
Clove: Congestion-Aware Load Balancing
at the Virtual Edge

Naga Katta1,2, Aditi Ghag3, Mukesh Hira3, Isaac Keslassy3,4,

Aran Bergman3,4, Changhoon Kim5, Jennifer Rexford2

1 Salesforce.com 2 Princeton University 3 VMware 4 Technion 5 Barefoot Networks

ABSTRACT
Most datacenters still use Equal Cost Multi-Path (ECMP), which
performs congestion-oblivious hashing of flows over multiple paths,
leading to an uneven distribution of traffic. Alternatives to ECMP
come with deployment challenges, as they require either changing
the tenant VM network stacks (e.g., MPTCP) or replacing all of
the switches (e.g., CONGA). We argue that the hypervisor provides
a unique point for implementing load-balancing algorithms that
are easy to deploy, while still reacting quickly to congestion. We
propose Clove, a scalable load-balancer that (i) runs entirely in the
hypervisor, requiring no modifications to tenant VM networking
stacks or physical switches, and (ii) works on any topology and
adapts quickly to topology changes and traffic shifts. Clove relies
on standard ECMP in physical switches, discovers paths using a
novel traceroute mechanism, uses software-based flowlet-switching,
and continuously learns congestion (or path utilization) state using
standard switch features. It then manipulates packet-header fields
in the hypervisor switch to direct traffic over less congested paths.
Clove achieves 1.5 to 7 times smaller flow-completion times at 70%
network load than other load-balancing algorithms that work with
existing hardware. Clove also captures some 80% of the performance
gain of best-of-breed hardware-based load-balancing algorithms like
CONGA that require new equipment.

ACM Reference format:
Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman,
Changhoon Kim, Jennifer Rexford. 2017. Clove: Congestion-Aware Load
Balancing at the Virtual Edge. In Proceedings of CoNEXT ’17: The 13th
International Conference on emerging Networking EXperiments and Tech-
nologies, Incheon, Republic of Korea, December 12–15, 2017 (CoNEXT ’17),
13 pages.

https://doi.org/10.1145/3143361.3143401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/10.1145/3143361.3143401

1 INTRODUCTION
The growth of cloud computing over recent years has led to the
deployment of large datacenter networks based on multi-rooted leaf-
spine or fat-tree topologies. These networks rely on multiple paths be-
tween pairs of endpoints to provide a large bisection bandwidth, and
are able to handle a large number of end-points together with high
switching capacities. Moreover, they have stringent performance re-
quirements from a diverse set of applications with conflicting needs.
For example, streaming and file transfer applications require high
throughput, whereas applications that rely on the composition of sev-
eral subroutines, such as map-reduce paradigms and/or microservice
architectures, require low latency, not only in the average case but
also in the 95th percentile and beyond.

An efficient distribution of traffic over multiple paths between end-
points is key to achieving good network performance in datacenter
environments. However, a vast majority of datacenters continue to
use Equal-Cost Multi-Path (ECMP), which performs static hashing
of flows to paths and is known to provide uneven distribution and
poor performance. As summarized in Figure 1, a number of alter-
natives have been proposed to address the shortcomings of ECMP.
These come with significant deployment challenges and limitations
that largely prevent their adoption. Centralized schemes are too slow
for the volatile traffic patterns in datacenters. Host-based methods
such as MPTCP [33] require changes to kernel network stack in
guest virtual machines, and hence, are challenging to deploy because
operators of multi-tenant datacenters often do not control the end-
host stack. In-network per-hop load-balancing algorithms such as
CONGA [2] require replacing every network switch with one that
implements a new state-propagation and load-balancing algorithm.

It behooves us to ask the question: “Can network traffic be effi-
ciently load-balanced over multiple paths in a dynamically varying
network topology, without changing either the end-host transport
layer or the standard off-the-shelf ECMP-based network switches?".
We believe that the virtual switch in the hypervisor provides a unique
opportunity to achieve this goal. The inefficiencies of uneven traffic
distribution on equal-cost paths can be addressed to a large extent
by dividing long-lived flows into small units, and routing these units
independently instead of routing the entire long-lived flow on the
same path. Indeed, this has been done in Presto [16], which divides
a flow into fixed-size flowcells, routes the flowcells independently,
and re-assembles out-of-order flowcells back in order before deliv-
ering them to the guest VM. However, Presto uses a non-standard

https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/3143361.3143401

State-unaware
or based on
Local State

Centralized Distributed

Host-based

MPTCP
Ø VM stack not controlled

by the network operator
Ø Increases Incast

At each network hop
(Requires complete network replacement)

Hedera,	B4,	SWAN,	
FastPass
Ø Slow	to	react

Flare, LocalFlow, DRILL
Ø Better performance than

ECMP
Ø Far from optimal load

balancing due to lack of
downstream congestion
information

Based on
Global State

CONGA
Ø Near-optimal

performance
Ø Limited to 2-tier

topologies
Ø Propagation of global

state does not scale to
large multi-tier networks

Based on
Summarized State

HULA
Ø Near-optimal performance
Ø Works in any topology
Ø Scalable to large multi-tier

topologies by virtue of
state summarization

At Network Edge in Server/Hypervisor
(Works with existing network switches)

State-unaware State-aware

Presto
Ø Uses Multiple

Spanning Trees, not a
standard configuration
in Datacenter networks

Ø Poor performance with
asymmetry

Ø Requires offline weight
configuration to handle
asymmetry

CLOVE
Ø Uses Standard ECMP

in the network switches
Ø Implemented entirely

in software in
Hypervisor vSwitch

Ø Simply manipulates
header fields to
influence path taken

Ø Reacts quickly to
congestion and
topology changes in a
distributed manner

At Network Edge
in Top of Rack Switch

LetFlow
Ø Simple flowlet-

switching with each
flowlet hashed
independently to a
next-hop

Ø Unaware of
congestion state of
paths

State-unaware

Figure 1: Landscape of Network Load Balancing Algorithms

Multiple Spanning Trees-based approach to routing traffic in the net-
work fabric, and requires centralized computation of path weights to
accommodate asymmetric network topologies. Such a centralized
computation does not react fast enough to a dynamically varying
topology. Section 8 describes in more detail important drawbacks of
prior work on network load balancing. It is challenging to optimally
route flowlets on arbitrary network topologies while continuously
adapting to (i) rapidly varying congestion state and (ii) changes in
the topology due to link failures and/or background traffic.

Clove. We present Clove, an adaptive and scalable hypervisor-based
load-balancing solution implemented entirely in the virtual switches
of hypervisors. Clove uses standard ECMP in the physical network,
and can be deployed in any environment regardless of the guest VM
TCP/IP stack and the underlying physical infrastructure and network
topology.

Clove is based on the key observation that since ECMP relies
on static hashing, the virtual switch at the source hypervisor can
change the packet header to influence the path that each packet takes
in the ECMP-based physical network. Clove then attempts to pick
paths that avoid congestion. Specifically, it relies on three important
components:

(1) Indirect Source Routing. Clove uses the virtual switch in the
hypervisor to control packet routing. We assume at first that the
datacenter is based on a network overlay [14] (e.g., STT, VxLAN,
NV-GRE, GENEVE), and later discuss non-overlay environments.
In such an ECMP-based overlay network, the source hypervisor
does not know in advance how a new packet header will impact the
ECMP routing decided by the existing network switches. However,
by sending probes with varying source ports in the probe encapsula-
tion headers, the source hypervisor can discover a subset of source
ports that lead to distinct paths. Then, for each outgoing packet,
the hypervisor can modify the encapsulation header by setting the
appropriate source port, and thereby effectively influence the path
taken by the packet.

(2) Flowlet Switching. The second component of Clove is its in-
troduction of software-based flowlet-switching [21]. Since Clove

needs to be able to load-balance ongoing flows while avoiding out-
of-order packets, it divides these flows into flowlets, i.e., tiny groups
of packets in a flow separated by a sufficient idle gap. It can then
independently pick a new path for each new flowlet.

(3) Congestion-aware load-balancing. The last component of Clove
is an algorithm that reacts to both short-term congestion, e.g., result-
ing from poor load-balancing, and long-term network asymmetry,
e.g., resulting from failures or from asymmetrical workloads, by
increasing the probability of picking uncongested paths for new
flowlets. Clove schedules new flowlets on different paths by rotat-
ing through source ports in a weighted round-robin fashion, while
continuously adjusting path weights in response to congestion.

In order to study the incremental gain from tracking conges-
tion accurately, we evaluate three algorithms in increasing order
of congestion-awareness of the algorithm.

First, we introduce Edge-Flowlet, a simple routing scheme
that only uses the first two components, without any congestion-
avoidance component: the source virtual switch simply picks a new
source port for each flowlet in a random manner, unaware of network
path state. Interestingly, we show that it still manages to indirectly
take congestion into account and outperform ECMP, mainly be-
cause congestion tends to delay ACK clocking and increase the
inter-packet gap, thus leading to the creation of new flowlets that get
routed on different paths.

We then present two variants of Clove that differ in how they
learn about the real-time state of the network. The first variant,
denoted Clove-ECN, learns about the path congestion states using
Explicit Congestion Notification (ECN), and forwards new flowlets
on uncongested paths. The second variant, called Clove-INT, learns
about the exact path utilization using In-band Network Telemetry
(INT), a technology likely to be supported by datacenter network
switches in the near future, and proactively routes new flowlets on
the least utilized path.

Experiments. We have implemented Clove in the Open vSwitch
(OVS) datapath of Linux hypervisors in a VMware NSX network
virtualization deployment. We test Clove on a two-tier leaf-spine
testbed with multiple paths in presence and absence of topology

2

asymmetry caused by link failures. When compared with schemes
like ECMP and Presto [16] that work with existing network hard-
ware, Clove obtains 1.5x to 7x smaller flow completion times at
70% network load, mainly because these schemes do not take con-
gestion and asymmetry into account. An interesting result from our
testbed evaluation is that Edge-Flowlet alone helps achieve 4.2x
better performance than ECMP at 80% load.

In order to compare our schemes with more complex hardware-
based alternatives such as CONGA that we could not deploy since it
requires custom ASIC fabric, we also run packet-level simulations
in NS2. We show that our edge-based schemes help improve upon
ECMP in terms of average and 99th-percentile flow completion
time, and that their performance gains get increasingly close to those
of hardware-based CONGA. Specifically, (i) Edge-Flowlet already
captures some 40% of the performance gained by CONGA over
ECMP; (ii) Clove-ECN captures 80%; and (iii) Clove-INT comes
95% close to CONGA’s performance. Overall, we illustrate that
there are a set of edge-based load-balancing schemes that can be
built in the end-host hypervisor, and attain strong load-balancing
performance without the limitations of existing schemes.

This paper makes the following novel contributions:

• We present a spectrum of variations of a novel network load
balancing algorithm, Clove, that works with off-the-shelf net-
work switches, requires no changes to tenant VM network
stack, and handles topology asymmetry.

• We present the design and implementation of Clove in Open
Virtual Switch, and provide an in-depth discussion of its im-
plementation challenges.

• We evaluate our Clove implementation against other load bal-
ancing schemes in a testbed with a 2-tier leaf-spine topology
and 32 servers imitating client-server RPC workloads. We
show that Clove outperforms all comparable alternatives by
1.5x-7x in terms of average flow completion time (FCT) at
high load.

• Finally, using packet-level simulations, we show that our
hypervisor-based load-balancing schemes capture most of the
improvements provided by the best hardware-based schemes,
while being immediately deployable and not requiring com-
plete network replacement.

2 HYPERVISOR-BASED LOAD BALANCING
Network load balancing is difficult in datacenters when there is an
asymmetry between the network topology and the traffic travers-
ing the network. In some cases, this is due to topologies (like
BCube [15]) that are asymmetric by design. In most cases, data-
centers deploying symmetric topologies like Clos and Fat-tree show
asymmetry due to frequent link failures [25, 34] that can reduce de-
livered traffic by up to 40% [13] or due to heterogeneous switching
equipment (e.g., switch ports from different vendors with different
link speeds) that occur in large deployments. The resultant asym-
metry makes it difficult to load balance packets because optimal
scheduling of datacenter flows requires real-time information about
changes in traffic demands and shifts in path congestion.

2.1 Design Goals
An ideal hypervisor-based load balancing solution should satisfy the
following goals to achieve optimal performance, yet be simple to
deploy.
Path discovery and indirect source routing: The source virtual
switch can indirectly influence the routes taken by the packets when
the network switches are based on a standard ECMP. To do so, for
each destination, it should first identify a set of 5-tuple header values
that the network switches will map to distinct (ideally disjoint) paths
using ECMP, and later should appropriately set these 5-tuple values
for each packet. The mapping has to be discovered in any network
topology, with no knowledge of the ECMP hashing functions used
by the network switches. This mapping also has to be kept up-to-date
and updated after any network topology changes.
Granularity of routing decisions: In order to achieve optimal load
balancing, routing decisions have to be imposed at the level of fine-
grained flow chunks, without causing out-of-order delivery at the
receiving VM.
Network state awareness: The source hypervisor should monitor
the state of the identified paths (e.g., utilization or congestion) at
round-trip timescales using standard switch features, and then make
routing decisions based on a state that is as real-time as possible.
Minimal packet processing overhead: Dataplane operations of
keeping network state information up-to-date, identifying flow seg-
ments that may be independently routed, making state-aware rout-
ing decisions, and manipulating packet header fields appropriately,
should all be achieved with minimal packet processing overhead.

2.2 Opportunities
The confluence of a number of recent trends in datacenter network-
ing makes it feasible to implement network load balancing entirely
at the network edge without requiring any changes to guest VMs or
network switches, yet achieve good load balancing performance.
Adoption of network overlays: Network overlays have been re-
cently widely adopted in multi-tenant datacenter networks to enable
provisioning of per-tenant virtual topologies on top of a shared phys-
ical network topology, and achieve isolation between these virtual
topologies. In overlay networks, the source virtual switch appends to
each packet an encapsulation header, which contains a new 5-tuple.
This "outer" 5-tuple is used by ECMP-based switches to route the
packet in the physical network. Since the source port in the encapsu-
lation header is essentially arbitrary and the destination port is fixed
as well, by selecting specific source ports, the virtual switch gains
the ability to influence the path of the packet.
Real-time network monitoring: An ideal load balancer needs a
way to monitor network state such as link utilization and adapt
to it at round-trip timescales. The emergence of In-band Network
Telemetry (INT) [24] provides the virtual switch with an additional
set of previously-unavailable telemetry features that can be used to
efficiently load-balance from the edge. INT is being increasingly
adopted by the industry [7, 30] to get better visibility into the net-
work state. There have also been multiple IETF standards [9, 10]
put forward by various industry participants recognizing the need
for supporting telemetry standards across multiple vendors.
Stateful packet processing in the virtual switch: An algorithm

3

that routes flowlets dynamically based on network state at the begin-
ning of a flowlet needs to keep state so that all packets of the flowlet
are routed on to the same path. Recent advances in performance
optimization of the Open Vswitch make it possible to do stateful
packet processing at line rate.

3 CLOVE DESIGN
In this section, we describe the design of Clove, the first virtual-
ized, congestion-aware dataplane load-balancer for datacenters that
achieves the above design goals.

3.1 Path Discovery using Traceroute
In overlay networks, the source hypervisor encapsulates packets
received from a VM using an overlay encapsulation header. Our goal
is to use standard off-the-shelf ECMP-based network switches and
influence the packet paths by manipulating the 5-tuple fields in the
encapsulation header, since ECMP pre-dominantly determines the
path by computing a hash on these fields.

We implement a traceroute mechanism in the source hypervisor,
so as to discover, for each destination, a set of encapsulation-header
transport protocol source ports that map to distinct network paths.
Specifically, for each destination, the source hypervisor sends pe-
riodic probes with a randomized encapsulation-header transport
protocol source port, so that the probes travel on different paths
using ECMP. The rest of the 5-tuple is typically fixed: the source
and destination IP addresses are those of the source and destination
hypervisors, the transport protocol and its destination port number
are typically dictated by the encapsulation protocol in use (depend-
ing on the overlay protocol). Each path discovery probe consists
of multiple packets with the same transport protocol source port
but with the TTL incremented. This gives the list of IP addresses
of switch interfaces along that path. The result of the probing is a
per-destination set of encapsulation-header transport-protocol source
ports that map to distinct paths to the destination. As an optimization,
paths may be discovered only to the subset of hypervisors that have
active traffic being forwarded to them from the source hypervisor.
The path discovery mechanism can work with any topologies with
ECMP-based layer-3 routing.

Once we have mapped all these random source ports to specific
paths, we want Clove to select a set of k source ports leading to
k distinct (ideally disjoint) paths. To pick these k paths, we use a
heuristic whereby we greedily add the path that shares the least
number of links with paths already picked.

Probes are sent periodically to adapt to the changes and failures in
the network topology. Probing is done on the order of hundreds of
milliseconds to limit the network bandwidth used by probe traffic.
Probes to different destination hypervisors may be staggered over
this interval. As a topology change causes the number of ECMP-
nexthops for a destination to change at a switch hop, the same static
hash function at this hop will now map source ports differently. Thus,
any change in the network topology that affects even a single path to
a particular destination requires the entire mapping of source ports
to the destination to be rediscovered. As an optimization, network
state (path utilization, congestion state, etc.) learned for a path may

be maintained through such a transition, with only the source port
mapping to the path changing through the transition.

Note that the concept of tracing the route of a particular application
by sending probes with specific transport-protocol header fields is
well understood, e.g., in the Paris traceroute [4]. However, this has
not been used before in the context of discovering distinct equal-cost
paths and load-balancing network traffic over these paths.

3.2 Routing Flowlets
In order to evenly distribute flows over the mapped network paths at
a finer granularity, Clove divides each flow into flowlets. Flowlets
are bursts of packets in a flow that are separated by a sufficient idle
gap so that when they are routed on distinct paths, the probability
that they are received out of order at the receiver is very low. Flowlet
splitting is a well-known idea that has often been implemented in
physical switches (e.g., in FLARE [21] and in Cisco’s ACI fabric [8]),
but to the best of our knowledge not in virtual switches. Flowlet
time-gap, the inter-packet time gap between subsequent packets of a
flow that triggers the creation of a new flowlet [21], is an important
parameter. Based on previous work [2, 20], we recommend that the
flowlet gap be between 1×–2× the network round trip-time (RTT),
for effective performance. We propose three schemes with varying
path selection techniques for distributing flowlets from the network
edge in increasing order of sophistication and performance gain.
Edge-Flowlet: We first consider a very simple routing scheme
wherein the source virtual switch simply picks a new source port
for each flowlet in a random manner, unaware of network path con-
gestion. We refer to this simple scheme as Edge-Flowlet. Note that
in a flow, the inter-packet gap that triggers a new flowlet can be
due to two main reasons. First, the application may simply not have
something to send. Second, and more importantly, the packets of
the previous flowlet may have adopted a congested path, and as a
result the TCP ACKs take time to come back and no new packets
are sent for a while. In such a case, the new flowlet is in fact a sign
of congestion. Thus, even though the source virtual switch is not
learning about network state, it is indirectly re-routing flows experi-
encing congestion. Besides, breaking up large elephant flows into
flowlets also helps break persistent conflicts between elephant flows
sharing a common bottleneck link. For all these reasons, the Edge-
Flowlet algorithm is expected to perform better than flow-based load
balancing using ECMP.

Clove-ECN: Next, we consider learning about congestion along
network paths using Explicit Congestion Notification (ECN), which
has been a standard feature in network switches for many years.
ECN was primarily designed to indicate congestion to the source
transport stack, and have it throttle back in the event of congestion. A
source indicates that it is ECN capable by setting the ECN-Capable-
Transport (ECT) bit in the IP header. ECN-enabled network switches
set Congestion-Experienced (CE) bits in the IP header when a packet
experiences an egress queue length greater than a configured thresh-
old. The receiving transport stack relays ECN back to the source
transport stack, which in turn throttles back in response, until the
congestion on the switch port clears.

Figure 2 illustrates how Clove-ECN, implemented in the hypervi-
sor virtual switch, exploits the ECN capability in network switches

4

CONFIDENTIAL 11

Dst SPort Wt

H2 50001 0.25

H2 50002 0.25

H2 50003 0.25

H2 50004 0.25

Flowlet ID SPort

45 50001

234 50002

505 50003

818 50004

4. Return
packet carries

ECN for
forward path

Flowlet table

Path weight table

2. Switches
mark ECN on
data packets

Data

vSwitch vSwitchHypervisor	H1 Hypervisor	H2

1. Src vSwitch
detects and

forwards flowlets 3. Dst vSwitch
reflects ECN
back to Src

vSwitch5. Src vSwitch
adjusts path

weights

Dst SPort Wt

H2 50001 0.1

H2 50002 0.3

H2 50003 0.3

H2 50004 0.3

Flowlet ID SPort

45 50001

234 50002

505 50003

818 50004

Flowlet table

Path	weight	table

Dst SPort Wt

H2 50001 0.1

H2 50002 0.3

H2 50003 0.3

H2 50004 0.3

Figure 2: Clove-ECN congestion-aware routing.

to learn about congestion on specific paths, and route flowlets along
alternate uncongested paths to the destination. It consists of two
distinct mechanisms: (a) detecting congestion along a given path,
and (b) reacting to congestion on this path by favoring other paths
for future new flowlets.
Detecting Congestion: The source virtual switch sets ECT bits in the
encapsulation IP header. The receiving hypervisor intercepts ECN
information and relays it back to the sending hypervisor, indicating
the source port mapped to the network path that experienced con-
gestion. Reserved bits in the encapsulation header of reverse traffic
(towards the source) are used to encode the source-port value that
experienced congestion in the forward direction. For instance, in the
Stateless Transport Tunneling (STT) protocol, the Context field in
the STT header may be used for this purpose.
Reacting to Congestion: Clove-ECN uses weighted round robin
(WRR) to load balance flowlets on paths. The weights associated
with the distinct paths are continuously adapted based on the con-
gestion feedback obtained from ECN messages. Every time ECN is
seen on a certain path, the weight of that path is reduced by some
predefined proportion, e.g., by a third. The weight remainder is then
spread equally across all the other uncongested paths. Once the
weights are readjusted, the WRR simply rotates through the ports
(for each new flowlet) according to the new set of weights. As long
as there is at least one uncongested path to the destination, the source
virtual switch masks the ECN marking from the sending VM. Only
when all network paths to a destination are sensed to be congested,
it relays ECN to the sending VM, triggering it to throttle back.

As an optimization, instead of relaying the ECN information on
every packet back to the sender, the receiver could relay ECN only
once every few RTTs for any given path. The effect of this is that
there will be fewer ECNs being relayed and some may be missed
entirely. However, this leads to a more calibrated response to the
ECN bits (as opposed to an unnecessarily aggressive manipulation

of path weights), and also amortizes the cost (number of software
cycles spent) for processing each packet in the dataplane.

Clove-ECN uses two important parameters:
ECN threshold: This is the threshold in terms of queue length on a
switch-port beyond which switches start marking the packets with
ECN. Similarly to the recommendations by DCTCP [3], we use a
threshold of 20 MTU-sized packets so that the load balancer keeps
the queues low, and at the same time allows room for TSO-based
bursts at high bandwidth.

ECN relay frequency: This is the frequency at which the receiver in
a flow relays congestion marking to the associated sender in that
flow. The receiver should send feedback more frequently than the
frequency at which load balancing decisions are being made, as
recommended in TexCP [20]. We use half the RTT as the ECN relay
frequency in our design.

Clove-INT: Finally, we consider a variation of Clove based on
proactively monitoring the exact utilization of each path, and routing
flowlets along the least-utilized path. We want to prevent congestion
from occurring along any path, instead of reacting after congestion
has occurred on specific paths.

In-band Network Telemetry (INT) [24], a technology likely to be
available in datacenter network switches in the near future, enables
network endpoints to embed instructions in packets, requesting every
network hop to insert network state in packets as they traverse the
network, potentially at line-rate. As the packets arrive at the destina-
tion endpoint, the endpoint has access to the state at each link along
the hop that is as close to real-time as possible.

In Clove-INT, the source virtual switch requests each network
element to insert egress link utilization in packet headers. When
the packet is received at the destination hypervisor, it relays back
the maximum link utilization along the path to the source virtual

5

Figure 3: Encapsulation with STT headers

switch together with the encapsulation header source port in the
packet. As in Clove-ECN, it uses reserved bits in the overlay encap-
sulation header, the difference being that in this case, real-time path
utilization is relayed back instead of binary congestion state. The
source virtual switch proactively routes new flowlets on the least
utilized path. Note that while this requires a new capability at each
switch and hence a physical network upgrade, this approach can be
used when INT becomes a standard feature in datacenter network
switches. Load balancing decisions are still made in software in the
hypervisor virtual switch. This is in contrast to algorithms such as
CONGA, which implement the proprietary state propagation and
load balancing algorithms at each hop, thus requiring all switches to
have the same proprietary implementation from the same vendor.

4 IMPLEMENTATION
We have implemented Edge-Flowlet and Clove-ECN in the Open
vSwitch (OVS, version 2.4.0.0) kernel datapath. The first component
for Clove consists of a user-space traceroute daemon that periodically
sends probes (with rotating source ports) to various destination
hypervisors. The daemon collects the path traces and distills a set of
disjoint paths and the corresponding source ports to be used for data
traffic.

Indirect source routing using STT encapsulation. As indicated
earlier, Clove exploits tunnel encapsulation, typically used in net-
work virtualization, to isolate Clove’s mechanisms from affecting
the actual tenant traffic. Open vSwitch supports the Stateless Trans-
port Tunneling (STT) protocol (see Figure 3), which we use for
encapsulating the tenant VM traffic before sending it onto the phys-
ical underlay. Currently, the STT protocol encapsulates each TCP
segment (with a maximum size of 64KB) received from a VM with
an outer TCP header whose TCP source port is set to the hash of
the inner TCP packet header fields (apart from other fields that are
fixed for each source-destination hypervisor pair). Instead, the Clove
implementation in the OVS kernel datapath picks one of the encap-
sulation TCP source ports that were previously identified by the
traceroute daemon in a congestion-aware manner, as described in
Section 3. Subsequently, this segment is sent to the NIC for segmen-
tation offload, breaking the segment into MTU-sized packets before
sending them onto the physical network.

Communicating Clove metadata amongst hypervisors. When a
packet is marked with the ECN bit by switches in the network and
reaches the destination, the receiver has to relay this information back
to the sender. However, we cannot rely on the receiver VM TCP stack
to do this, since our objective is to keep the VM stack unmodified
and hence unaware of any ECN marking in the underlay. Instead,

the receiver hypervisor intercepts the ECN state and feeds it back to
the sender using some reserved bits in the STT header of the return
packets, as previously shown in Figure 2. A hypervisor encodes the
ECN information in bits borrowed from the STT context (shown in
Figure 3) — the encapsulation header source port it received and the
ecnSet bit indicating whether or not the received packet experienced
congestion. Note that this information cannot be relayed back to the
sender using the typical ECN echo mechanism, because the receiver
cannot use the sender’s source port to be its outer destination port
(which is set to fixed STT port). Hence, Clove uses a separate header
space (the STT context bits) to encode this information.

Stateful packet processing. An important aspect of implementing
Clove is that of maintaining network state in the hypervisor based
on Clove’s metadata about congestion on various paths. In a multi-
core multi-threaded environment (for processing multiple packets
in parallel), this has to be done using efficient locking mechanisms
such as Read-Copy-Update (RCU) [26] locks to minimize blocking
of threads when updating state—a mechanism already used for
updating per-connection state in the Open vSwitch today. We use
RCU hash lists supported by the kernel libraries to maintain state for
(i) detecting flowlets and (ii) storing per-path congestion state. The
lookups and updates to these data structures happen in the datapath
while maintaining the line rate throughput of at least 40Gbps per
hypervisor.

Scalability: Clove is highly scalable due to its distributed nature:

(a) State space: Each hypervisor keeps state for k network paths to
N destinations. The amount of state is not a concern for software im-
plementations in x86 CPUs even in the largest datacenter networks,
with k typically between 4 and 256 and N in the order of thousands.
In addition, the number of flowlet entries is in the order of the num-
ber of destination hypervisors that the source is actively talking to at
any point, i.e., typically in the order of at most a thousand entries.

(b) Probe overhead: Clove sends periodic probes that map source
ports to network paths in order to detect an (infrequent) change in
network topology. Today, a virtual switch in an overlay network typ-
ically generates Bi-directional Forwarding Detection (BFD) probes
to all overlay destinations, at the timescale of a few hundred ms,
with negligible overhead. Therefore, if Clove probes are sent every
few seconds, the overall load should be similar. The probe frequency
only determines the reaction time to a change in network topology,
which is an infrequent occurrence.

Tuning algorithm parameters: An effective deployment of Clove
needs proper tuning of several key parameters that influence its per-
formance as discussed in the previous section.
(i) Low flowlet time-gap increases packet reordering at the receiver
and large flowlet time-gap leads to coarse-grained flowlets, increas-
ing the possibility of congestion.
(ii) At low ECN-relay frequency, Clove makes suboptimal choices
based on stale ECN information, while if it is too high, it would
incur high overhead for processing ECN information in the software
datapath.
(iii) In our experience, Clove is robust to small shifts in the flowlet
time-gap and the ECN relay frequency (both within a couple of
RTTs), but is more sensitive to the ECN threshold.
(iv) We noticed that if the ECN threshold is a few segments above

6

the threshold of the 20 packet limit, Clove reacts very slowly to
elephant flow collisions. However, if we set the threshold lower, then
Clove would over-react to the typically bursty traffic sent by the TCP
segmentation offload.

5 TESTBED EVALUATION
In this subsection, we illustrate the effectiveness of the Clove load-
balancer by testing our implementation of Clove in OVS against the
following schemes.
ECMP: Each packet’s outer TCP source port is determined by tak-
ing a hash of the inner packet’s TCP 5-tuple (src IP, dest IP, src port,
dest port, protocol).
Edge-flowlet: This method also uses hash-based TCP source ports
on the outer packet header, except that the hash changes for each
new flowlet. This involves taking a hash of the 6-tuple that includes
the flow’s 5-tuple plus the flowlet ID (which is incremented every
time a new flowlet is detected at a switch).
MPTCP: In order to compare MPTCP and Clove, we deployed
MPTCP v0.89 on Linux kernel 3.18. We disabled the mptcp_-
checksum option since we noticed significant drop in the throughput
in our experiments, and set the sub-flow count to 4 which gave us the
best results in terms of network path utilization and application per-
formance. Additionally, we enabled Large Receive Offload (LRO)
for improving throughput and latency. The MPTCP implementation
was occasionally unstable, and incurred high CPU utilization even
when running as few as 4 iPerf sessions in parallel between two
end-points.
Presto: We implemented Presto [16] in OVS with modifications
that adapt Presto to Layer-3 ECMP routing in today’s data centers.
Unlike the implementation described in the paper, we do not use a
centralized controller for configuring multiple spanning trees and
shadow-MAC-based forwarding in the dataplane. Instead, we rotate
through a pre-calculated set of encapsulation header source ports
for flowcells (TSO segments) to route them on distinct network
paths in a round-robin manner. We implemented flowcell reassembly
logic similar to the one discussed in the paper. To assist with the
reordering of flowcells at the receiver side, we encode the flow ID
(hash of the 5-tuple) and a monotonically increasing flowcell ID
in the encapsulation header. At the receiver end, the reassembly
algorithm merges out-of-order flowcells in order before they are
pushed to the guest VM. We use an empirical static timeout to send
buffered segments to the guest VM, and set a limit on the number
of flowcells that are buffered in order to recover from packet loss.
Note that while this modified version makes certain packet-format
changes to adapt to ECMP-based routing, it faithfully reproduces
the core elements of Presto. For an asymmetric topology, the Presto
paper does not delve into concrete details of how path weights are
updated at network RTT timescales using a centralized controller
based detection and spanning-trees re-configurations. Hence, we use
(ideal) statically configured path weights that reflect the topology in
our implementation of Presto to give it the benefit of doubt.

We answer the following questions with evaluation in a real testbed
environment, using a realistic workload: (i) How does Clove perform
in symmetric topologies compared to other schemes? (ii) How effec-
tive is Clove when link failures lead to asymmetry in the network
topology? (iii) How does Clove perform under incast?

Topology: Our testbed consists of a 2-tier Clos topology as shown in
Figure 4a, with two spines (S1 and S2) connecting two leaf switches
(L1 and L2). Each leaf switch is connected to either spine by two
40G links. This gives a total of 160G for the bisection bandwidth.
Routing is set up such that all traffic received by a spine switch on
the first link from one of the leaf switches is forwarded on the first
link towards the other leaf switch; same is the case for all traffic
received on the second link from a leaf switch. Thus, there are a total
of four disjoint paths that a packet could take to travel from one leaf
to another. Each leaf is connected to 16 servers with 10G links. This
makes sure that the network is not oversubscribed and the 16 servers
on one leaf can together saturate the 160G bandwidth. In order to
simulate asymmetry in the baseline symmetric topology, we disable
one of the 40G links connecting the spine S2 with the leaf switch
L2.

Empirical workload: We use a realistic workload to generate traffic
for our experiments. Specifically, we rely on a web search work-
load [3] that is obtained from production datacenters of Microsoft.
The workload is long tailed, and most of its flows are small. The
small fraction of large flows contribute to a substantial portion of
the traffic. We simulate a simple client-server communication model
where each client chooses a server at random and initiates persis-
tent TCP connections to the server. Of the 32 machines connected
to the testbed, 16 act as clients and the rest as servers. The client
sends a flow with size drawn from the empirical CDF of the web
search workload. The inter-arrival rate of the flows on a connection
is taken from an exponential distribution whose mean is tuned by
the desired load on the network. We run the workload for a total
of 50K jobs per client connection. Similarly to previous work [2],
we look at the average Flow Completion Time (FCT) as the overall
performance metric so that all flows including the majority of small
flows are given equal consideration. We run each experiment with
three random seeds and report the average of the three runs.

5.1 Baseline symmetric Topology
First, we compare the various load balancing schemes on the baseline
symmetric topology. Figure 4b shows the average completion time
for all flows as we vary the load on the network. Clove performs
better than ECMP or Edge-Flowlet at higher loads but is neck-to-
neck with MPTCP and Presto. At lower loads, the performance of
all load balancing schemes is nearly the same because when there
is enough bandwidth available in the network, there is a greater
tolerance for congestion-oblivious path forwarding. However, as
the network load becomes higher, the flows have to be carefully
assigned to paths such that collisions do not occur. Given that the
flow characteristics change frequently, at high network load, the
load balancing scheme has to adapt quickly to the change in link
utilizations throughout the network.

ECMP performs the worst because it does congestion-oblivious
load-balancing at a very coarse granularity. Edge-Flowlet per-
forms slightly better because it still does congestion-oblivious load-
balancing, but at the granularity of flowlets. Two effects improve
its performance. First, it is less bursty on each path. More signifi-
cantly, upon congestion, there are fewer ACKs, and therefore more
chances of forming a new flowlet, and therefore it is still indirectly

7

L1 L2

S1 S2

16
servers
per leaf

40Gbps

10Gbps

Link
Failure

(a) Topology used in evaluation

 0

 5

 10

 15

 20

 25

 30

 20 30 40 50 60 70 80 90 100

A
vg

. J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP

Edge-Flowlet

Clove-ECN

MPTCP

PRESTO

(b) Symmetric topology - avg. FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP

Edge-Flowlet

Clove-ECN

MPTCP

PRESTO

(c) Asymmetric topology - avg. FCT

Figure 4: Average FCT for the web-search workload on a network testbed. Network load is measured with respect to the full bisection
bandwidth of 160 Gbps.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP

PRESTO

Edge-Flowlet

MPTCP

Clove-ECN

(a) Avg. FCTs for <100 KB flows

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

ECMP

PRESTO

Edge-Flowlet

MPTCP

Clove-ECN

(b) Avg. FCTs for >10 MB flows

 0

 20

 40

 60

 80

 100

 120

 140

 20 30 40 50 60 70 80

99
th

 p
er

ce
nt

ile
 F

C
T

 (
se

co
nd

s)

Network Load (%)

ECMP

PRESTO

Edge-Flowlet

MPTCP

Clove-ECN

(c) 99th percentile FCTs

Figure 5: FCT breakdown of small and large jobs for the web-search workload on a network testbed.

congestion-aware. Clove does better than both because of its fine-
grained congestion-aware load-balancing. For the web-search work-
load, Clove achieves 2.5x lower FCT (i.e., better performance) com-
pared to ECMP and 1.8x lower FCT compared to Edge-Flowlet at
80% network load. Amongst all the load balancing schemes com-
pared with here, MPTCP performs the best because of its usage of
multiple subflows that help redistribute flow bytes on to subflows
mapped to uncongested paths. This advantage of 1.2X over Clove at
80% load comes at the expense of deployment troubles with MPTCP.
Presto does nearly the same as Clove-ECN owing to its round-robin
flowcell spraying.

5.2 Asymmetric topology
In order to simulate a network failure that creates topological asym-
metry, we brought down the 40G link between the spine switch S2
and switch L2. Subsequently, the effective bandwidth of the network
drops by 25% for traffic between clients and servers. This requires
the various load balancing schemes to carefully balance paths at even
lower network loads compared to the baseline topology scenario. In
particular, any given load balancer has to ensure that the bottleneck
link connecting S2 to L2 is not overwhelmed with a disproportionate
amount of traffic.

ECMP and Presto. Figure 4c shows how various schemes per-
form with the web search workload as the network load is varied.
Since Presto assumes that the controller infers asymmetry and feeds
that information to the hypervisors, we gave Presto a head start
by specifying the correct path weights (0.33, 0.33, 0.17, 0.17) for
the topology in its source dataplane component so that the 64KB
flowcells are distributed on the paths in the appropriate ratio. The

overall FCT for ECMP shoots up steeply above 50% network load.
This is because, as the network load reaches 50%, the bottleneck
link between S2 and L2 gets pressurized by the flows hashed to go
through S2. Since ECMP treats all 4 paths from L1 equally, at high
loads, S2 receives more traffic than it can forward on the reduced
downlink bandwidth to L2. This is why it performs poorly at high
network loads. Presto, owing to load balancing at the granularity
of flowcells (64KB flow segments), suffers less from congestion
and does 1.8X better than ECMP at 70% load. However, it still
lags behind Clove-ECN (by 3.8x at 70% load) despite its ideal path
weights, due to its congestion-unaware flowcell distribution. This
is in line with recent research (e.g., LetFlow [32]) which observes
that statically assigning weights to path distribution is not enough
to handle the mismatch between workload asymmetry and topology
asymmetry.

Edge-Flowlet. The notable result in our experiments is the rela-
tively better performance of Edge-Flowlet over ECMP or Presto.
Edge-Flowlet does congestion-oblivious load balancing but at the
granularity of flowlets. However, we noticed that new flowlets are
created in the workload whenever the corresponding flows travel
on a congested path. As previously mentioned, these new flowlets
are being created due to delayed ACK clocking caused by conges-
tion. Hence, compared to ECMP or Presto, Edge-Flowlet’s random
flowlet routing can inherently adapt to congestion. This is why Edge-
Flowlet performs 4.2X better than ECMP at 80% load. It also does
better than Presto despite the fact that Presto needs complex packet
re-assembly logic while Edge-flowlet does not. In fact, Edge-Flowlet
captures most of the gain of Clove-ECN which is impressive given
the simplicity of its design.

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80

A
vg

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Network Load (%)

Clove-best (1*RTT, 20pkts)

Clove (0.2*RTT, 20pkts)

Clove (5*RTT, 20pkts)

Clove (1*RTT, 40pkts)

Figure 6: Performance of Clove-ECN under different parame-
ter settings, denoted as Clove (flowlet-threshold, ECN-threshold).

Clove-ECN and MPTCP. Clove-ECN does the best of all schemes
because of its fast congestion-aware path selection that avoids pres-
sure on the bottleneck link. This helps Clove-ECN achieve 7.5x bet-
ter performance than ECMP and 2x better FCT than Edge-Flowlet at
80% network load. MPTCP also does nearly as well as Clove-ECN
owing to its use of multiple subflows that can redistribute bytes
from congested subflows to uncongested ones dynamically using the
MPTCP control loop.

FCT Breakdown. Figure 5 shows the breakdown of performance
separately for mice flows (of size less than 100KB) and for large
flows (of size greater than 10MB). The average FCTs for both small
and large flows largely reflect the relative overall FCT performance
for each scheme. The relative performance difference between the
FCTs for small flows is slightly smaller than that for large flows,
because longer flows give more opportunities to react to congestion.
For example, Edge-Flowlet does 3.7X better than ECMP for small
flows but 4.1X better for large flows at 70% load.

99th percentile. Figure 5c shows 99th percentile FCTs under all
the load balancing schemes. Here, interestingly, the relative perfor-
mance story is different from that of the average FCT. MPTCP does
significantly worse compared to Edge-Flowlet or Clove. We believe
this is because when all the subflows of a connection get mapped
to congested paths, then MPTCP suffers very badly compared to
all other schemes except ECMP. While Clove (and Edge-Flowlet,
to some extent) can reroute their flowlets onto uncongested paths,
MPTCP’s subflow mapping is static and hence affects those rare
flows that are stuck with congested paths. Hence Clove does 2.7X
better than MPTCP at 60% load.

Parameter sensitivity. Figure 6 shows how the performance of
Clove-ECN varies with changes to two of its key parameters. For our
experiments, the optimal settings were (i) 1 RTT for the flowlet inter-
packet timegap, and (ii) 20 packets for the switch ECN threshold.
As the figure shows, if the flowlet threshold is too low (0.2×RTT),
then Clove-ECN behaves closer to per-packet load balancing, sees
high packet reordering and hence degrades by 5x. If the threshold is
too high (5×RTT), then Clove-ECN suffers from elephant flowlet
collision. Similarly, when the ECN threshold is too high (40 packets),
Clove-ECN takes much longer to detect congestion and hence sees
performance degradation by 4x at 80% load.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 3 5 7 9 11 13 15

T
ho

ru
gh

pu
t (

G
bp

s)

Request fan-in

Clove-ECN

Edge-Flowlet

MPTCP

Figure 7: Performance of MPTCP, Edge-Flowlet and Clove-
ECN on the incast workload measured in terms of throughput
on the client access link.

5.3 Incast Workload
Workload. We designed a workload scenario that creates typical
partition-aggregate patterns [2, 3] that induce incast on a machine’s
access link to the network. A single client sends out requests to
a number of servers simultaneously, causing the servers to start
sending traffic to the client concurrently. This traffic pattern stresses
the queue on the link connected to the client and may result in
potential packet drops. The client requests a file of 10 MB split
among the n servers, where n is the request fanout. Each of the n
servers sends 107

n bytes to the client at the same time. Once all 10
MB are received by the client, it issues the next request to another
set of n servers chosen uniformly from the 16 servers in the testbed.
We measure the average throughput seen on the client side over the
period of 10K such job requests.

Clove-ECN does better than Edge-Flowlet and MPTCP. The
workload experiment shown in Figure 7 essentially stresses the in-
cast behavior of the TCP transport used by Clove and that of MPTCP.
The figure shows that the performance of MPTCP degrades badly
as the fanout for a job request increases, as confirmed similarly in
CONGA [2]. For example, Clove achieves 1.9x better throughput
than MPTCP for a fanout of 10 and 3.4x better for a fanout size of 16.
This is mostly because MPTCP ramps up the congestion windows
of all the subflows simultaneously in this synchronous workload,
thereby exacerbating the pressure on the access link queues. The
higher the fanout, the more the burstiness of MPTCP flows, which
hurts its performance compared to Clove-ECN (which simply relies
on the unmodified end-host TCP stack).

6 EXTENSIVE SIMULATIONS
In this section, using packet-level simulations in NS2 [18], we study
the effectiveness of various edge-based load balancers.

Algorithms: We compare our three edge-based load-balancing
schemes (Edge-Flowlet, Clove-ECN, and Clove-INT) against the
following two extremes of the spectrum of load-balancing schemes:
ECMP, which uses static hashing and is congestion-oblivious; and
CONGA [2], which modifies switches to collect switch-based mea-
surements and routes flowlets along the least utilized path at each
hop, and therefore is considered the higher end of the spectrum.

Specifically, we compare Clove-ECN with CONGA in our topol-
ogy setting and investigate whether INT can be used to improve
Clove-ECN’s performance so that it will match that of CONGA’s.

9

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

ECMP
Edge-Flowlet
CLOVE-ECN
CLOVE-INT

CONGA

(a) Symmetric topology - avg. FCT

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

ECMP
Edge-Flowlet
CLOVE-ECN
CLOVE-INT

CONGA

(b) Asymmetric topology - avg. FCT

Figure 8: Average FCT for the web-search workload in NS2.
Clove-ECN, which is implementable on existing networks, cap-
tures about 80% of the performance gain between ECMP and
CONGA in both topologies.

Topology and workload We simulate the same testbed topology
used in Section 5. Similar to our methodology in Section 5, in
order to simulate asymmetry in the baseline symmetric topology,
we disable one of the 40G links connecting the spine S2 with the
leaf switch L2. To generate traffic for our experiments, we use the
same realistic web search workload distribution [3] from Section 5
to simulate a simple client-server communication model where each
client chooses a server at random and initiates three persistent TCP
connections to the server. The way the clients select flow size and
inter-arrival rate is also similar. However, we run the experiments
for a job count of 20K only since the simulation of these high
bandwidth topologies at packet level takes significant amount of
compute resources and time. We run each experiment with three
random seeds and then measure the average FCT of the three runs.

6.1 Symmetric Topology
First, we compare the various load-balancing schemes on the base-
line symmetric topology to make sure that Clove-ECN performs at
least as well as ECMP.

Figure 8a shows the average completion time for all flows as the
load on the network increases. At lower loads, the performance of
all the load-balancing schemes is nearly the same, because when
there is enough bandwidth available in the network, there is a greater
tolerance for congestion-oblivious path forwarding. At higher loads,
Clove-ECN performs better than ECMP or Edge-Flowlet, but under-
performs Clove-INT and CONGA. Clove-ECN does better because
of its fine-grained congestion-aware load balancing. Clove-ECN
achieves 1.4x lower FCT (better performance) compared to ECMP

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10

C
D

F
 o

f F
C

T
s

Mice flow completion times (secs)

ECMP
CLOVE-ECN

CONGA

Figure 9: CDF of FCTs at 70% load with asymmetry. Clove-
ECN captures 80% of the performance gain between the 99th
percentiles of ECMP and CONGA.

and 1.2x better compared to Edge-Flowlet at 80% network load.
However, Clove-INT and CONGA do slightly better (by 1.1X) be-
cause they are utilization-aware instead of just being congestion-
aware. Therefore, Clove-ECN, which is implementable on existing
networks, captures 82% of the performance gain between ECMP
and CONGA at 80% load.

6.2 Topology Asymmetry
When a 40G link between the spine switch S2 and switch L2 is
removed, the effective bandwidth of the network drops by 25% for
traffic going across the pods. This means that the load balancing
schemes have to carefully balance paths at even lower network
loads compared to the baseline topology scenario. In particular, ech
load balancing scheme has to make sure that the bottleneck link
connecting S2 to L2 is not overwhelmed with a disproportionate
amount of traffic.

Figure 8b shows how various schemes perform with the web
search workload as the network load is varied. As expected, the
overall FCT for ECMP shoots up pretty quickly after 50% network
load. Once the network load reaches 50%, the bottleneck link gets
pressurized by the flows hashed to go through S2. In fact, had we
used an infinite-time workload, ECMP would not have theoretically
converged. But since we used a finite workload as in [2] to measure
the FCT, we obtain finite delays. Edge-Flowlet does slightly better
than ECMP as expected, yet still performs relatively poorly (unlike
observed in [32] for instance).

Clove-ECN does better than ECMP and Edge-Flowlet because of
its fast congestion-aware path selection, which decreases pressure
on the bottleneck link once the queues start growing. This helps
Clove-ECN achieve 3x better performance than ECMP and 1.8x
better FCT than Edge-Flowlet at 70% network load. However, it
still has to catch up with Clove-INT and CONGA, which do 1.2X
better than Clove-ECN. The important take-away is that Clove-ECN,
which is implementable on existing networks, captures 80% of the
performance gain between ECMP and CONGA at 70% network
load.

99th Percentile. Figure 9 illustrates similar results by plotting the
CDFs for the flow completion times of mice flows for the asymmetric
topology at 70% load. The 99th percentile FCT for Clove-ECN
captures 80% of the performance gain between the 99th percentiles
of ECMP and CONGA.

10

Congestion-aware vs. utilization-aware. The main difference be-
tween the performance of Clove-ECN and CONGA comes from the
fact that while CONGA is network utilization-aware, Clove-ECN
is only congestion-aware. In other words, Clove-ECN will deflect
flowlets from a path only when its queues start growing beyond the
ECN threshold. This means that the flowlets will be sent on paths
which are preferred till they reach 100% utilization and beyond. On
the other hand, CONGA ensures that the utilization on all paths in
the network stays nearly the same. This keeps the queues on the
bottleneck paths near zero at all times unless the traffic load exceeds
the total network capacity. The results also show that if Clove were
to potentially use a feature like INT to learn utilization at the edge,
then Clove-INT captures 95% of CONGA’s performance. Therefore,
empirically, it is clear that it helps to be utilization-aware in order
to make the best load balancing decision, whether it is inside the
network or at the edge. However, by just being congestion-aware
(which is what is possible with existing switches), Clove-ECN still
manages to come very close to the performance of CONGA.

7 DISCUSSION
In this section, we address potential deployment concerns and areas
of future improvement.

Stability: A major concern with adaptive routing schemes is that
of route flapping and instability. A rigorous theoretical study of the
stability of such schemes is desirable but is also hard. However,
recent efforts like CONGA [2] and HULA [23] have demonstrated
that as long as network state is collected at fine-grained timescales,
and processed in the dataplane, the resulting scheme is stable in
practice. Clove similarly collects and acts on network state directly
in the datataplane, and makes routing decisions in the virtual switch
based on state that is as close to real-time as possible. As discussed
towards the end of Section 5.2, we provide guidelines for stable
parameter settings based on empirical evidence during our evaluation.
While we did not notice stability issues during our evaluation, a
rigorous study of the stability characteristics of Clove’s control loop
is part of future work.

Incremental Deployment: Clove is easily deployable in today’s
datacenters because it neither requires new network hardware nor
does it require changes to the applications running on the end host.
Instead, it relies on patching the hypervisor software with the capabil-
ities to do network load balancing. The major advantage with Clove’s
software-based approach is that Clove can be deployed at software
rollout speeds instead of waiting for slower vendor hardware up-
grades. During the incremental deployment, if either the sender or
receiver is not aware of Clove’s metadata in the outer header, the
flow will be treated as a normal TCP flow and will be routed in a
congestion-agnostic manner using the standard TCP stack. In the
presence of only some Clove-enabled hypervisors, Clove should ad-
just to bandwidth asymmetries and improve the overall performance
measure for all the traffic.

Use of path latency: Since ECN can sometimes be erratic, and INT
switches are not shipping yet, another way to infer congestion could
be to measure the latency on each forward path to a destination.
Timestamping at the NIC layer, combined with time synchronization
across hypervisors using a mechanism such as IEEE 1588, would

enable the receiving virtual switch to accurately determine forward
latency and report it back to the sending hypervisor [27].

Non-overlay environments: In non-overlay environments with
TCP applications running on VMs, the virtual switch in the source
hypervisor can implement a hidden overlay by simply replacing
the five-tuple in traffic received from a VM with the five-tuple that
would otherwise be in the overlay header, hiding the real values in
TCP options. The destination virtual switch copies back the original
values into the header, entirely transparent to the TCP application
on the destination VM.

Middleboxes. We assume that the destination of traffic being load-
balanced by Clove is a Clove-capable node. This would be true in
the case of a vast majority of datacenter network deployments with
Clove used for load-balancing of intra-DC east-west traffic flowing
directly between VMs hosted on hypervisors. In scenarios where
the traffic needs to traverse a middlebox (e.g., Packet Inspection
Engine), the middlebox would need to be Clove-capable. Obviously,
with network overlays, the middlebox would be the overlay tunnel
destination and would need to implement Clove in addition to sim-
ply decapsulating the overlay header. In non-overlay environments,
Clove capability would be needed to translate the transport protocol
port numbers back to their original values in the inbound direction,
and re-translate them to Clove-determined values in the outbound
direction towards the ultimate destination VM.

Flowlet optimization: Our implementation of Clove uses a static
value of flowlet time-gap to detect flowlets. Unless this value is set
extremely conservatively, flowlets can still arrive out of order due
to asymmetric congestion on paths, and hinder TCP performance.
The flowlet time-gap may be made adaptive to the variance in RTT
measured between different paths to a destination, further decreasing
the probability of flowlets arriving out of order at the receiver. More-
over, flowlet sequence numbers may be carried in the encapsulation
header, allowing the receiving virtual switch to put flowlets back in
order (similarly to Presto [16]) so that the TCP stack in the VM does
not see any out of order packets.

DCTCP. DCTCP [3] modifies the end-host transport stack to use a
stream of ECN indications to react adequately to path congestion and
thereby reduce the tail flow completion times. DCTCP congestion
control is complementary to Clove load-balancing, and can improve
it in two ways. First, Clove-ECN could use similar techniques to
use a stream of ECN indications to fine tune the load-balancing
weights and obtain even better performance. Second, if end-hosts
are modified to implement DCTCP, datacenter switch buffers can be
made significantly smaller, and therefore flowlet time-gaps can be
reduced. This could potentially improve the performance of Clove,
although the flowlet dynamics would be changed as well. We leave
this to future research.

Is ECN slow and erratic? While Explicit Congestion Notification
(ECN) is an efficient and convenient mechanism for existing network
switches to convey path-level congestion to the sender, it is also seen
as slightly unreliable at times. In particular, there was discussion
in the past [5] about unsuccessful TCP negotiation for ECN, slow
propagation of ECN information to the sender, erroneous marking/-
clearing of ECN, etc. While these issues are a matter of concern, our
experience with Clove’s settings has been very positive with respect

11

to ECN. In Clove, there is no negotiation or echoing of ECN by the
end host TCP stack since the ECN bits are marked by the hypervisor
itself. Since the RTT is very low in datacenter networks compared
to WANs that were studied in the literature, the propagation of con-
gestion information is faster. The Broadcom-based chipsets used in
our evaluation seem to be easy to configure with the desired ECN
threshold and we have not seen incorrect marking/clearing of ECN
bits. There is no strong reason to believe that other switches based
on the Broadcom chipsets will be erroneous to a large extent.

8 RELATED WORK
Centralized Algorithms: Hedera, MicroTE, SWAN, Fastpass [1,
6, 17, 19, 29] are based on a centralized scheduler that maintains
global network state and calculates routes for network flows. Such
algorithms are slow to react for datacenter traffic patterns and come
with a prohibitive cost of querying the scheduler for short-lived
latency-sensitive flows. Flowtune [28] is an additional recent work
that schedules flowlets onto paths from a centralized server. While it
is more scalable, it cannot adapt to failures at dataplane timescales.
Host-based Algorithms: There are many potential congestion con-
trol algorithms, such as DCTCP [3] and MPTCP [33]. Unfortunately,
such algorithms need to modify the end-host transport stack. DCTCP
is further discussed in Section 7. MPTCP [33] distributes each ap-
plication flow over multiple TCP sub-flows with distinct five-tuples
that are routed independently by ECMP, although a subset of sub-
flows may end up being routed on the same path due to ECMP
hash collisions. The multiple subflows cause burstiness and perform
poorly under incast [2]. In addition, it is difficult to deploy MPTCP
in datacenters because it requires change to all the end-hosts, which
are outside the control of the network operator in multitenant envi-
ronments. Finally, the number of subflows in MPTCP is static and
does not vary in accordance with the number of network paths.

In-Network Per-Hop Distributed Algorithms: Based on Local
State (FLARE, LocalFlow, Drill [12, 21, 31]): Each hop routes
flowlets based on local link utilization. Accounting only for local
state, these algorithms perform poorly with asymmetric paths.

Based on Complete Global State (CONGA [2]): Utilization of each
link is propagated throughout the network at round-trip timescales
using proprietary packet formats; each hop chooses the least-utilized
path for each flowlet. All network switches have to be replaced
with those running this proprietary algorithm. Global propagation
of state limits scalability. CONGA is designed specifically for 2-tier
leaf-spine networks.

Based on Summarized Global State (HULA [23]): Using In-band
Network Telemetry (INT), a technology likely to be available in
network switches in the near future, each switch advertises per-
destination best path utilization to neighbors; each switch routes
flowlets on the least utilized path towards the destination. State sum-
marization allows the solution to scale to arbitrarily large topologies,
however, the per-hop nature does require complete network replace-
ment.
Algorithms at the Network Edge: Presto [16] is a load balancing
algorithm implemented entirely at the network edge. The virtual
switch in the source hypervisor forwards fixed-size flow segments
(e.g., 64KB) with independent source and destination shadow MAC

addresses. These flowcells are routed independently in the network
over multiple spanning trees. This does not work with predominantly
deployed Layer-3 based ECMP forwarding in the physical network.
Moreover, Presto performs poorly in asymmetric environments as
it is oblivious of network state. Additionally, [16] does not provide
a detailed analysis of the scheme’s performance in failure cases
when a centralized controller detects and re-configures the spanning
trees. Consequently, it is unclear whether Presto is able to handle
such cases at RTT timescales in order to deal with datacenter traffic
volatility.
Juggler [11] is a mechanism that helps the network stack deal with
packet reordering issues caused by splitting of flows onto multiple
paths. Juggler improves upon Presto by reducing the amount of
per-connection state required for packet assembly and hence comple-
ments Presto. However, it still does not effectively handle topology
asymmetry.
LetFlow [32] is a recent work that independently arrived at the con-
clusion that a simple mechanism that splits flows into flowlets in
the network can effectively adapt to topology asymmetry, compared
to existing schemes. However, while LetFlow relies on new switch
hardware for their implementation, our version of Edge-Flowlet is
implemented entirely in the host hypervisors and hence is readily
deployable. In addition, Clove-ECN and Clove-INT show how to
bridge the gap between schemes like LetFlow/Edge-Flowlet and
hardware-based schemes like CONGA.
Finally, in [22], we previously introduced the idea of hypervisor-
based network load balancing by discovering a mapping of encap-
sulation header fields into distinct network paths, and forwarded
flowlets over these distinct paths in a congestion-aware manner.
However, it fell short of convincing that these ideas are practical and
efficient in practical deployments.

9 CONCLUSION
In this paper, we showed how the end-host hypervisor can provide
a sweet spot for implementing a spectrum of load-balancing al-
gorithms that are fine-grained, congestion-aware, and reactive to
network dynamics at round-trip timescales. In addition, we pre-
sented the Clove algorithm and implemented it in a Open Virtual
Switch, showing how it obtains significant performance gains in a
real network with realistic workloads. Unlike past algorithms, Clove
is essentially ready to be directly implemented in multitenant dat-
acenters without any changes to existing guest VMs or to existing
physical network switches.

Acknowledgments: We thank the reviewers and our shepherd,
Robert Birke, for their valuable feedback. We would also like to
thank Ben Pfaff, Martin Casado, Guido Appenzeller, Jim Stabile,
David Tennenhouse, and Bruce Davie who gave comments on ear-
lier draft versions of this paper. This work was supported in part by
the NSF under the grant CCF-1535948 and the ONR under award
N00014-12-1-0757.

12

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data
Center Networks. NSDI (2010).

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,
Navindra Yadav, George Varghese, and others. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. ACM SIGCOMM (2014).

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). ACM SIGCOMM (2010).

[4] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Fried-
man, Matthieu Latapy, Clémence Magnien, and Renata Teixeira. 2006. Avoiding
Traceroute Anomalies with Paris Traceroute. ACM Internet Measurement Confer-
ence (2006).

[5] Steven Bauer, Robert Beverly, and Arthur Berger. 2011. Measuring the State
of ECN Readiness in Servers, Clients,and Routers. ACM Internet Measurement
Conference (2011).

[6] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine grained traffic engineering for data centers. ACM CoNEXT (2011).

[7] Broadcom. 2017. New Trident 3 switch delivers
smarter programmability. https://www.broadcom.com/blog/
new-trident-3-switch-delivers-smarter-programmability-for-enterp. (2017).

[8] Cisco. 2015. ACI Fabric Fundamentals. http://www.cisco.com/c/en/us/td/docs/
switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_
ACI_Fundamentals_BigBook_chapter_0100.html. (2015).

[9] CISCO. 2017. Requirements for In-situ OAM. https://tools.ietf.org/html/
draft-brockners-inband-oam-requirements-02. (2017).

[10] Facebook. 2017. Data-plane probe for in-band telemetry collection. https://tools.
ietf.org/html/draft-lapukhov-dataplane-probe-00. (2017).

[11] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.
2016. Juggler: a practical reordering resilient network stack for datacenters.
EuroSys (2016).

[12] Soudeh Ghorbani, Brighten Godfrey, Yashar Ganjali, and Amin Firoozshahian.
2015. Micro Load Balancing in Data Centers with DRILL. ACM HotNets (2015).

[13] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications. In
Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11). ACM,
New York, NY, USA, 350–361. DOI:https://doi.org/10.1145/2018436.2018477

[14] Sergey Guenender, Katherine Barabash, Yaniv Ben-Itzhak, Anna Levin, Eran
Raichstein, and Liran Schour. 2015. NoEncap: overlay network virtualization with
no encapsulation overheads. ACM SOSR (2015).

[15] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng
Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: A High
Performance, Server-centric Network Architecture for Modular Data Centers.
In Proceedings of the ACM SIGCOMM 2009 Conference on Data Commu-
nication (SIGCOMM ’09). ACM, New York, NY, USA, 63–74. DOI:https:
//doi.org/10.1145/1592568.1592577

[16] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based load balancing for fast datacenter networks.
ACM SIGCOMM (2015).

[17] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. SIGCOMM CCR 43, 4 (2013), 15–26.

[18] Teerawat Issariyakul and Ekram Hossain. 2010. Introduction to Network Simulator
NS2 (1st ed.). Springer.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, and others.
2013. B4: Experience with a globally-deployed software defined WAN. In ACM
SIGCOMM Computer Communication Review, Vol. 43. ACM, 3–14.

[20] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005. Walking the
Tightrope: Responsive Yet Stable Traffic Engineering. ACM SIGCOMM (2005).

[21] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-
namic load balancing without packet reordering. ACM SIGCOMM Computer
Communication Review 37, 2 (2007), 51–62.

[22] Naga Katta, Mukesh Hira, Aditi Ghag, Isaac Keslassy, Jennifer Rexford, and
Changhoon Kim. 2016. CLOVE: How I learned to stop worrying about the core
and love the edge. ACM HotNets (2016).

[23] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data
Planes. SOSR (2016).

[24] Changhoon Kim, , Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit, and
Lawrence J. Wobker. In-band Network Telemetry via Programmable Dataplanes
(Demo paper at SIGCOMM ’15).

[25] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A Fault-tolerant Engineered Network. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation (nsdi’13).
USENIX Association, Berkeley, CA, USA, 399–412. http://dl.acm.org/citation.
cfm?id=2482626.2482665

[26] Paul E. McKenney and Jonathan Walpole. 2007. What is RCU, Fundamentally?
(17 December 2007). Available: http://lwn.net/Articles/262464/.

[27] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. ACM
SIGCOMM (2015).

[28] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2017. Flowtune: Flowlet
Control for Datacenter Networks. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/
perry

[29] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized zero-queue datacenter network. ACM
SIGCOMM (2014).

[30] SDXCentral. 2017. AT&T Picks Barefoot Networks for Pro-
grammable Switches. https://www.sdxcentral.com/articles/news/
att-picks-barefoot-networks-programmable-switches/2017/04/. (2017).

[31] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J Freedman. 2013.
Scalable, optimal flow routing in datacenters via local link balancing. ACM
CoNEXT (2013).

[32] Erico Vanini, Rong Pan, Mohammad Alizadeh, Tom Edsall, and Parvin Taheri.
2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
Usenix NSDI (2017).

[33] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011.
Design, Implementation and Evaluation of Congestion Control for Multipath TCP.
In NSDI, Vol. 11. 8–8.

[34] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: Weighted Cost Multipathing for Improved
Fairness in Data Centers. In Proceedings of the Ninth European Conference on
Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article 5, 14 pages.
DOI:https://doi.org/10.1145/2592798.2592803

13

https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterp
https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterp
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_Fundamentals_BigBook_chapter_0100.html
https://tools.ietf.org/html/draft-brockners-inband-oam-requirements-02
https://tools.ietf.org/html/draft-brockners-inband-oam-requirements-02
https://tools.ietf.org/html/draft-lapukhov-dataplane-probe-00
https://tools.ietf.org/html/draft-lapukhov-dataplane-probe-00
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1592568.1592577
http://dl.acm.org/citation.cfm?id=2482626.2482665
http://dl.acm.org/citation.cfm?id=2482626.2482665
http://lwn.net/Articles/262464/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://www.sdxcentral.com/articles/news/att-picks-barefoot-networks-programmable-switches/2017/04/
https://doi.org/10.1145/2592798.2592803

	Abstract
	1 Introduction
	2 Hypervisor-based Load Balancing
	2.1 Design Goals
	2.2 Opportunities

	3 Clove Design
	3.1 Path Discovery using Traceroute
	3.2 Routing Flowlets

	4 Implementation
	5 Testbed Evaluation
	5.1 Baseline symmetric Topology
	5.2 Asymmetric topology
	5.3 Incast Workload

	6 Extensive Simulations
	6.1 Symmetric Topology
	6.2 Topology Asymmetry

	7 Discussion
	8 Related Work
	9 Conclusion
	References

