
Memento: Making Sliding Windows Efficient for Heavy Hitters
Ran Ben Basat1,2, Gil Einziger3,4, Isaac Keslassy2,5, Ariel Orda2, Shay Vargaftik2, Erez Waisbard4

1 Harvard University 2 Technion 3 Ben Gurion University 4 Nokia Bell Labs 5 VMware

ABSTRACT
Cloud operators require real-time identification of Heavy Hitters
(HH) and Hierarchical Heavy Hitters (HHH) for applications such as
load balancing, traffic engineering, and attack mitigation. However,
existing techniques are slow in detecting new heavy hitters.

In this paper, we make the case for identifying heavy hitters
through sliding windows. Sliding windows are quicker and more
accurate to detect new heavy hitters than current interval based
methods, but to date had no practical algorithms. Accordingly, we
introduce, design and analyze the Memento family of sliding window
algorithms for the HH and HHH problems in the single-device and
network-wide settings. Using extensive evaluations, we show that
our single-device solutions attain similar accuracy and are by up to
273× faster than existing window-based techniques. Furthermore,
we exemplify our network-wide HHH detection capabilities on a
realistic testbed. To that end, we implemented Memento as an open-
source extension to the popular HAProxy cloud load-balancer. In our
evaluations, using an HTTP flood by 50 subnets, our network-wide
approach detected the new subnets faster, and reduced the number of
undetected flood requests by up to 37× compared to the alternatives.

1 INTRODUCTION
Cloud operators require fast and accurate single-device and network-
wide detection of Heavy Hitters (HH) (most frequent flows) and of
Hierarchical Heavy Hitters (HHH) (most frequent subnets) to attain
real-time visibility of their traffic. These capabilities are essential
building blocks in network functions such as load balancing [4, 23,
34, 39], traffic engineering [15, 17] and attack mitigation [33, 42,
45, 46, 48].

Quickly identifying changes in the HH and HHH is a key chal-
lenge [47] and can have a dramatic impact on performance. For
example, faster detection of HH flows allows load-balancing and
traffic engineering solutions to respond to traffic spikes swiftly. For
attack mitigation systems, quicker and more accurate detection of
HHH subnets means that less attack traffic reaches the victim. This
is particularly important for combating Distributed Denial of Service
(DDoS) attacks on cloud services, as they become a growing concern
with the increasing number of connected devices (i.e., Internet of
things) [29, 35].

In this work, we show that sliding windows are faster than interval
based measurements in detecting new (hierarchical) heavy hitters.
Unfortunately, the idea of using a sliding window for HHH was pre-
viously dismissed, as the existing sliding-window algorithms were
“markedly slower and less space-efficient in practice", to quote [40].
Intuitively, this is because the sampling methods used for acceler-
ating interval methods do not naturally extend to sliding windows,
even for the simpler HH problem. As a result, the merits of slid-
ing windows have not been properly evaluated. Moreover, sliding
windows do not provide network-wide measurement capabilities, as
opposed to interval approaches [3, 26, 51, 55]. Consequently, most

applications that use HH or HHH rely on interval based measure-
ments [25, 42, 45, 48].
Contributions. Our goal is to make sliding windows practical for
network applications. Accordingly, we focus on the fundamental
HH and HHH problems in both single-device and network-wide
measurement scenarios. We then introduce the Memento family of
four algorithms—one for each problem (i.e., HH and HHH) and each
measurement scenario (i.e., single-device and network-wide). These
are rigorously analyzed and provide worst-case accuracy guarantees.
Moreover, in the network-wide setting, we maximize the accuracy
guarantee given a per-packet control bandwidth budget.

Using extensive evaluations on real packet traces, we show that
the Memento algorithms achieve speedups of up to 14× in HH and
up to 273× in HHH when compared to existing sliding-window solu-
tions. We also show that they match the speed of the fastest interval-
based algorithm [7]. Our algorithms detect emerging (hierarchical)
heavy hitters consistently faster than interval-based approaches, and
their accuracy is similar to that of slower sliding-window solutions.

Next, we implement a proof-of-concept network-wide HH and
HHH measurement system. The controller uses our network-wide
algorithms, and the measurement points are implemented on top
of the popular HAProxy cloud load-balancer, which we extended
with capabilities to rate-limit traffic from entire subnets. We evaluate
the achievable accuracy given a per-packet bandwidth budget for
reporting measurement data to the control. We introduce new com-
munication methods and compare them with a traditional approach.
We create an HTTP flood attack from 50 subnets and show that
the detection time is near-optimal while using a bandwidth budget
of 1 byte per packet. For the same budget, our methods exhibit a
reduction of up to 37× in the number of undetected flood requests
compared to the alternative. Finally, we open-source the Memento
algorithms and the HAProxy cloud load-balancer extension [1].

2 BACKGROUND
Streaming algorithms [43] are designed to process a stream (se-
quence) of elements (in our case, packets) while analyzing the un-
derlying data. The main challenge of these algorithms is the sheer
volume of the data that they are required to process, motivating
space-efficient solutions that process elements extremely fast.

One of the most studied streaming problems is that of identifying
the Heavy Hitters (HH) (i.e., elephant flows) – the elements that
frequently appear in the data. For instance, Space Saving (SS) [38]
is a popular HH algorithm. SS utilizes a set of m counters, each
associated with a key (flow identifier) and a value. Whenever a
packet arrives, SS increments the value of its flow’s counter if it
exists. Otherwise, if there is a free counter, it is allocated to the flow
with a value of 1. Finally, if no available counter exists, SS replaces
the identifier of the flow with the smallest value with that of the
current flow and increments its value. For example, assume that the
minimal counter is associated with flow x and has a value of 4, while
flow y does not have a counter. If a packet of flow y arrives, we will

reallocate x’s counter to y and set its value to 5, leaving x without a
counter. When queried for the value of flow z, SS returns the value
of the counter associated with z, or the value of the minimal counter
if there is no counter for z.

SS runs on intervals, i.e., it estimates the flow sizes from the
beginning of the measurement and is often reset to allow its data to
be fresh [42]. Another way for analyzing only the recent data is to
use a sliding window algorithm [22] in which an answer to a query
only reflects the lastW packets. WCSS [11] extends Space Saving
to sliding windows, and achieves constant update and query time.
Unfortunately, WCSS is too slow to keep up with line rates, and it
serves as a baseline in this work. We expand on WCSS in the full
version of the paper [9].

Hierarchical Heavy Hitters (HHH) are a generalization of the HH
problem in which we identify frequent IP networks. That is, rather
than looking for the large flows, we look for the networks whose
aggregated volume exceeds a predetermined threshold. To that end,
MST [41] proposed to utilize SS for tracking all networks. Specifi-
cally, it uses one SS instance for each network size and whenever
a packet arrives, it computes all its prefixes (specifically H updates,
as the size of the hierarchy) MST has two main drawbacks: first, it
makes multiple SS updates, while even a single update may be too
slow for keeping up with line rates; second, it solves the problem
on intervals rather than on sliding windows. To alleviate the first
problem, RHHH [7] proposes to draw a single random integer i
uniformly between 1 and V (for a parameter V ≥ H). If i ≤ H then
RHHH makes a single SS update to the i’th prefix, and otherwise it
ignores the packet. For example, for the above packet, i = 7 would
be ignored while i = 3 would lead the algorithm to feed 181.0.0.0
into the relevant SS instance. While RHHH is fast enough to keep
up with the line rate, its approach does not seem to extend to sliding
windows easily, a gap we close in this paper.

3 WHY SLIDING WINDOWS?
We argue that once a new heavy hitter emerges, the sliding window
method identifies it most quickly and accurately. Therefore, network
applications that capitalize on sliding windows can potentially react
faster to changes in the traffic. For simplicity, we consider accu-
rate measurements, but the results are also valid for approximate
measurements.

Window vs. interval. We start by comparing sliding windows to the
Interval method that is commonly used in HHH-based DDoS mitiga-
tion systems [42, 45, 46, 48]. As depicted in Figure 1a, the Interval
method relies on sequential interval measurements. Usually, the mea-
surement data is available at the end of each measurement interval,
wherein the improved Interval method it is accessible throughout
each measurement period. There are two possible failure modes,
namely: failing to detect a new heavy hitter (false negative), or
falsely declaring a heavy hitter (false positive). Algorithms that fol-
low the (improved) Interval method would either have false positives
or false negatives. In contrast, sliding windows can avoid both errors.
To show this, we start with the following definitions.

Definition 3.1 (Window Frequency). We denote by fWx the win-
dow frequency of flow x , i.e., the number of packets transmitted by
x over the lastW packets.

Definition 3.2 (Normalized Window Frequency). We denote by
fWx
W the normalized window frequency of flow x , i.e., the fraction of
x’s packets within the lastW packets.

Next, window heavy hitters are flows whose normalized window
frequency is larger than a user-defined threshold:

Definition 3.3 (Window Heavy Hitter). Flow x is a window heavy

hitter if its normalized window frequency fWx
W is larger than θ , where

θ ∈ (0, 1) is a user-defined threshold.

Window optimality. The optimal detection point for new window
heavy hitters is simply once their normalized window frequency is
above a user-defined threshold. Reporting a flow earlier is wrong
(false positive), and reporting it afterwards is (too) late. This means
that sliding window measurements, by definition, have an optimal
detection time.

Motivation. We motivate the definition for window heavy hitters
with an experimental scenario where a new flow appears during the
measurement and consumes, at a constant rate, a larger-than-the-
threshold portion of the traffic after its initial appearance. We mea-
sure how long it takes for each measurement method to identify the
new heavy hitter and evaluate the following measurement methods.

(i) Interval: The window frequency of each flow is estimated at
the end of every measurement. This method represents limitations
of sampling techniques (e.g., [7, 24]) that require time to converge
and thus cannot provide estimates during the measurement. (ii) Im-
proved interval: Same as interval, but flow frequencies are estimated
upon the arrival of each packet. This represents the best case sce-
nario for the Interval method. (iii) Window: Sliding window, where
frequencies are estimated upon packet arrivals.

Figure 1b plots the detection time for each method as a function of
the normalized frequency of the new heavy hitter. Intuitively, larger
heavy hitters are detected faster, because less time passes before
their normalized window frequency reaches the threshold. Indeed,
the sliding window approach is always faster than the Interval and
improved Interval methods. When the frequency is close to the de-
tection threshold, we get up to 40% faster detection time compared to
the Interval method. At the end of the tested range, sliding windows
are still over 5% quicker. The Interval method is the slowest, as it
estimates frequencies only at the end of the measurement. Thus,
such a usage pattern is undesired for systems such as load balancing
and attack mitigation.

4 SLIDING WINDOW ALGORITHMS
Our next step is to make sliding windows accessible to cloud oper-
ators. We do so by first introducing new single-device algorithms
that are significantly faster than existing techniques, and then extend
them to efficient network-wide algorithms that combine information
from many measurement points to obtain a global perspective.

4.1 Heavy Hitters on Sliding Windows
Natural approach. Our goal is to produce faster sliding window al-
gorithms. Intuitively, one can accelerate the performance of a heavy
hitter algorithm by sub-sampling the packets. That is, we would like
to sample packets with a probability of τ , use an HH algorithm with

2

Current IntervalPrevious Interval

Sliding Window

(a) An example of the periodic interval and sliding window methods. In this sce-
nario, consider a threshold of nine packets. The solid-green flow is a window
heavy-hitter as it has ten packets within the sliding window. However, the mea-
surement interval method does not detect the green flow, as it only has five packets
within the current interval (false negative). Intuitively, one can identify the green
flow by lowering the threshold to 4 packets, but in that case, the striped red flow
is detected as well (false positive).

(b) Effect of a new heavy hitter’s frequency on its detection time. The x-axis is
the ratio of the normalized heavy hitter’s frequency and the user-defined thresh-
old. The y-axis is the expected detection time in windows. For instance, when
the frequency is twice the threshold, it takes a window algorithm half a win-
dow to detect the new heavy hitter whereas interval-based algorithms require
between 0.6-1.0 windows.

Figure 1: Sliding windows compared to intervals.

a window size of W · τ packets, and then multiply its estimations
by a factor of τ−1. Unfortunately, this does not yield the desired
outcome as the number of samples from the window varies whereas
sliding-window HH algorithms are designed for fixed-sized win-
dows. Specifically, since the actual number of samples from theW
sized window is distributed Bin(W ,τ), this approach results in an ad-
ditional error of ±Θ

(√
W (1 − τ) · τ −1

)
in the size of the reference win-

dow. Since we are interested in small values of τ to achieve speedup
(see Section 6.3), this approach results in a considerable error.

Memento overview. Existing algorithms (e.g., [10, 11, 32]) for iden-
tifying the heavy hitters over a sliding window are deterministic and
thus have to process each and every packet fully. This processing,
while running in asymptotic constant time, is computationally inef-
ficient in practice due to multiple hash computations and memory
accesses per packet. Our observation is that these updates actually
have two logical parts. First, the algorithms handle the "forgetting"
of old data that leaves the window as new data arrives, and second,
recording the current packet’s flow in the data structure. When ana-
lyzing where the algorithm spends most of its time, we observed that
the first part is extremely lightweight compared with the resources
used for recording the packet.

Accordingly, the key idea behind Memento is to decouple the
computationally expensive operation of updating a packet (Full up-
date) from the lightweight operation of Window update. Specifically,
for each packet, Memento performs the Full update operation with
probability τ ; otherwise, it makes the quicker Window update.

(a) Our HH algorithm, Memento, utilizes two update methods: a slow Full
update, and a faster Window update that only updates the sliding window.
Speedup is achieved by performing Full updates for a small fraction of the
packets. Here, the flow id 4 is inserted following the coin flip and 2 leaves
the window (regardless of the coin flip).

(b) Our HHH algorithm, H-Memento, simply updates Memento with a
single random prefix, achieving constant time complexity.

Figure 2: High-level overview of our algorithms.

Therefore, Memento alternates between the fast Window updates
and the slower Full updates. Full updates include (1) forgetting out-
dated data and (2) adding a new item to the measurement data struc-
ture. On the other hand, Window updates only involve the former
item, namely forgetting outdated data. That is, Memento maintains
aW -sized window but most of the packets within that window are
missing. Thus, it attains speedup but avoids the additional error
that is caused by uniform samples. The concept is exemplified in
Figure 2a.

Implementation. For simplicity, we built Memento on top of an
existing sliding window HH algorithm. This makes it easier to
implement, verify, and then compare with the current approaches.
We picked WCSS as the underlying algorithm [11], but our ap-
proach is general and works on other window algorithms as well
(e.g., [10, 32]). Intuitively, when τ = 1, Memento becomes identi-
cal to WCSS as it performs a full update for each packet. That is,
the difference between Memento and WCSS is that for a (1 − τ)
fraction of the packets Memento makes only a window update and
thereby saves computation resources. We provide more background
on the algorithmic implementation of WCSS and Memento in the
full version of the paper [9].

4.2 Extending to Hierarchical Heavy Hitters
Hierarchical heavy hitters monitor subnets and flow aggregates in
addition to individual flows. We start by introducing existing ap-
proaches for HHH measurements on sliding windows.

Existing approaches. In MST [41], multiple HH instances are used
to solve the HHH problem. This design trivially extends to sliding

3

windows by replacing the HH building blocks with window algo-
rithms (e.g., WCSS [11]). This was proposed by [41] but dismissed
as impractical. Replacing the underlying algorithms with Memento is
slightly better as we can perform Window updates to most instances.
Unfortunately, the update complexity remains Ω(H) which may still
be too slow. In contrast, H-Memento achieves constant time updates,
matching the complexity of interval algorithms [7]. Another natural
approach comes from the RHHH [7] algorithm. RHHH shares the
same data structure as MST but randomly updates at most a single
HH instance which allows for constant time updates. Additionally,
it makes small changes to the query procedure to compensate for
the sampling error and guarantees that (with high probability) it
will have no false negatives. This method does not work for sliding
windows, as each HH instance is updated a varying number of times
and monitors a possibly different window.

H-Memento’s overview. In H-Memento we differ from the lattice
structure of RHHH and MST. That is, we maintain a single large
Memento instance and use it to monitor all the sampled prefixes.
Therefore, we use just one sliding window to measure all subnets,
which the underlying Memento does in constant time. This approach
also has engineering benefits such as code reuse, simplicity, and
maintainability. The update procedure of H-Memento is illustrated
in Figure 2b. Next, we proceed with notations and definitions for the
HHH problem, which we later use to detail H-Memento.

HHH notations and definitions. For brevity, Table 1 summarizes
the notations used in this work. We consider IP prefixes (e.g., 181.∗).
A prefix without a wildcard (e.g., 181.7.20.6) is called fully specified.
The notation U is the domain of the fully specified items. A prefix
p1 generalizes another prefix p2 if p1 is a prefix of p2. For example,
181.7.20.∗ and 181.7.∗ generalize the (fully specified) 181.7.20.6.
The parent of a prefix is the longest generalizing prefix, e.g., 181.7.∗
is 181.7.20.∗’s parent. Definition 4.1 formalizes this concept.

Definition 4.1 (Generalization). Let p,q be prefixes. We say that
p generalizes q and denote p ⪯ q if for each dimension i, pi = qi
or pi ⪯ qi . We denote the set of fully specified items generalized
by p using Hp ≜ {e ∈ U | e ⪯ p}. Similarly, the set of every fully
specified item that is generalized by a set of prefixes P is denoted
by: HP ≜ ∪p∈PHp . Moreover, denote p ≺ q if p ⪯ q and p , q.

Definition 4.1 also deals with the more general multidimensional
case. For example, we can consider tuples of the form (source IP,
destination IP). In that case, fully specified “prefixes” are fully de-
termined in both dimensions, e.g., (⟨181.7.20.6⟩, ⟨208.67.222.222⟩).
Also, observe that “prefixes” now have two parents, e.g.,
(⟨181.7.20.∗⟩, ⟨208.67.222.222⟩) and (⟨181.7.20.6⟩, ⟨208.67.222.∗⟩)
are both parents to (⟨181.7.20.6⟩, ⟨208.67.222.222⟩).

The size of the hierarchy (H) is the number of different pre-
fixes that generalize a fully specified prefix. Next, we look at a
set of prefixes P and denote G(p |P) as the set of prefixes in P that
are most closely generalized by the prefix p. That is, G(p |P) ≜
{h : h ∈ P ,h ≺ p,∄h′ ∈ P s .t .h ≺ h′ ≺ p}.

For example, consider the prefix p =< 142.14.∗ > and the set
P = {< 142.14.13.∗ >, < 142.14.13.14 >}, then we have G(p |P) =
{< 142.14.13.∗ >}. The window frequency of a prefix p is the total
sum of packets within the window that are generalized by p, i.e.,

Symbol Meaning

S The packet stream.

N Current number of packets (the stream length).

W The window size.

H Size of the hierarchy.

τ Sampling probability.

V Sampling ratio for HHH, V ≜ H
τ .

S ix Variable for the i’th appearance of a prefix x .

Sx Sampled prefixes with id x .

S Sampled prefixes from all ids.

U Domain of fully specified items.

ϵ, ϵs , ϵa Overall, sample, algorithm’s error guarantee.

δ, δs , δa Overall, sample, algorithm’s confidence.

θ Threshold parameter.

Cq |P Conditioned frequency of q with respect to P .

G(q |P) Subset of P with the closest prefixes to q.

fq Frequency of prefix q

f̂ +q , f̂ −q Upper and lower bounds for fq .

Z inverse CDF of the normal distribution .

B per-packet control bandwidth budget.

O the minimal header size (in bytes),

E bytes required to report a packet.

m number of measurement points.

b number of samples in each report.

Eb overall error in network-wide settings.

Table 1: Summary of notations

fWp ≜
∑
e ∈Hp fWe . Note that each packet is generalized by H differ-

ent prefixes. This motivates us to look at the conditioned (residual)
frequency that a prefix p adds to a set of already selected prefixes P .
The conditioned frequency is defined as: Cp |P ≜

∑
e ∈HP∪{p}\HP fe .

We denote by XW
p the number of times prefix p is sampled in the

window, X̂W
p
+

is an upper bound on XW
p and X̂W

p
−

is a lower bound.
The notation V ≜ H

τ stands for the sampling rate of each specific
prefix. We define:

f̂Wp ≜ X̂W
p V – an estimator for p’s frequency.

f̂Wp
+
≜ X̂W

p
+
V – an upper bound for p’s frequency.

f̂Wp
−

≜ X̂W
p

−

V – a lower bound for p’s frequency.
We now define the depth of a prefix (or a prefix tuple). Fully

specified items are of depth 0, their parents are of depth 1 and more
generally, the parent of an item with depth x is of depth x + 1. L
denotes the maximal depth; observe that this may be lower than
H (e.g., in 2D byte-hierarchies H = 25 and L = 9). Hierarchical
heavy hitters are calculated by iterating over all fully specified items
(depth 0). If their frequency is larger than a threshold of θW , we
add them to the set HHH0. Then, we go over all the items with
depth 1 and if their conditioned frequency, with regard to HHH0, is
above θW , we add them to the set. We name the resulting set HHH1
and repeat the process L times, until the set HHHL contains the

4

Algorithm 1 H-Memento (W , εa ,τ)

Initialization: Memento .init(H · ϵ−1a ,W , τ · H)

1: function UPDATE(x)
2: Memento .update(RandomPref ix (x))
3: function OUTPUT(θ)
4: HHH = ϕ
5: for Level ℓ = 0 up to L do
6: for each p in level ℓ do ▷ Only over prefixes with a counter.

7: �Cp |HHH = f̂Wp
+
+ calcPred (p, HHH)

8: �Cp |HHH = �Cp |HHH + 2Z1−δ
√
VW ▷ Compensate for sampling

9: if �Cp |HHH ≥ θN then HHH = HHH ∪ {p }

10: return HHH

Algorithm 2 calcPred for one dimension
1: function CALCPRED(prefix p, set P)
2: R = 0
3: for each h ∈ G(p |P) do R = R − f̂Wh

−

4: return R

Algorithm 3 calcPred for two dimensions
1: function CALCPRED(prefix p, set P)
2: R = 0
3: for each h ∈ G(p |P) do R = R − f̂h

−

4: for each pair h, h′ ∈ G(p |P) do
5: q = дlb(h, h′)
6: if ∄h3 , h, h′ ∈ G(p |P), q ⪯ h3 then R = R + f̂q

+

7: return R

(exact) hierarchical heavy hitters. Unfortunately, we need space that
is linear in the stream size to calculate exact HHH (and even plain
heavy hitters) [44]. Hence, as done by previous work [7, 19–21, 41],
we solve approximate HHH.

A solution to the approximate HHH problem is a set of pre-
fixes that satisfies the Accuracy and Coverage conditions (Defi-
nition 4.2). Here, Accuracy means that the estimated frequency
of each prefix is within acceptable error bounds and Cover-
age means that the conditioned frequency of prefixes not in-
cluded in the set is below the threshold. This does not mean
that the conditioned frequency of prefixes that are included in
the set is above the threshold. Thus, the set may contain a small
number of subnets misidentified as HHH (false positives).

Definition 4.2 (Approximate HHHs). An algorithm A solves
(δ , ϵ,θ) - APPROXIMATE WINDOW HIERARCHICAL HEAVY HIT-
TERS if it returns a set of prefixes P that, for an arbitrary run of the
algorithm, satisfies:

Accuracy: If p ∈ P then Pr
(���fWp − f̂Wp

��� ≤ εW
)
≥ 1 − δ .

Coverage: If q < P then Pr
(
Cq |P < θW

)
≥ 1 − δ .

H-Memento’s full description. A pseudo-code for H-Memento
is given in Algorithm 1. The output method performs the
HHH set calculation as explained for exact HHH. The cal-
culation yields an approximate result as we only have an
approximation for the frequency of each prefix. Thus, we
conservatively estimate conditioned frequencies.

For two dimensions, we use the inclusion-exclusion principle [16]
(Definition 4.3) to avoid double counting.

Definition 4.3. Denote by дlb(h,h′) the greatest lower bound of
h and h′. дlb(h,h′) is a unique common descendant of h and h′ s.t.
∀p : (q ⪯ p) ∧ (p ⪯ h) ∧ (p ⪯ h′) ⇒ p = q. If h and h′ have no
common descendants, дlb(h,h′) = 0

A pseudo code for the update method is given in Algorithm 1,
which is the same for one and two dimensions. The difference be-
tween these is encapsulated in the CALCPRED method which uses
Algorithm 2 for one dimension and Algorithm 3 for two. In two
dimensions, Cp |HHH is first set in Line 7 of Algorithm 1. Then, we
remove previously selected descendant heavy hitters (Line 3, Algo-
rithm 3) and finally we add back the common descendants (Line 6,
Algorithm 3). The sampling error is accounted for in Line 8. Intu-
itively, our analysis shows which τ values guarantee that H-Memento
solves the approximate HHHs problem.

4.3 Network-Wide Measurements
As Figure 3 illustrates, we now discuss a centralized controller that
receives data from multiple clients and forms a network-wide view
of the traffic (e.g., network-wide HH or HHH). Similarly to [3, 26]
we assume that there are several measurement points and that each
packet is measured once. Our design focus is on two critical aspects
of this system: (1) a communication method between the clients
and the controller that conveys the information in a timely and
bandwidth-efficient manner, and (2) a fast controller algorithm.

Formal model. First, we define a sliding window in the network-
wide model as the lastW packets that were measured somewhere in
the network. Intuitively, we want the controller to analyze the traffic
of the most recentW packets in the entire network, as observed by
the measurement points. For example, we may want to monitor the
last million packets in the entire network.

(1) Communication method. We now suggest three methods to
communicate with the controller. For each method, the frequency of
messaging with the controller is according to the bandwidth budget
(B). That is, smaller reports can be sent more frequently but also
deliver less information.

Aggregation. Existing HH algorithms are often mergeable, i.e., the
content of two HH instances can be efficiently merged [5]. We are
unaware of previous work that targets HHH, but since MST [41] and
RHHH [7] use HH algorithms as building blocks then they can be
merged as well. This capability motivates the Aggregation communi-
cation method. In this method, each client periodically transmits all
the entries of its HH algorithm to the controller. Given enough band-
width, this method is intuitively the most communication-efficient,
as all data is transmitted. However, as each message is large, we
infrequently send messages to meet the bandwidth budget, which
creates inaccuracies.

Sample. Most network devices are capable of transmitting uniform
packet samples to the controller. Motivated by this capability, the
Sample method samples packets with a fixed probability τ , and sends
a report to the controller once per τ−1 packets. Thus on average, each
message contains a single sample. This information is enveloped by
the usual packet headers that are required to deliver the packet in the

5

Switches

Load

Balancers

Backend

Servers

Centralized

Controller

Internet

Figure 3: An overview of our system. The clients (load-
balancers) perform the measurements and periodically send in-
formation to a centralized controller. The controller then runs
a global sliding-window analysis. For example, in the case of an
HTTP flood, it can mitigate the attack by instructing the clients
which subnets to rate-limit or block.

network. We observe that this uses a significant portion of the band-
width for the header fields of the transmitted packet. Yet, the Sample
method is considerably easier to deploy than the Aggregate option,
as the nodes only sample packets and do not run the measurement
algorithms. The communication pattern is network-friendly as we
get a stable flow of traffic from the clients to the controller.

Batch. The Batch approach is designed to utilize bandwidth more
efficiently than the Sample. The idea is simple: instead of transmit-
ting, on average, a single sample per message, we send on average
b samples (e.g., 100) per report. That is, we send a report once per
τ−1b packets, containing all the sampled packets within this period.
This pattern utilizes the bandwidth more efficiently as the payload
ratio of the message is considerably higher. However, it also creates
delays in reporting new information to the controller. Our analysis is
used to find the optimal batch size b and minimize the total error.

(2) Controller algorithm. The controller maintains an instance of
Memento or H-Memento where we term the respective algorithms
D-Memento and D-H-Memento. The controller behaves slightly
differently in each option.

Aggregation. Aggregation is used in this study only as a baseline.
Thus, instead of implementing a specific algorithm, we simulate an
idealized aggregation technique with an unlimited space at the con-
troller and no accuracy losses upon merging. As we later show, the
Sample and Batch approaches outperform this Aggregation method;
thus, we conclusively demonstrate that they are superior to any
aggregation technique.

Sample and Batch. In the Sample and Batch schemes, the controller
maintains a Memento or H-Memento instance. When receiving a
report, it first performs a Full update for each sampled packet and
then makes Window updates for the un-sampled ones. In total, the
Sample performs τ−1 updates and the Batch performs τ−1b updates.

5 ANALYSIS
This section is divided into two parts; first, Section 5.1 analyzes
our single-device Memento and H-Memento algorithms and shows
accuracy guarantees. Due to space limits, some proofs are omitted

from this version and are available in the full version of this pa-
per [9]. Next, Section 5.2 analyzes our network-wide D-Memento
and D-H-Memento algorithms, and explains how to find the optimal
batch size (in terms of guaranteed error) given a certain (per-packet)
bandwidth budget.

5.1 Memento and H-Memento Analysis
This section surveys the main theoretical results for Memento and
for H-Memento. These assure correctness as long as the sampling
probability is large enough.
Formal model. Our traffic is modeled as a stream S. It is initially
empty, and a packet is added at each step. A sliding-window algo-
rithm considers only the lastW packets, denoted as SW . The notation
fWe denotes the frequency of flow e in SW . Given e, a heavy hit-

ters algorithm provides an estimator f̂We for fWe . We formalize the
problem as follows:

Definition 5.1. An algorithm solves (ϵ,δ) - WINDOW FRE-
QUENCY ESTIMATION if given a query for a flow (x), it provides

f̂Wx such that Pr
[���fWx − f̂Wx

��� ≤ εW
]
≥ 1 − δ .

Memento. Theorem 5.2 is the main theoretical result for Memento.
It states that Memento solves the (ϵ,δ) - WINDOW FREQUENCY

ESTIMATION problem for ε = εa + εs whenever it is allocated
O(1/ϵa) counters and has a sampling probability that satisfies
τ ≥ Z1− δ

4
W −1ϵ−2s , where Z is the inverse of the cumulative density

function of the normal distribution with mean 0 and standard devia-
tion of 1. Note that Z1− δ

4
satisfies Z < 4 for any δ > 10−6. In other

words, the theorem emphasizes the trade off between the amount of
space allocated and the sampling rate, for achieving a target error
bound ϵ . Specifically, if the algorithm has many counters (i.e., have
a low ϵa), then we can afford a higher ϵs (i.e., the sampling rate can
be low). The proof appears in the full version of this paper [9].

THEOREM 5.2. Memento solves (ϵ, δ) - WINDOWED FREQUENCY

ESTIMATION for ε = εa + εs and τ ≥ Z1− δ
4
W −1ϵ−2s .

H-Memento. Theorem 5.3 is our main result for H-Memento. It
says that H-Memento is correct for any τ > Z1− δ

2
HW −1εs−2, where

H is the size of the hierarchic domain (H = 5 for source hierarchies
and H = 25 for (source,destination) hierarchies). The proof is given
in the full version of this paper [9].

THEOREM 5.3. H-Memento solves (δ, ϵ, θ) - APPROXIMATE WIN-
DOWED HIERARCHICAL HEAVY HITTERS for τ ≥ Z1− δ

2
HW −1εs−2 .

5.2 D-Memento and D-H-Memento Analysis
We now provide analysis for our network-wide D-Memento and
D-H-Memento algorithms. Intuitively, the error in these algorithms
comes from two origins. First, an error due to sampling, which is
quantified by Theorems 5.2 and 5.3. However, there is an additional
error that is caused by the delay in transmission, as the measurement
points only send the sampled packets once in every bτ−1 packets.
If a measurement point has a low traffic rate, it may take long time
for it to see bτ−1 packets; in this case, all of its samples may be
obsolete and may not belong in the most recent window. There-
fore, our first step is to reason about the accuracy impact of the
Batch and Sample methods.

6

Notations and definitions. We denote the bandwidth budget as B
bytes/packet. That is, B determines how much traffic is used for
communicating between the measurement points and the controller.
This communication is done using standard packets, which have
header field overheads. We denote by O the minimal header size (in
bytes) of the chosen transmission protocol (e.g., 64 bytes for TCP).
Next, reporting a sampled packet requires E bytes (e.g., 4 bytes for
srcip, or 8 bytes for (srcip,dstip) pair). We also denote bym the total
number of measurement points.
Model. Intuitively, we can choose two (dependent) parameters: the
sampling rate, τ , and the batch size b. That is, each measurement
point samples with probability τ until it gathers b packets. At this
point, it assembles an (O+Eb)-sized packet that encodes the sampled
packet and sends it to the controller. As the expected number of
packets required to gather a b sized batch is bτ−1, the bandwidth
constraint can be written as (O + Eb)/(bτ−1) ≤ B. Specifically, this
allows to express the maximum allowed sampling probability as
τ = Bb/(O + Eb) since sampling at a lower rate would not utilize
the entire bandwidth and would result in sub-optimal accuracy.
Accuracy of the Batch and Sample methods. We can now quantify
the error of the Batch and Sample methods. Intuitively, we have
to factor the delays in communication (as we only report per a
fixed number of packets to stay within the bandwidth budget). For
example, if there are two measurement points in which one processes
a million requests per second while the other only a thousand, the
batches of the second point would include many obsolete packets
that are not within the current window. However, recall that these
reports only reflect bτ−1 packets at each of them points. Therefore,
we conclude that:

THEOREM 5.4. The error created by the delayed reporting in the
Batch method is bounded bymbτ−1.

Next, Theorems 5.2 and 5.3 enable us to bound the sampling error
as a function of τ , while Theorem 5.4 bounds the delayed reporting
error. The following theorem applies for D-Memento (using H = 1)
and for D-H-Memento (using the appropriate H value). As the round
trip time inside the data center is small compared to window sizes
that are of interest, the error caused by the delay of packet transmis-
sions is negligible, and thus we do not factor it here. Theorem 5.5
quantifies the overall error in the Batch method; the error of the
Sample method is derived when setting b = 1.

THEOREM 5.5. Given overhead O, batch size b, bandwidth bud-
get B, sample payload size S , window sizeW and confidence δs , the
overall error Eb (in packets) is at most:

Eb =m(O + Eb)/B +
√
HWZ1− δs

2
(O + Eb)/(Bb).

PROOF. According to Theorem 5.3, we have that ϵs =√
HW −1Z1− δs

2
τ−1. This means that our overall error is bounded by:

Eb = bmτ−1 +W ϵs = bmτ−1 +
√
HWZ1− δs

2
τ−1

=m(O + Eb)/B +
√
HWZ1− δs

2
(O + Eb)/(Bb). □

Formally, we showed a bound of Eb , for each choice of b. The
guarantees for the Sample method are given by fixing b = 1. The next

Figure 4: Comparing the accuracy guarantees of varying
synchronization techniques. The parts hatched with cir-
cles quantify the bound on the error that is caused by
the delayed synchronization.

step is to use Theorem 5.5 to calculate the optimal batch size b given
a bandwidth budget B. Thus, we get the best achievable accuracy
for the Batch method within the bandwidth limitation. We have:

∂Eb
∂b
=mE/B +

HWZ1− δs
2
(E/B − O/(Bb2))

2
√
(O + Eb)/(Bb)

.

We then compare this expression to zero to compute the optimal
batch size b. This is easily done with numerical methods.

For example, for a TCP connection (O = 64); ten measurement
points (k = 10); source IP hierarchy (E = 4,H = 5); error probability
of δ = 0.01%; a window of size W = 106; and a bandwidth quota
of B = 1 byte per packet, the optimal batch size is b = 44. The
resulting (overall) error guarantee is 13K packets (i.e., an error of
1.3%). Increasing the bandwidth budget to B = 5 bytes decreases the
absolute error to 5.3K packets (0.53%) while increasing the optimal
batch size to b = 68. When increasing the window size (W), the
absolute error increases by an O

(√
W

)
factor and the error (as a

fraction ofW) decreases. For example, increasing the window size
to 107 increases the optimal batch size to b = 109, while reducing
the error to 0.15%. Alternatively, 2D source/destination hierarchies
(increasing H from 5 to 25) result in a slightly larger error and
a higher optimal batch size.

Figure 4 illustrates the accuracy guarantee provided by each
method. We compare three synchronization variants – Sample, Batch
with b = 100, and Batch with an optimal b (varies with B), as ex-
plained above. As depicted, Sample has the smallest delay error and
yet provides the worst guarantees as it conveys little information
within the bandwidth budget. The 100-Batch method has lower a
sampling error (as its sampling rate is higher), but its reporting delay
makes the overall error larger. For larger values of B, the optimal
batch size grows closer to 100 and the accuracy gap narrows.

6 EVALUATION

Server. Our evaluation was performed on a Dell 730 server running
Ubuntu 16.04.01 release. The server has 128GB of RAM and an
Intel Xeon CPU E5-2667 v4@ 3.20GHz.

7

Traces. We use real packet traces collected from an edge
router (Edge) [2], a datacenter (Datacenter) [14], and a CAIDA
backbone link (Backbone) [28].

Algorithms and implementation. For the HH problem, we com-
pare Memento and WCSS [11]. For WCSS we use our Memento
implementation without sampling (τ = 1). For the HHH problem,
we compare H-Memento to MST [41] and RHHH [7] (interval algo-
rithms). We use the code released by the original authors of these
algorithms. We also form the Baseline sliding window algorithm
by replacing the underlying algorithm in MST [41] with WCSS.
Specifically, MST proposed to use Lee and Ting’s algorithm [36] as
WCSS was not known at the time. By replacing the algorithm with
the WCSS, a state of the art window algorithm, we compare with
the best variant known today.

Yardsticks. We consider source IP hierarchies in byte granularity
(H = 5) and two-dimensional source/destination hierarchies (H =
25). Such hierarchies are also used in [7, 21, 41]. We run each data
point 5 times and use two-sided Student’s t-tests to determine the
95% confidence intervals.

We evaluate the empirical error in the On Arrival model [11, 13],
where for each packet we estimate its flow (denoted st) size. We then
calculate the Root Mean Square Error (RMSE), i.e., RMSE(Alд) ≜√

1
|N |

∑N
t=1(f̂st − fst)

2.

6.1 Heavy Hitters Evaluation
We evaluate the effect of the sampling probability τ on the operation
speed and empirical accuracy of Memento, and use the speed and
accuracy of WCSS as a reference point for this evaluation. The
notation X-WCSS stands for WCSS that is allocated X counters
(for X∈ {64, 512, 4096}). Similarly, the notation X-Memento is for
Memento with X counters. The window size is set toW ≜ 5 million
packets and the interval length is set to N ≜ 16 million packets.

As depicted in Figure 5, the update speed is determined by the
sampling probability and is almost indifferent to changes in the
number of counters. Memento achieves a speedup of up to 14×
compared to WCSS. As expected, allocating more counters also
improves the accuracy. It is also evident that the error of Memento is
almost identical to that of WCSS, which indicates that it works well
for the range. The smallest evaluated τ , namely, τ = 2−10, already
exhibits slight accuracy degradation, which shows the limit of our
approach. It appears that a larger number of counters, or heavy tailed
workloads (such as the Backbone trace), allow for even smaller
sampling probabilities without a impact to the attained accuracy.

6.2 Hierarchical Heavy Hitters Evaluation

H-Memento vs. existing window algorithm. Next, we evaluate
H-Memento and compare it to the Baseline algorithm. We consider
two common types of hierarchies, namely a one-dimensional source
hierarchy (H = 5) and two-dimensional source/destination hierar-
chies (H = 25). Note that H-Memento performs updates in constant
time while the Baseline does it in O(H). Following the insights of
Figure 5, we evaluate H-Memento with a sampling rate τ such that
τ ≥ H · 2−10, so that each of the H prefixes is sampled with a proba-
bility of at least 2−10. That is, we do not allow sampling probabilities

(a) Edge Trace: Speed (b) Edge Trace: Error

(c) Datacenter Trace: Speed (d) Datacenter Trace: Error

(e) Backbone Trace: Speed (f) Backbone Trace: Error

Figure 5: Effect of the sampling probability τ on the speed
and accuracy for varying number of counters given three dif-
ferent traces and a window size W = 5M . Memento is con-
siderably faster than WCSS, but the accuracy of both al-
gorithms is almost the same despite Memento′s use of sam-
pling, except when the sampling rate is low and the num-
ber of counters is high. Even then, this is mainly evident in
the skewed Datacenter trace.

of τ < H · 2−10 to get an effective sampling rate of at least 2−10,
which is the range in which Memento is accurate.

We evaluate three configurations for each algorithm, with a
varying number of counters. The notation 64H denotes the use of
64 · 5 = 320 counters when H = 5, and 1600 counters when H = 25.
The notations 512H and 4096H follow the same rule. In the Base-
line algorithm, the counters are utilized in H equally-sized WCSS
instances, while H-Memento has a single Memento instance with
that many counters.

Figure 6 shows the evaluation results. We can see how τ is
the dominating performance parameter. H-Memento achieves up
to a 52× speedup in source hierarchies and a 273× speedup in

8

(a) Backbone trace - 1 D (H=5) (b) Backbone trace - 2 D (H=25)

Figure 6: Effect of the sampling probability on the speed of
H -Memento, compared to the Baseline algorithm in the Back-
bone trace. Note that H-Memento achieves a speedup of up to
53× in 1D and up to 273× in 2D. Results for the Edge and Data-
center traces are similar.

source/destination hierarchies. This difference is explained by
the fact that the Baseline algorithm makes H expensive Full
updates for each packet, while H-Memento usually performs a
single Window update.

H-Memento vs. interval algorithm. Next, we compare the through-
put of H-Memento to the previously suggested RHHH [7].
H-Memento and RHHH are similar in their use of samples to in-
crease performance. Moreover, RHHH is the fastest known inter-
val algorithm for the HHH problem. Our results, presented in Fig-
ure 7, show that H -Memento is faster than RHHH for small sam-
pling ratios. The reason lies in the implementation of the sampling.
Namely, in RHHH, sampling is implemented as a geometric ran-
dom variable, which is inefficient for small sampling probabilities,
whereas in H -Memento, it is performed using a random number
table. Still, as the sampling probability gets lower, the geometric
calculation becomes more efficient, and eventually, RHHH is faster
than H -Memento. This is because H-Memento performs a Window
update for most packets, while RHHH only decrements a counter.

Looking at both performance figures independently, we conclude
that H -Memento achieves very high performance and is likely to
incur little overheads in a virtual switch implementation in a similar
manner to RHHH.

6.3 Network-Wide Evaluation
This section describes our proof-of-concept system. We incorpo-
rated H-Memento into HAProxy which provides the capability to
monitor traffic from subnets, an ability which we used to imple-
ment rate limiting for subnets. Our controller periodically receives
information from (in the Batch, Sample or Aggregate method) the
load-balancers and uses this to perform the HHH measurement (with
the D-H-Memento algorithm). Then, the HHH output can be used
as a simple threshold-based attack mitigation application where a
subnet is rate-limited if its window frequency is above the threshold.

HAProxy. We implemented and integrated our algorithms into the
open-source HAProxy load-balancer (version 1.8.1). Specifically,
we leveraged and extended HAProxy’s Access Control List (ACL)

(a) One dimension (H=5) (b) Two dimensions (H=25)

Figure 7: Speed comparison between RHHH (interval algo-
rithm) and H-Memento (window algorithm) on the Backbone
dataset. The annotated point shows the throughput of the (τ =
1/10)-RHHH algorithm that is reported to meet the 10G line
speed using a single core [7]. That is, H-Memento is slightly
faster than RHHH in the parameter range of 10G lines.

capabilities, to allow the updates of our algorithms with new arriving
data as well as to perform mitigation (i.e., Deny or Tarpit) when an
attacker is identified.

Traffic generation. Our goal is to obtain realistic measurements
involving multiple simultaneous stateful connections such as HTTP
GET and POST requests from multiple clients towards the load-
balancers. To that end, we developed a tool that enables a single
commodity desktop to maintain and initiate stateful HTTP GET and
POST requests sourcing from multiple IP addresses. Our solution
requires the cooperation of both ends (i.e., the traffic generators and
the load-balancer servers) for an arbitrarily large IP pool.

It is based on the NFQUEUE and libnetfilter-queue Linux targets
that enable the delegation of the decision on packets to a userspace
software. As reported by the Apache ab load testing tool, using
a single commodity computer, we can initiate and maintain up to
30,000 stateful HTTP requests per second from different IPs without
using the HTTP keep-alive feature. We are only limited by the pace at
which the Linux kernel opens and closes sockets (e.g., TCP timeout).

Controller. We implemented in C a test controller that communi-
cates with the load-balancers via sockets. It holds a local HHH
algorithm implementation and exchanges information with the load-
balancers (e.g., receives aggregations, samples, or batches). The
controller then generates a global and coherent window view of the
ingress traffic.

Testbed. We built a testbed involving three physical servers. The first
is used for traffic generation towards the load-balancers. Specifically,
we used several apache ab instances augmented with our tool to
generate realistic stateful traffic from multiple IP addresses with
delay and racing among different clients. The second station holds
ten autonomous instances (i.e., separate processes) of HAProxy
load-balancers listening on different ports for incoming requests.
Finally, at the third station, we used docker to deploy Apache server
instances listening on different sockets.

6.3.1 H-Memento’s Accuracy. In this experiment, we eval-
uate MST (denoted as Interval), the Baseline algorithm and
H-Memento with a single load-balancer client. Our goal is to monitor

9

(a) Backbone Trace (b) Datacenter Trace (c) Edge Trace

Figure 8: Comparing the error of H-Memento.

the last 1,000,000 HTTP requests that have entered the load-balancer.
The Baseline algorithm and H-Memento are set at ϵa = 0.1% and a
window size of 1,000,000 requests. The MST Interval instance is
using a measurement period of 1,000,000 requests and is configured
with ϵa = 0.025%, resulting in comparable memory usage. For each
new incoming HTTP request, each algorithm estimates the frequency
of each of its IP prefixes.

The results are depicted in Figure 8. In all the traces,
the Interval approach is the least accurate, while as expected,
H-Memento is slightly less accurate than the Baseline algo-
rithm due to its use of sampling. These conclusions hold
for every prefix length and testbed workload.

6.3.2 Accuracy and Traffic Budget. In this experiment, we
generate traffic towards ten load-balancers communicating with a
centralized controller that maintains a global window view of the last
1,000,000 requests that entered the system. We evaluate the three
different transmission methods (Aggregation, Sample, and Batch)
with the same 1-byte per packet control traffic budget.

Results. Figure 9 depicts the results. As indicated, the best accuracy
is achieved by the Batch approach, while Sample significantly out-
performs Aggregation. Intuitively, the Aggregation method sends the
largest messages, each of which contains the full information known
to the measurement point. Its drawback is a long delay between con-
troller updates. The Sample method has a smaller delay but utilizes
the bandwidth inefficiently due to the packet header overheads. Fi-
nally, Batch has a slightly higher delay but delivers more data within
the bandwidth budget, which improves the controller’s accuracy.

6.4 HTTP Flood Evaluation
We now evaluate our detection system in an HTTP flood. Our de-
ployment consists of ten HAProxy load-balancers that serve as the
entry point and direct requests to Apache servers. The HAProxy
load-balancers also report to the centralized controller that dis-
covers subnets that exceed the user-defined threshold. The band-
width budget is set to 1-byte per packet and the window size
isW = 1 million packets.

(a) Backbone Trace (b) Datacenter Trace (c) Edge Trace

Figure 9: Network-wide evaluation. Accuracy attained by D-H-Memento with a bandwidth limit of 1B per ingress packet under
different transmission options.

10

(a) Identification over Time (b) Identification (zoom) (c) Percentage of missed attack packets

Figure 10: HTTP flood detection experiment. 50 attacking LANs on top of the backbone trace. Comparison of the detection time of
the different approaches. Our batching approach achieves near-optimal detection time.

Traffic. We inject flood traffic on top of the Backbone packet trace.
Specifically, we select a random time at which we inject 50 randomly-
picked 8-bit subnets that account for 70% of the total traffic once
the flood begins. We generate a new trace as follows. (1) We select
50 subnets by randomly choosing 8-bits for each, (2) and we select
a random trace line in the range (0,106). Until that line the trace is
unmodified. (3) From that line on, at each line, with probability 0.7
we add a flood line from a uniformly picked flooding sub-network,
and with probability 0.3 we skip to the next line of the original trace.

Results. Figure 10 depicts the results. Figure 10a and Figure 10b
show the detection speed of the flooding subnets by the three dif-
ferent approaches at the controller. We compare among the three
approaches and additionally outline an optimal algorithm that uses
an accurate window and “knows" exactly what traffic enters the load-
balancers without delay (OPT). It is notable that the Batch approach
achieves near-optimal performance, and outperforms Sample and Ag-
gregation. Figure 10c shows that the Batch method identifies almost
all of the attack messages as is expected by our theoretical analy-
sis. Further, its miss rate is 37× smaller under the 1-byte per packet
bandwidth budget when compared to the ideal Aggregation method.

7 RELATED WORK
Heavy hitters are an active research area on both intervals [5, 10,
12, 13, 30, 38, 49] and sliding windows [6, 10, 11, 31, 54]. HH
integration in the single-device mode is an active research chal-
lenge. For example, Sketchvisor [30] suggests using a lightweight
fast-path measurement when the line is busy. This increases the
throughput but reduces accuracy. Alternatively, HashPipe [49] adopts
the interval-based Space Saving [38] into programmable switches.
NetQRE [52] allows the network administrator to write a measure-
ment program. The program can describe HH and HHH as well
as sliding windows. However, their algorithm is exact rather than
approximate and requires a space that is linear in the window size
which is expensive for large windows.

Hierarchical heavy hitters. The HHH problem was first defined (in
the Interval model) by [19], which also introduced the first algorithm.
The problem then attracted a large body of follow-up work as well

as an extension to multiple dimensions [8, 18, 20, 21, 27, 41, 53].
MST [41] is a conceptually simple multidimensional HHH algorithm
that uses multiple independent HH instances; one instance is used for
each prefix pattern. Upon a packet arrival, all instances are updated
with their corresponding prefixes. The set of hierarchical heavy
hitters is then calculated from the set of (plain) heavy hitters of
each prefix type. The algorithm requires O

(
H
ϵ

)
space and O (H)

update time. MST can also operate in the sliding window model,
by replacing the underlying HH algorithm with a sliding window
solution [10, 11, 32]. Randomized HHH (RHH) [7] is similar to
MST but only updates a single HH instance. This reduces the update
complexity to a constant but requires a large amount of traffic to
converge. RHHH does not naturally extend to sliding windows since
each HH instance receives a slightly varying number of updates and
thus considers a different window.

Network-wide measurement. The problem of network-wide mea-
surement is becoming increasingly popular [26, 30, 37, 51]. A cen-
tralized controller collects data from all measurement points to form
a network-wide perspective. Measurement points are placed in the
network so that each packet is measured only once. The work of [3]
suggests marking monitored packets which allows for more flexible
measurement point placement.

In [26], the controller determines a dynamic reporting threshold
that allows for reduced communication overheads. It is unclear how
to utilize the method in the sliding window model. Yet, the optimiza-
tion goal is very similar in essence to this work: maximize accuracy
and minimize traffic overheads. Stroboscope [50] is another network-
wide measurement system that also guarantees that the overheads
adhere to a strict budget. FlowRadar [37] avoids communication
during the entire measurement period. Instead, the state of each
measurement point is shared at the end of the measurement. Thus,
FlowRadar follows the Interval pattern, which we showed to be slow
to detect new heavy hitters.

8 CONCLUSIONS
Our study highlights the potential benefits of sliding-window mea-
surements to cloud operators and makes them practical for network

11

applications. Specifically, we showed that window-based measure-
ments detect traffic changes faster, and thus enable more agile ap-
plications. Despite these benefits, sliding windows have not been
used extensively, since existing window algorithms are too slow to
cope with the line speed and do not provide a network-wide view.
Accordingly, we introduced the Memento family of HH and HHH
algorithms for both single-device and network-wide measurements.
We analyzed the algorithms and extensively evaluated them on real
traffic traces. Our evaluations indicate that the Memento algorithms
meet the necessary speed and efficiently to provide network-wide
visibility. Therefore, our work turns sliding-window HH and HHH
measurements into a practical option for the next generation of
network applications.

A potential drawback of existing HHH solutions, ours included, is
the ability to make real-time queries. That is, while RHHH provides
line-rate packet processing on streams and H-Memento provides it
for sliding windows, neither allows sufficiently fast queries. There-
fore, we believe that a mechanism that would allow constant-time
updates for detection of changes in the hierarchical heavy hitters set
would be a promising direction for future work.

We open-sourced the Memento algorithms and the HAProxy
load-balancer extension that provides capabilities to block and rate-
limit traffic from entire sub-networks (rather than from individual
flows) [1]. We hope that our open-source code will further facilitate
sliding-window measurements in network applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Kenjiro Cho,
for their helpful comments and suggestions. This work was partly
supported by the Hasso Plattner Institute Research School; the Zuck-
erman Institute; the Technion Hiroshi Fujiwara Cyber Security Re-
search Center; and the Israel Cyber Bureau.

REFERENCES
[1] Memento algorithms code and HAProxy extension. https://github.com/

DHMementoz/Memento.
[2] Unpublished, see http://www.lasr.cs.ucla.edu/ddos/traces/.
[3] Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff. Detecting heavy flows in

the SDN match and action model. Computer Networks, 136:1 – 12, 2018.
[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. pFabric: Minimal Near-optimal Datacenter Transport. ACM SIG-
COMM, pages 435–446, 2013.

[5] D. Anderson, P. Bevan, K. Lang, E. Liberty, L. Rhodes, and J. Thaler. A high-
performance algorithm for identifying frequent items in data streams. In ACM
Internet Measurement Conference, pages 268–282, 2017.

[6] E. Assaf, R. Ben-Basat, G. Einziger, and R. Friedman. Pay for a sliding bloom
filter and get counting, distinct elements, and entropy for free. In IEEE INFOCOM,
2018.

[7] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard. Constant
time updates in hierarchical heavy hitters. In ACM SIGCOMM, 2017.

[8] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard. Volumetric
hierarchical heavy hitters. In IEEE MASCOTS, 2018.

[9] R. B. Basat, G. Einziger, I. Keslassy, A. Orda, S. Vargraftik, and E. Waisbard.
Memento: Making sliding windows efficient for heavy hitters (full version). CoRR,
2018. http://arxiv.org/abs/1810.02899.

[10] R. Ben Basat, G. Einziger, and R. Friedman. Fast flow volume estimation. In
ICDCN ’18, 2018.

[11] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Heavy Hitters in Streams
and Sliding Windows. In IEEE Infocom, 2016.

[12] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Optimal elephant flow
detection. In IEEE INFOCOM, 2017.

[13] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Randomized admission
policy for efficient top-k and frequency estimation. In IEEE INFOCOM, 2017.

[14] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data
centers in the wild (univ 1 dataset). In ACM Internet Measurement Conference,

2010.
[15] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine Grained Traffic

Engineering for Data Centers. In ACM CoNEXT, 2011.
[16] R. A. Brualdi. Introductory combinatorics. New York, 3, 1992.
[17] M. Chiesa, G. Rétvári, and M. Schapira. Lying your way to better traffic engi-

neering. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies, ACM CoNEXT, 2016.

[18] K. Cho. Recursive lattice search: hierarchical heavy hitters revisited. In ACM
IMC, 2017.

[19] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding Hierarchical
Heavy Hitters in Data Streams. In VLDB, 2003.

[20] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Diamond in the Rough:
Finding Hierarchical Heavy Hitters in Multi-dimensional Data. In SIGMOD, pages
155–166, 2004.

[21] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding Hierarchical
Heavy Hitters in Streaming Data. ACM Trans. Knowl. Discov. Data, 1(4):2:1–2:48,
Feb. 2008.

[22] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 2002.

[23] G. Dittmann and A. Herkersdorf. Network processor load balancing for high-speed
links. In SPECTS, volume 735, 2002.

[24] G. Einziger, M. C. Luizelli, and E. Waisbard. Constant time weighted frequency
estimation for virtual network functionalities. In ICCCN, pages 1–9, July 2017.

[25] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource
consumption in network traffic. In ACM SIGCOMM, SIGCOMM ’03, pages
137–148, New York, NY, USA, 2003. ACM.

[26] R. Harrison, Q. Cai, A. Gupta, and J. Rexford. Network-wide heavy hitter detection
with commodity switches. In ACM SOSR, pages 8:1–8:7, 2018.

[27] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Tóth. Space Complexity of
Hierarchical Heavy Hitters in Multi-dimensional Data Streams. In ACM PODS,
pages 338–347, 2005.

[28] P. Hick. CAIDA Anonymized 2016 Internet Trace, equinix-chicago 2016-02-18
13:00-13:05 UTC, Direction A.

[29] S. Hilton. Dyn Analysis Summary Of Friday October 21 Attack. Available:
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[30] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang. Sketchvi-
sor: Robust network measurement for software packet processing. In ACM SIG-
COMM, 2017.

[31] R. Y. S. Hung, L. Lee, and H. Ting. Finding frequent items over sliding windows
with constant update time. IPL 2010.

[32] R. Y. S. Hung and H. F. Ting. Finding heavy hitters over the sliding window of a
weighted data stream. In LATIN, pages 699–710, 2008.

[33] L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggregates on
commodity switches. In USENIX Hot-ICE, 2011.

[34] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and J. Rexford.
Clove: Congestion-aware load-balancing at the virtual edge. In ACM CoNEXT,
2017.

[35] A. Khalimonenko, O. Kupreev, and E. Badovskaya. DDoS attacks in Q1 2018.
Available: https://securelist.com/ddos-report-in-q1-2018/85373/.

[36] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows. In ACM PODS, 2006.

[37] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A better NetFlow for data centers.
In Usenix NSDI, 2016.

[38] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient Computation of Frequent
and Top-k Elements in Data Streams. In ICDT, 2005.

[39] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In ACM SIGCOMM, pages
15–28, 2017.

[40] M. Mitzenmacher, T. Steinke, and J. Thaler. Hierarchical heavy hitters with the
space saving algorithm. CoRR, 2011. Conference version appeared in ALENEX
2012.

[41] M. Mitzenmacher, T. Steinke, and J. Thaler. Hierarchical Heavy Hitters with the
Space Saving Algorithm. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, ALENEX, 2012.

[42] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. DREAM: Dynamic resource
allocation for software-defined measurement. In ACM SIGCOMM, 2014.

[43] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and
Trends® in Theoretical Computer Science, 2005.

[44] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science, 1, 2005.

[45] K. Nyalkalkar, S. Sinhay, M. Bailey, and F. Jahanian. A comparative study of two
network-based anomaly detection methods. In IEEE Infocom, 2011.

[46] T. Peng, C. Leckie, and K. Ramamohanarao. Protection from distributed denial of
service attack using history-based ip filtering. 2002.

[47] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches for efficient
and accurate change detection over network data streams. In Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement, IMC ’04, pages
207–212, New York, NY, USA, 2004. ACM.

12

https://github.com/DHMementoz/Memento
https://github.com/DHMementoz/Memento
http://arxiv.org/abs/1810.02899
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://securelist.com/ddos-report-in-q1-2018/85373/

[48] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and H. Zhang. Lads:
Large-scale automated ddos detection system. In USENIX ATC, 2006.

[49] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford.
Heavy-hitter detection entirely in the data plane. In ACM SOSR, 2017.

[50] O. Tilmans, T. Bühler, I. Poese, S. Vissicchio, and L. Vanbever. Stroboscope:
Declarative network monitoring on a budget. In Usenix NSDI, 2018.

[51] T. Yang, J. Jiang, P. Liu, J. G. Qun Huang, Y. Zhou, R. Miao, X. Li, and S. Uhlig.
Elastic sketch: Adaptive and fast network-wide measurements. ACM SIGCOMM,
2018.

[52] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T. Loo. Quantitative
network monitoring with NetQRE. In ACM SIGCOMM, pages 99–112, 2017.

[53] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online Identification of
Hierarchical Heavy Hitters: Algorithms, Evaluation, and Applications. In ACM
IMC, pages 101–114, 2004.

[54] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang. Per-flow counting for big network data
stream over sliding windows. In IEEE IWQoS, 2017.

[55] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,
M. Zhang, B. Y. Zhao, and H. Zheng. Packet-level telemetry in large datacenter
networks. ACM SIGCOMM CCR, 45(4), Aug. 2015.

13

	Abstract
	1 Introduction
	2 Background
	3 Why sliding windows?
	4 Sliding window algorithms
	4.1 Heavy Hitters on Sliding Windows
	4.2 Extending to Hierarchical Heavy Hitters
	4.3 Network-Wide Measurements

	5 Analysis
	5.1 Memento and H-Memento Analysis
	5.2 D-Memento and D-H-Memento Analysis

	6 Evaluation
	6.1 Heavy Hitters Evaluation
	6.2 Hierarchical Heavy Hitters Evaluation
	6.3 Network-Wide Evaluation
	6.4 HTTP Flood Evaluation

	7 Related Work
	8 Conclusions
	References

