to Section II we can develop a model for the head buffer
that is easy to analyze. We denote the request arrival process to the
buffer by , where  is the cumulative number of requests
arriving in .  is further assumed to be generated by the
superposition of  arrival processes , where  is the
cumulative number of requests sent for flow  in . Each 
is assumed to have rate , with . In addition, we
assume that the request arrival processes  satisfy the assump-
tions stated the cell arrival processes  in Section II.

We start by noting that each  can be written down as the fol-
lowing

, (13)
where  and  are the remainder and quotient after

 is divided by . 
Now, similar to Equation (3), the multiplexed process  can be

written as
, (14)

where  and . 
We now define a derivative process that is more useful in analyzing

the DRAM traffic due to DWC-MMA. The derivative process is
defined as the following

. (15)
 Breaking  down in the same way as , we get

, (16)
where  and  are the remainder and quotient after

 is divided by . Thus, in a way similar to Equation(14), we
get

, (17)
where , , and

. (18)
 is precisely the arrival process to the fetch FIFO. This is

due to the fact that, starting from an empty SRAM buffer, arrival
numbering  to an SRAM queue result in fetches
from the DRAM. 

Now, as mentioned earlier, the fetch FIFO is served at a rate ,
resulting in the departure process , where  is related
to the arrival process to the SRAM buffer (i.e. ) in the following
way

. (19)
The first equality in Equation (19) represents the fact that arrivals

to the SRAM always occur in batches of . The second equality
reflects the fact that the there is a fixed delay of  in reading from the
DRAM. Now, noting that the departure process from the SRAM
buffer is given by , the SRAM buffer occupancy  can
be given by

. (20)
Using Equation (18) and Equation (19), we can write this as

. (21)
Substituting for  from Equation (17), we get

(22)
or

, (23)
where

 (24)
and

. (25)
Realize that Equation (23) looks strikingly similar to Equation (7) -

in what follows, we show that it can be analyzed in a similar way.
However, for the sake of brevity, we intentionally stay away from
proving theorems that pretty much resemble the ones proved in Sec-
tion II, and state the results in an intuitive way.

We start by looking at the steady state distribution of  (i.e,
). We note that ) can be obtained from the distribution

of  (i.e., ) by first flipping  around the origin and
then shifting to the right by .7 In addition, it can be proven,
in a way very similar to Theorem 2, that  is a Gaussian with
mean  and variance .8 So, for large ,
after going through the linear transformations mentioned above,

 would pretty much be the same Gaussian as .
Now we are ready to look at the distribution of . To do so,

we use the following inequalities
(26)

and
. (27)

In Equation (26), the right hand side inequality is pretty straightfor-
ward. The left side inequality comes from the fact that in time 
there can be at most  fetch requests. Equation (27) can be
explained in a similar way.

Using Equation (26) and Equation (27) in Equation (24), we get
(28)

or
(29)

or
(30)

where  is the occupancy of the fetch
FIFO. Equation (30) shows that the steady state distribution of

 (i.e., ) can be obtained from the distribution of
 (i.e., ) by first flipping  around the origin and

then shifting to the right by . Note that, for IID , Theo-
rem 3 applies, and  can be derived as the steady state distribu-
tion of an  queue.

At this point, we have the distributions of both the components of
Equation (23). It can be shown, in a way very similar to Theorem 1,
that  and  are independent of each other, given the
assumptions on . Since  and  are linear transfor-
mations of  and , they are also independent of each other,
and the PDF of  (i.e., ) can be obtained by convolving
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. (31)
By analyzing for the distribution of  we can get one of the

quantities (i.e., ) required by Equation (12). To derive the
other quantity (i.e., ) we simply note that the delay
through the constant-service-rate fetch FIFO is directly related to the
occupancy of the FIFO, i.e., 

. (32)
Thus, by solving for the distributions of  and , we

get both the quantities required by Equation (12).

D.  Putting it Together

We have talked about the sizes of the lookahead and SRAM buffers
as independent parameters. However, to get a reasonable value for the
upper bound indicated by Equation (12), we would have to first
choose a value of  such that  is fairly low. Once we
have picked , we can then get  using  as a constant. 

Note that this value of  would depend only on the load . How-
ever, in the  context, the value of  to achieve low values
of  may blow up in the limit . So, how do we
choose a value of  that works for all traffic loads? The solution is
to limit the maximum load and assume that a design has a small speed
up - for example, a maximum  of 0.9 would require a speed up of

. Now,  can be chosen for this maximum . In fact,
for large Q, the value of  required to achieve low values of

 turns out to be much smaller than .
Figure 6 plots , as predicted by the theoretical model, for var-

ious values of  when , , and . We
picked  by noting that, as long as , the steady state
distribution for the  queue dies out by the time the queue
occupancy gets to . 

These plots are very similar to the ones in Figure 4, except for a
right shift by . For low values of ,  behaves like
an impulse close to . Thus, we expect  to very much
resemble a Gaussian centered about . This would
of course change as , with the Gaussian being shifted to the
right and spread out a little. Again, note that in order to provide rea-
sonable performance guarantees, the head SRAM is required to be

.

IV.  SIMULATIONS

In this section we present some simulation results for the tail
SRAM and compare them to the predictions from Section II. The sim-
ulation results for the head SRAM are similar, and are not presented
here.

Figure 7 plots of the drop probability as a function of the tail
SRAM size when  and . These zoomed-out plots
correspond to the prediction from theory and simulation results for
two traffic types: Bernoulli IID Uniform and Bursty Uniform (the
burst lengths are geometrically distributed with average burst length
12).

We observe that the plots for  are pretty much indistin-
guishable. In addition, we observe that the plots are very close to the
Gaussian predicted by Theorem 2. Similarly, the plots for 
are very close to each other, with the plot from theory upper bounding
the other two for large values of queue occupancy. This shows the
power of Theorem 3 and indicates that the Poisson limit has already
been reached for . 

V.  CONCLUSIONS

In this paper we presented a model for providing statistical guaran-
tees for a hybrid SRAM-DRAM architecture. We used this model to
establish exact bounds relating the drop probability to the SRAM size.
This model may be useful beyond the scope of this paper because it
may apply to many queueing systems with fixed batch service. These
systems are increasingly common due to the growing line rates and
the resulting use of parallelism and load-balancing.

Comparing to the deterministic, worst case analysis in [5], which
established  as the lower bound on SRAM size, we note that
our results provide an improvement by at most a factor of two. How-
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Figure 6: Theoretical PDF of L(t) for various loads for Q=1024 and
b=4, with T=100*load
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ever, similar to [5], our bounds have a linear dependence on . The
linear dependence on  could be undesirable in cases where  is
large. 

Thus, our results can also be interpreted as an negative result for
this architecture. This can be stated in the following way: under the
hybrid SRAM-DRAM architecture,  is a hard lower bound on
the size of the SRAM, which can not be improved upon under any
realistic traffic pattern. 

We believe this to be a characteristic of this architecture - since we
always transfer blocks of  cells, this results in storing  cells
for  flows, resulting in a total storage of . This indicates
that we need to look at alternative architectures if design choices dic-
tate using SRAM sizes orders of magnitude lower than . We
plan to look at such alternative architectures as part of our future
work.
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APPENDIX 

Proof: (Theorem 1) The proof is in two steps. The first part involves
proving the independence of  and . The second part then
proves the independence of  and . 

For the first part, we start by proving that, for all i,j,  is inde-
pendent of . For ,  is a function of ,  is
a function of , and  is independent of . Therefore

 is independent of . In addition,  and  are
independent of each other for  since  is stationary and
ergodic. Therefore, due to component-wise independence, the derived
processes  and  are indepen-
dent of each other. This finishes the first part of the proof. 

Now, to prove the second part, we note that  and  are
functions of the process , and therefore are independent of

. Thus,  is also independent of

.�
Proof: (Theorem 2) The proof is in two steps. The first part involves
proving that the workload remainders  are IID. The second part
involves the application of the Central Limit Theorem.

For the first part, we note that  depends only on . Since
the parent processes  are independent of each other, the derived
processes  are independent of each other. Also, since the inter-
arrival times of arrival process  are stationary and ergodic,

 would stay at each of the  states with equal probability, giving
. This is precisely the discrete uniform distribu-

tion, with mean  and variance . 
Now,  is a sum of  IID uniformly-distributed random vari-

ables, each with mean  and variance . By the
Central Limit Theorem, as ,  tends towards a Gaussian
random variable with mean  and variance

.�
Proof: (Theorem 3) We first show that if  are simple and sta-
tionary point processes then  are simple and stationary point
processes.

Remember that each  is generated by taking every 
sample of the corresponding parent process . Therefore, in any
time interval,  will have fewer arrivals than . So if

 satisfies properties of a simple point process (Section II.C.2),
then  will too.9 Thus  is a simple point process.

The stationarity of  follows from that fact that  is
generated from  using a fixed sampling rule. Thus, if the charac-
teristics of the parent process  are stationary (i.e., independent
of time) then the characteristics of  are stationary. 

Thus, all the assumptions stated for  are also true for .
This allows us to use Theorem 1 in [10] to get the required result.�
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