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Large DRAM
T
Abstract --Packet buffers are an essential part of routers. In high- 1MW
end routers these buffers need to store a large amount of data at very 1

high speeds. To satisfy these requirements, we need a memory with the [

the speed of SRAM and the density of DRAM. A typical solution isto |

use hybrid packet buffers built from a combination of SRAM and R A
DRAM, where the SRAM holds the heads and tails of per-flow packet
FIFOs and the DRAM is used for bulk storage. The main challenge
then is to minimize the size of the SRAM while providing reasonable b cells bcells
performance guarantees. In this paper, we analyze a commonly used

hybrid architecture from a statistical perspective, and ask the following SRAM
question: if the packet buffer designer is willing to tolerate a certain L It 1 1 .
drop probability, then how small can the SRAM get? To do so, we Ag%gg 1 mi Deé’&@”g
introduce an analytical model for representing the SRAM buffer occu- > | | >
pancy, and derive drop probabilities as a function of SRAM size under R : : R
a wide range of satistical traffic patterns. As a consequence of our :DQ T Q
analysis we show that, for low drop probability, the required SRAM
sizeis proportional to the number of flows. “« 3 “«»

| INTRODUCTION Tail Cache Head Cache

L . Fi 1: Hybrid SRAM-DRAM memory architecture.
Packet buffers in high-performance routers arelehging to design 1gure L-ny 4

because of two factormemory speedndmemory size , We note that the state of art SRAMs meet the rawdWith require-
Packets belonging to different flows (for examplese flows might o of 8oGbits/s as well as the random accessrtigirement of 4ns.
correspond to different IP source-destination pairsive and depart at 40 ovar these SRAMSs can hold a maximum of 32Mpits device
line rate, and are typipally stored in per-ﬂqw ges. ansecutive pack- while consuming 250mW/Mbit. Thus, an SRAM-only san would
ets may belong to different flows according to wetictable patterns. require over 300 SRAM devices and consume apprdima.5kW, and
This requires that the buffer should be able toests well as retrieve therefore be very costly in terms on board reattesas well as power.
packets at line rates, in an unpredictable and weladed order. Thus, On the other hand, the state of art DRAMs can hipido 1Gbits per
the buffer has to match‘a raw bandwidth (in bitasyvgll as amemory gevice while consuming 4mwW/Mbit. So, a DRAM-onlylution would
random access Sp?ed (in packets/s) of at Iea@ ﬂve:lme rate. require only 10 DRAM devices, while consuming 4084d therefore
In addition, a widely used rule of thumb indicathat, for TCP to can easily meet the real estate and power requinsmélowever
work well, the buffer should be able to store aroant of data equal to  prAM access times haven't kept up with the lineesat with today's:

the product of the line rate and the average rdtpetime [1]. There-  ppap technology, the random access times are indhge 20ns-40ns,
fore, both the speed and size of the memory groally with the line 54 parely meet the requirements for even a 10GHite card. This

rate. ) . . . shortfall is not going to be solved anytime soarceiDRAMs are opti-
As an example, consider a 40Gbits/s linecard. fdusires the packet ;04 for size rather than random access timestlandandom access

buffer to have a raw bandwidth gf 80Ghits/s. Iniddd, assuming a  {imes improve by only 10% every 18 months [3]. @ other hand, the
constant stream of 40-byte packetthe buffer must read anq WIite a |ine rate doubles in the same time period [4]. Thiis problem will get
packet every 8ns (i.e., one memory operation edasy- translating to a worse rather than better over time.

random access speed of 250Mpackets/s); and assummingverage  1hs an SRAM-only or a DRAM-only solution cannotet both the

round-trip time of 0.25s [2], the buffer must hdlaGbits. speed and size requirements simultaneously. Smeall, we would

We now investigate the properties of two populanoercially avail- i q 1o have a fast and large memory with the spefe8RAM and the
able memories - SRAM and DRAM - o see if they rhatteese require-  yoqity of DRAM, a solution would be to use both,ai manner very

ments. similar to computer systems where fast SRAMs areduas caches
whereas dense DRAMs hold bulk of data.

L This corresponds to minimum size IP packets coimgifCP ACKs.



A common approach is to use a hybrid SRAM-DRAM #&sgatiure

[51[6][7], as shown in Figure 1. We encourage thader to read [5] sourcel
for a detailed background and motivation for thishitecture. Under \Al(t)‘ L(t)
this architecture, one can envision the memoryanéftly as a large I < > A(t) D(t)
DRAM containing a set of cell FIFOs with the heas tails of f
FIFOs in a dynamically shared SRAM. %Q(S
The SRAM behaves like a cache, holding packets ¢eanjy sourceQ

when they first arrive and just prior to their depee. Variable size ) )
packets arrive at the SRAM at r&eThey are segmented into fixed- ~ Figure 2: The tail SRAM model

size cells and are stored into one of @eail FIFOs depending on ) o . )
their flow ID. Later, a Memory Management AlgorithGMMA) identically distributed (IID) stationary and ergodprocesses. We

writes cells into the DRAM in blocks df cells. Similarly, the MMA sbmllarl\)llvdehnoted bde(:). the curkr:ulatlveb nun;be:l of ddipms. n
transfers blocks o cells from the DRAM FIFOs to the correspond- [0, 1] . We then denot(i,t) ~ as the number of cells presequéne

ing head FIFOs in the SRAM. Finally, cells from He@lFOs depart |+ @ndL() = > L(i,1) as the total SRAM occupancy at time
when requested by an external arbiter. Note thatMIMA always . TO find the drop propab llity, we start by assumihgt the SRAM is
transfersb cells at a time - never less - betweeSRAM FIFO and  INfinite. We then obtain the steady state probpifiat the sum of
the corresponding DRAM FIFO. By transferribgells everyb time- queue sags excegd’;r (;P'( LS>RS,2\M % a,‘;‘&a surrogate dostérady
slots, it ensures that the DRAM meets the memoegdpequirement state overflow probability for a ors!

in the long rut? We assume that the MMA works as follows [5]. Whestethe

Note that a cut-through path may exist betweentafieand head DR.AM. is fre.e, it serves an arbitrary.queue from.$hEOf all queues
caches. However, for simplicity, we analyze thédad head caches satisfyingL(i,t) 2 b . For example, it could service the lesigqueue

independently, as tail and head SRAMs, and negfieceffects of the with at leasb cells, or the oldest queue with at Idastlls, and so on.
cut-through pe;th ' We refer to this MMA as @&-Work ConservingMA (BWC-

In this paper, we look at the problem of indepenigesizing the MMA) since it is work conserving as soon as atlea® queue has
tail and head SRAMs from a statistical perspeativder a wide range ogcypgncytck)]f att I,Ef asst;AMBecause of work consltlanvaBaf\élCI\;XMA
of arrival traffic patterns. We provide models bEtSRAM buffers, minimizes the ta occupancy among afl possi s N
present MMAs that would minimize the SRAM sizes dagiven drop this grchltecture. Therefore, given a tail SRAI\/Brzfeslq thg hy.br.|d
probability, and derive formulas relating SRAM siz® the drop arphﬂecturgBWC-MMA ensures that the ‘,"r"p probabilis mini-
probability. As a consequence of our analysis wensthat, in order mléeoclj. E%li;\\llgli;]lt\l/ly,&lt mln!mlzteSgw.erclj.a.gxe?D. d th
to provide low drop probability, the required SRAdizes scales lin- nder ‘ '” th » SETVICe otra:n n 'tV' ua}rﬁueu;meqhgr:)n €
early with Q . WhenQ is large, this linear dependence would makeloccuphancy otafl the q:J(etyes n d € sys erg.t |s:m ard to ana-
such a buffer hard to implemehfTherefore, we exhibit an inherent yze t € queues In 1sofation, and we need o ae. e queue occu-
limitation of this architecture. pancies together. This analysis is extremely chglleg due to the

The rest of the paper is organized as follows.i8edt presents a interactions between the queue occupancies.
model of the tail SRAM followed by a detailed arsty Similarly,

Section Il presents a model of the head SRAM alaithy analytical B. The Fixed-Batch Decomposition

results. Section IV provides some simulation resaitd Section V In this section, we simplify the analysis by decasipg the sum of
concludes the paper. occupancies into elements that can be analyzegéamikently.
We start by noting that eaalh'(t) can be written down a
Il. ANALYSIS OF THE TAIL SRAM i i i
S50 S A = bx MAM +R(), (1)
A. Tail SRAM Model where MA'(t) andR'(t) are the quotient and the remainder afte

) ) . ) ) A'(t) is divided byb . Now the arrival procesgt) can bétem as
In this section, we introduce a queueing modettiertail SRAM,

together with some simplifying assumptions. A(t) = ZA'(t) =Y [bx MA'(t) + R'(1)] . (2)
As illustrated in Figure 2, we model the tail SRAM a single

queue served by a deterministic server of rateot.skmplicity, we

assume time to be a continuous variable. A singitalysis could be A(t) = bx MA(Y) +R(1), ©))

carried out in discrete time domain as well. Weassume that the where MA(t) = ZMA'(t) andR(t) = ZR'(t) are referred to as

SRAM is dynamically shared amor§  queues correspgrid Q the batch arrival process and remainder workloeghectively.

flows.

We denote byA(t) the cumulative number of cells angvat the
SRAM in [0,t] . A(t) is assumed to be the sum@f arrival pro
cessesA'()  corresponding to @dlows. A'(t) have rated; such 4In this paper, all the finite sums are over indexer the range 1 1Q.
that A = Z)\i <1 * We also assume thﬂ'(t) are independent and 5 We believe this independence assumption is reatosatze the traf-
fic on a high speed WAN link usually comprises rafffic generated by
thousands of independent sources. In addition8jrwe show that the
2-With line rateR, DRAM random access tim& and cell sizec, we drop probability in the 11D case upper bounds tbeesponding proba-
defineb = 2RT/ c.ThusT = b time-slots. bility in the non-1ID (independent but not idenfigadistributed) case.
3 For example, in edge route€  can be as largemiliian. Thus, analysis for the IID case suffices for thepecof this paper.

We can also write




Having defined the arrival process, we now exantireedeparture
process. Since cells are serviced by fixed batohbs source 1

D(1) = bxMD(, ) ;\MAIAGC) MA(t) ML® MD(t)

where MD(t) represents the cumulative number of batpartieres .

in [0,1]. A
Finally, having considered arrivals and departuves,look at the
sum of occupanciek(t) , which can simply be writtewnlas source Q
L(t)= A(t)-D(t). (5) Figure 3: The batch queue model
Substituting for A(t) and D(t) from Equation (3) and ) ) o
Equation (4), we get we analyze arrivals and departures of batcheslisf iostead of indi-
' _ vidual cells. The batch arrival process is the sppstion of Q 11D
L(t) = [b>x MA(D +R(1)] —bx MD(t) (6) processesMA'(t) , with total rate’b . Under the BWC-MMAcdis
or pline, the batch queue is serviced by a work-cosisgrserver of rate
L(t) = bx ML(t) +R(Y), (7 1/b.
where ML(t) = MA(t) ~MD(t) is referred to as the batch work- Using Lindley’s recursion [9], the batch workloaaihcbe written as
load. ML(t) = maxy . ((MA(t) —MA(s))—(t—s)/b). (9)
Equation (7) indicates that the system worklohgt) tan E . I . T
t 9) indicates that, the steady-sthséribution of
decomposed into two terms. The first tetor ML(t) , ispgraduct quation (9) indicates that, given the s y 'out

the batch arrivals, it is theoretically possibledtrive the steady-state
distribution of the batch workload.

For general arrival patterns it is often not easfirtd a closed-form
solution. However, for a broad range of arrivalfficapatterns, the
superposition of an increasing number of flows lsarshown to result
in a steady-state workload distribution that cogesr towards the
steady-state workload distribution of an M/D/1 geieu

Theorem 1: The remainder workload is independeth@batch To do so, we first make the following additionasasptions on the
workload arrival processeﬁ'(t) . We assume that ea'c(m) is aesipgiht
process satisfying the following properties [10irsE the expected
value of A'(t) is given bya;t . Second, a source cannatl seare
than one cell at a time. And third, the probabitfymany cells arriv-
ing in an arbitrarily small intervdl0,t] decays fastta- O .

These assumptions are fairly general and applyvariety of traf-
fic sources, including Poisson, Gamma, Weibull,else Weibull,

fL(x) = fr() O fyy (x/b), (8)  ExpOn-ExpOff, and ParetoOn-ExpOff. These point peses model
wheref, (x) fz(X) , andy, (x) are the steady state probability den@ Wide range of observed traffic [10], includingdeiarea network
sity functions (PDF) of system, remainder, and hateorkloads, — traffic.
respectively. Thus, Theorem 1 allows us to traesfa¢ general queue ~ Given these assumptions, we can state the follotiegrem.

of the batch size and the batch workload. The st¢erm, R(t) , is
the simply the remainder workload.

We now show that the two terms in this decompasiéice indepen-
dent. This greatly simplifies the analysis sincésinhow possible to
study them separately. The independence betwedratok workload
and the remainder workload is provided by the falig theorem.

Proof: See AppendiXd

Theorem 1 provides what we call thieed-batch decompositioit
indicates that the steady state distribution ofsytem workload can
be derived simply by convolving the steady statgrifiutions of the
remainder and batch workloads, i.e,

analysis to two more tractable problems. Theorem 3: As the number of flows increases Qe ), the
o steady state exceedence probabiRyML > x) of the batmtkw
C. Steady State Distributions load approaches the corresponding exceedence pitityawith a

We first derive the steady-state distributionsesfiainder and batch ~Poisson source with the same load.
workloads. The fixed-batch decomposition can themiged to obtain  proof: 5ee Appendid

the steady-state distribution of the queue occupanc Theorem 3 shows that as the number of multiplexBdsburces

1) Steady State Distribution of the Remainder V| increases, the exceedence probability approactesdiresponding
The steady state distribution of the remainder veatt can be ~Probability assuming Poisson sources, which is kmaplicitly
given by the following theorem. through the analysis of the resultiyD/1  system [11].

Theorem 2: As the number of flows increases @e~ «), the  3) Steady State Distribution of the System Workload
steady state distribution of the remainder workldadds towards a Using the fixed-batch decompositiofy,(x) can easilydbaved
Gauzssian distribution with mea®(b—-1)/2 and variance as the convolution ofy(x) anfy, (x) , which were obtaineovab
Q(b“-1)/12.

Proof: See AppendiXd

2) Steady State Distribution of the Batch Workload

Having derived the steady state distribution ofrémmainder work-
load, we now derive the steady state distributibthe batch work-
load. We use the batch queue model shown in Figuire this model,
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Figure 4: Theoretical PDF of L(t) for various loads for Q=1024 and
b=4 (the mean of the Gaussian is 1536)

We now provide an intuitive analysis §f(x)  for a langumber
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Figure 5: The head SRAM buffer model

are made to the DRAM so as to ensure that the ¢&(l5 ) are writ-

of flows % For low values oA f,, (x) behaves like an impulse closeten to the SRAM before the requests exit the loekahbuffer and
ML

to zero. Since a convolution with an impulse abzemoduces an out-
put equal to the inputf, (x)  would very much resemiyjéx) for
low values ofA , and therefore be close to a Ganssia

Figure 4 plotsfg(x) and| (x)
model and shows that this is indeed the case\ At 0.1 the plots
corresponding té(x) anf (x) are indistinguishableAAt 0.5
the plots are still very close. The plots then safaout as the load
increases.

The main consequence of this observation is thatn dor low
loads, f, (x) would result in more than 50% drops foS&AM size
less thanQ(b—1)/2 , the mean of the Gaussian. Howefy€K)
falls very quickly due to the low variance of thau@sian, and low
drop probabilities can be obtained close&xth—1)/2 . Tloeeg to
give reasonable performance guarantees, the SRAMoHze slightly
more thanQ(b—1)/2 , 0©(Qb)

I1l. ANALYSIS OF THE HEAD SRAM

A. Head SRAM Model

As was the case for the tail SRAM, we assume tlael IBRAM to
be dynamically shared amon@  flow queues. Howesimnilarities
with the tail SRAM end here. For dynamic sharingpéouseful for the
head SRAM, we need to be able to predict the (eatgrarbiter
request pattern in some way - if we can’t predietitequest pattern to
the SRAM buffer, we have to buffer up cells for leggieue in a static
way and the advantage of dynamic sharing is ldstsTwe assume
the presence of a fixed length lookahead buffeickvive use to pre-
dict the request pattern to the SRAM. Note that #esumes that the
arbiter is willing to tolerate a fixed deldyA between the arrival of
requests and the delivery of cells from the SRANfdyu

We use the scheme shown in Figure 5. Incoming stquB(t) )
from an external arbiter enter the lookahead buffethe right and
exit to the left after a fixed delayA . Based on thguests in the
lookahead buffer and the cells in the SRAM, reajliests MD(t) )

6-1n practice, we start observing the convergenciatdd in Theorem 2
and Theorem 3 when the number of flows exceeds 100.

as predicted by the theoreticapancy at time. We then define.

cells are read from the SRAM.
Similar to Section II.A, we defind.(i,t) as the numbércells

present in queu¢ , and(t) = Y'L(i,t) as the total SRAM occu-
i, t) to be the number of requests
for queue i in the lookahead buffer, and
, DEF(i,t) = L(i,t) —LR(i,t) to be the deficit (number of unsatis-
fied read requests) for queue at time . A queudefined to be
critical at timet if DEF(i, t) <0. We also defineFD(t) to be the
delay through the fetch FIFO.

We assume that the MMA works as follows. Startimgnf an
empty SRAM, whenever the DRAM is free, it serves darliest criti-
cal queue from the set of critical queues, provithede is space in the
head SRAM. If there are no critical queues thedoiésn't do any-
thing.

We refer to this MMA as Beficit Work Conserving/MA (DWC-
MMA) since it is work conserving as soon as atlea® queue has
gone critical. Because of the work conservation, GYMA mini-
mizes the head SRAM occupancy among all possibleAgIin this
architecture. Therefore, given a head SRAM of 84e the hybrid
architectureDWC-MMA ensures that the drop probabil®yis mini-
mized. Equivalently, it minimizeS given a fixedP.

In what follows we relate the (request) drop praligbfrom the
head SRAM to the size of the lookahead bufieA( a8 as the
size of the SRAM § ). This analysis can be extrenaigllenging
due to the interactions between the lookahead baffd the SRAM.

B. Analysis of Head SRAM

The analysis of this complex system can be singalifas follows.
Observe that a request may not be served (or ddymhee to two rea-
sons. First, the lookahead buffer may not be despigh to bring in
the required cells into the SRAM by the time thguest traverses to
the end of the lookahead buffer. Second, evereifdbkahead buffer
is deep enough, the SRAM may not be big enouglote she incom-
ing cells from the DRAM.

We refer to the overflowing of the lookahead bufterd head
SRAMs as eventEl and2 , respectively. Now, the @etjudrop
probability from the head SRAM of siZ2 , using akahead buffer
of sizeLA , can be given by the following

P(S LA = P(E1OE2), (10)



or L(t) = A(t)=D(t-LA). (20)
P(S LA < P(E1) + P(E2). (11) Using Equation (18) and Equation (19), we can wiite &is
We again assume infinite buffers and uB¢FD > LA) and L(t) = bx MA(t—b) —(D(t-LA) - Q(b—1)). (1)

P(L>YS) as surrogates fd?(E1)
us rewrite Equation (11) as
P(S LA<P(FD>LA)+P(L>9.
Thus, we can analyzZe(FD >LA) am{L>Y9)
an upper bound on the drop probability of the h8&AM. It turns
out that both of these can be analyzed in a way sienilar to the tail
SRAM.

ar®( E2)

(12)

C. A Model of the Queue

Similar to Section Il we can develop a model foe tiead buffer
that is easy to analyze. We denote the requestaaprocess to the
buffer by D(t) , whereD(t) is the cumulative number of exig
arriving in [0,t] . D(t) is further assumed to be generatedhe
superposition ofQ arrival processé (t) , whdd&t) '
cumulative number of requests sent for flow [ t] acED' (1)
is assumed to have rafg , with'A, = A<1
assume that the request arrival procesBe(ss)
tions stated the cell arrival process@$t)

We start by noting that eadh'(t)
lowing

samefﬁssump-
in Sedtion
can be written dowiha fol-

D' (t) = bx MD(t)+R(t)
where R (1) andMD' (1)
D'(t) is divided byb .
Now, similar to Equation (3), the multiplexed pros&¥(t) can be
written as

(13)

D(t) = bx MD(t) +R(t),
whereMD(t) = S"MD'(t) andR(t) = S'R'(t)
We now define a derivative process that is moréulige analyzing
the DRAM traffic due to DWC-MMA. The derivative pgess is
defined as the followmg

(14)

. D) =D(n+(b-1). (15)
Breakng (OR down in the same way ls(t) , we get
D(t) = bx MD(t)+R(t) (16)

where R'(t) and MD' (1)
D (t) is divided byb . Thus, in a way similar to Equat{dd), we
get

R D(t) = b x MD(t) + R(t) a7)
whereMD(t) = g(‘MD (1) ,R(t) = R(t) and
. t) = D(t) + Q(b-T). (18)

MD(t) is precisely the arrival process to the fetch FIF@is is
due to the fact that, starting from an empty SRAMfér, arrival
numbering 1,b+1,2b+1, ...
from the DRAM.

Now, as mentioned earlier, the fetch FIFO is seated ratel/b ,
resulting in the departure proce$sA(t) , Whéé\(t) igedla
to the arrival process to the SRAM buffer (iAt) n}he following
way .

A(t) = bx MA(t) = bx MA(t—b). (29)

The first equality in Equation (19) represents taet fthat arrivals
to the SRAM always occur in batches bf . The secequality
reflects the fact that the there is a fixed delayp dn reading from the
DRAM. Now, noting that the departure process frdm SRAM
buffer is given byD(t—LA) , the SRAM buffer occupanicft)
be given by

can

, respectively. This lets

separately to get

are the remainder and quotient after Now we are ready to look at the distribution BIfL(t)

are the remainder and quotient after

to an SRAM queue result in fetchesrem 3 applies, an§, (x)

Substituting forD(t) from Equation (17), we get _
L(t) = bx (MA(t—b) —MD(t—LA)) + (Q(b—1) —R(t—LA))

(22)
or
L(t) = bx ML(t) + RL(t), (23)
where . .
ML(t) = MA(t—b)—MD(t-LA) (24)
and -
RL(t) = Q(b—1) —R(t—LA). (25)

Realize that Equation (23) looks strikingly simitarEquation (7) -
in what follows, we show that it can be analyzedaisimilar way.
However, for the sake of brevity, we intentionadiiay away from
proving theorems that pretty much resemble the pneged in Sec-
tion 1, and state the results in an intuitive way.

is the We start by looking at the steady state distributdd RL(t) (i.e,

fr(X)). We note thafz, (x) ) can be obtained from the distidsu

. In addition, weof R(t) (i.e., f- (x) ) by first fllpplngf (x) around the origimd

then shifting to the right byQ(b—1) * In addition, it can be proven,
in a way very similar to Theorem 2, thi(x) is a Gars with

mean Q(b—-1)/2 and varianc&(b™—1)/12 8 30, for largeQ
after going through the linear transformations rieer@d above,
frL(X) would pretty much be the same Gaussiafﬁéx)

o0.do so,
we use the following inequalities
MD(t) —LA/ b< MD(t—LA) < MD(t) (26)
and . . .
MA(t) — 1< MA(t—b) < MA(t) . 27)

In Equation (26), the right hand side inequalitpiistty straightfor-
ward. The left side inequality comes from the fwdt in time LA
there can be at mostA/b fetch requests. Equation¢ai) be
explained in a similar way.

Using Equation (26) and Equation (27) in Equation (2 get

ML(t) < MA(t) — (MD(t) — LA/ b) (28)
or N .
ML(t) < LA/ b— (MD(t) — MA(t)) (29)
or
ML (t) < LA/ b—ML(t) (30)

where ML(t) = MD(t) —MA(t) is the occupancy of the fetch
FIFO. Equation (30) shows that the steady stateriliigion of
ML(t) (i.e., fy, (X)) can be obtained from the distribution of
ML(t) (i.e.,l‘M (x) ) by first fllpplngf A(x) around the origin and
then shifting to the right byt A/ b Note that, for IID'(t), Theo-
can be derived as the steatly distribu-
tion of anM/D/1 queue.

At this point, we have the distributions of botke ttomponents of
Equation (23). It can be shown, in a way very simitaTheorem 1,
that R(t) and ML(t) are independent of each other, given the
assumptions orli)'(t) . SincBL(t) arML(t) are linear transfor-
mations ofR(t) andML(t) ,they are also independent of etwdr,
and the PDF ofL(t) (i.e.f_(x) ) can be obtained by coringlv

frL(X) andfy, (x) ,i.e

7-The steady state distribution d%(t —LA)
state distribution oR(t) a¢ — o

8-While keeping similar assumptions in mind.

is the same astbady



% 1067 The pdf of SRAM buffer occupancy

o s e (@ load-0.5
Figure 6: Theoretical PDF of L(t) for various loads for Q=1024 and 0;7 — EEV%‘LT‘E,;“JE;‘J?;"E,Z’;“;?E}Zl?é': "
b=4, with T=100*load sl
fL(X) = fr (¥) O fyy (x/b). (31) 7l
By analyzing for the distribution oE(t) we can geteoof the % o
quantities (i.e.,P(L>9S ) required by Equation (12). Toide the e
other quantity (i.e.,P(FD>LA) ) we simply note that the agel 0s
through the constant-service-rate fetch FIFO iedlly related to the
occupancy of the FIFO, i.e., R ~ -
P(FD>LA) = P(ML>LA/b). . (32 R L Y S
Thus, by solving for the distributions dRL(t) ardL(t) , we (b) load=0.9

get both the quantities required by Equation (12).
Figure 7: Complementary CDF for b=4 and Q=1024

D. Putting it Together

We have talked about the sizes of the lookaheads&#iM buffers [V. SIMULATIONS
as independent parameters. However, to get a reblsovalue for the

upper bound indicated by Equation (12), we would ehaw first  gpaMm and compare them to the predictions from ®edti. The sim-

choose a value dfA  such th@(FD>LA) s fairly low. On@ W jation results for the head SRAM are similar, anel not presented
have pickedLA , we canthen ge{L>9 using as a constant, e

Note that this value oA would depend only on thedlA . How- Figure 7 plots of the drop probability as a funetiof the tail
ever, in theM/D/1 context, the value bfA to achieve l@lues  graAM size whenb = 4 and) = 1024 . These zoomed-out plots
of P(FD>LA) may blow up in the limitA ~ 1 . So, how do We cqrrespond to the prediction from theory and sifiteresults for
choose a value ot A that works for all traffic lo2déhe solution is g traffic types: Bernoulli 11D Uniform and Burstniform (the
to limit the maximum load and assume that a delsagna small speed ot |engths are geometrically distributed witlerage burst length
up - for example, a maximurh  of 0.9 would requirspaed up of 19y
1/0.901.1. Now, LA can be chosen for this maximum . In fact, We observe that the plots for = 0.5 are pretty muchsii

for large Q, the value of LA  required to achieve low values of g ishaple. In addition, we observe that the plogsvery close to the
P(FD>LA) turns out to be much smaller th@{b-1)/2 Gaussian predicted by Theorem 2. Similarly, thetispfor A = 0.9

~ Figure 6 plotsf, (x) , as predicted by the theoreticad@hdor var- 46 yery close to each other, with the plot frogoity upper bounding
ious values ofA  whenQ = 1024 p =4 , andA = cA . We e gther two for large values of queue occupafbys shows the

picked ¢ = 100 by noting that, as long as< 0.9 , the steadesta poyer of Theorem 3 and indicates that the Poissoit has already
distribution for theM/D/1 queue dies out by the time ueue poan reached foD = 1024

occupancy gets ta00A

In this section we present some simulation resfdtsthe tail

. Thesg plots are very similar to the ones in Figlirexcept for a V. CONCLUSIONS

right shift by LA = cA . For low values ok fML(X) behaves like ) o

an impulse close tdLA/b . Thus, we expécfx) to very much In this paper we presented a modgl for prowdna@sii.cal guaran-
resemble a Gaussian centered ab@fth—1)/2 + LA This would€es for a hybrid SRAM-DRAM architecture. We uskis tmodel to

of course change a& — 1, with the Gaussian beingeshtti the est.ablish exact bounds relating the drop probabtﬁtth.e SRAM size:
fight and spread out a little. Again, note thabider to provide rea- 1S model may be useful beyond the scope of thep because it
sonable performance guarantees, the head SRAMisred to be MY apply to many queueing systems with fixed batafvice. These
o(Qb). systems are increasingly common due to the groﬁwngrates and
the resulting use of parallelism and load-balancing
Comparing to the deterministic, worst case analysifs], which
establishedQ(b—1) as the lower bound on SRAM size, vie that
our results provide an improvement by at most ofaaf two. How-



ever, similar to [5], our bounds have a linear defence orQb . The
linear dependence o  could be undesirable in cakese Q is
large.

Thus, our results can also be interpreted as aativegresult for
this architecture. This can be stated in the foitgmwvay: under the
hybrid SRAM-DRAM architecture®(Qb) is a hard lower Inouon
the size of the SRAM, which can not be improvedrupader any
realistic traffic pattern.

We believe this to be a characteristic of this #edture - since we
always transfer blocks db  cells, this results torisg ©(b) cells
for ©(Q) flows, resulting in a total storage @{Qb) . Thislicates
that we need to look at alternative architectufeesign choices dic-
tate using SRAM sizes orders of magnitude lowen tBgQb) . We
plan to look at such alternative architectures ag pf our future
work.

REFERENCES

[1] C. Villamizar and C. Song, “High Performance TGPANSNET,”
Computer Communication RevigVol. 24, No. 5, pp. 45--60, October
1994.

“Round-Trip Time Measurements from CAIDA’s Masaopic Internet
Topology Monitor”, available at http://www.caidagsanalysis/perfor-
mance/rtt/walrus2002.

D. A. Patterson and J. L. Hennes&gmputer ArchitectureA Quanti-
tative Approach, Section 8.4., pp. 425-432, Morganfmann, 1996,
K.G. Coffman and A. M. Odlyzko, “Is there a “Mmes Law™ for data
traffic?,” Handbook of Massive Data Sets, eds.,vwédu 2002, pp. 47-
93.

S. lyer, R. R. Compella, and N. McKeown, “Desigm Buffers for
Router Line Cards”Stanford University HPNG Technical Report -
TR02-HPNG-031001Stanford, CA, 2002.

S. lyer, R. R. Kompella, and N. McKeown, “Analg®f a Memory Ar-
chitecture for Fast Packet Buffers,” IEEE HPSRDallas, Texas, May
2001.

J. Garcia, J. Corbal, L. Cerda and M. Valerog$ign and Implementa-
tion of High-Performance Memory Systems for FutReeket Buffers,”
Proceedings of the 36th Annual IEEE/ACM Internasib8ymposium
on Microarchitecture, p.373, 2003.

G. Shrimali and N. McKeown, “Statistical Guareas for Packet Buff-
ers: The Monolithic DRAM Case'Stanford University HPNG Techni-
cal Report - TRO4-HPNG-02060Stanford, CA, 2004.

C.-S. Chang, “Performance Guarantees in Comnatiioic Networks,”
London, Springer-Verlag, 2000.

[2]

(3]
(4]

(5]

(6]

(71

(8]

[9]

[10] J. Cao and K. Ramanan, “A Poisson Limit for f#ufOverflow Proba-
bilities”, Proceedings of IEEE INFOCOM'0pp. 994-1003, 2002.
[11] U.Mocci, J. Roberts, and J. Virtamo, “Broadbdatetwork Teletraffic”,

Final Report of Action COST 243pringer, Berlin, 1996.

APPENDIX

Proof: (Theorem ) The proof is in two steps. The first part involves
proving the independence &(t) aMA(t) . The secondtpeant
proves the independence R(t) alvldL (t) )

For the first part, we start by proving that, fdirig, R'(t) is inde-
pendent oMA!(t) .Forzj R'(t) isafunctiongf(t) MA(t) s
a function of A'(t) , andA'(t) is independent Af(t) . Therefore
R'(t) is independent oMA'(t) . In additioR'(t) amdid/(t)  are
independent of each other for= | sinéé(t) is statioreangt
ergodic. Therefore, due to component-wise indepecelethe derived
processesMA(t) = MA'(t) andR(t) = %‘I;'(t) are indepen-
dent of each other. This finishes the first pal proof.

Now, to prove the second part, we note tbét) BHOI(t) re
functions of the procesMA(t) , and therefore are inddpet of
R(t). Thus, ML(t) = MA(t) —MD(t) is also independent of
R(t).0

Proof: (Theorem 2 The proof is in two steps. The first part involves
proving that the workload remaindel%(t) are |ID. The second part
involves the application of the Central Limit Theor.

For the first part, we note thﬂ'(t) depends only om\'(t) . Since
the parent processe!!s'(t) are independent of each tthaterived
processesR'(t) are independent of each other. Also, since the-inte
arrival times of arrival procesA'(t) are stationand argodic,
R'(t) would stay at each of tHe  states with equal dribiba giving
P(R= X = 1/b, Ox. This is precisely the discrete uniform distribu-
tion, with mean(b—-1)/2 and varianc(dn2 -1)/12

Now, R(t) is asum of) IID uniformly-distributed randorari-
ables, each with meafb—-1)/2 and variar(tx%— 1)/12 . By the
Central Limit Theorem, aQ - « R(t) tends towards a Ganssi
random variable with mean Q(b-1)/2 and variance
Q(b*-1)/12.0

Proof: (Theorem 3) We first show that ifA'(t) are simple and sta-
tionary point processes theMA'(t) are simple and si@tjopoint
processes. '

Remember that eacHVIA'(t) is generated by taking ebéhry
sample of the corresponding parent proce's{ss) . Torerein any
time interval, MA'(t)  will have fewer arrivals thaA'(t) . $o
A'(t) satisfies properties of a simple point proces«t{8e 11.C.2),
then MA'(t) will too? Thus MA'(t) is a simple point process.

The stationarity ofMA'(t) follows from that fact thatMA'(t) is
generated fronA'(t) using a fixed sampling rule. Thfuse charac-
teristics of the parent proce@s'(t) _ are stationaey, (independent
of time) then the characteristics MA'(t) are statignar

Thus, all the assumptions stated k')(t) are aIsofmuMA'(t) .
This allows us to use Theorem 1 in [10] to getréguired resuld

a

%Note that E[MA'()] = E[A(t)/b] = A,t/b



