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Maximum Size Matching is Unstable
for Any Packet Switch
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Abstract—Input-queued packet switches use a matching algo-
rithm to configure a nonblocking switch fabric (e.g., a crossbar).
Ideally, the matching algorithm will guarantee 100% throughput
for a broad class of traffic, so long as the switch is not oversub-
scribed. An intuitive choice is the maximum size matching (MSM)
algorithm, which maximizes the instantaneous throughput. It was
shown, by McKeownet al. in 1999, that with MSM the throughput
can be less than 100% when 3, even with benign Bernoulli
i.i.d. arrivals. In this letter, we extend this result to 2, and
hence show it to be true for switches of any size.

Index Terms—Instability, maximum size matching (MSM),
switching algorithms.

I. INTRODUCTION

H IGH-SPEED Internet routers commonly use virtual
output queueing (VOQ), a crossbar switch, and (inter-

nally) fixed-size cells. Time is slotted with one cell transmission
per time-slot. At each time-slot a matching algorithm finds a
match between inputs and outputs ( , since there is
no need for a matching algorithm when ), and cells are
transferred according to this match.

This letter is about switches that are unstable even though
no input or output is over-subscribed. It is known that for a
broad class of traffic, a switch is stable (for ) if the max-
imum weight matching (MWM) algorithm is used [1], [3]. On
the other hand, it is known that with the maximum size matching
(MSM) algorithm, a switch can be unstable for [1] (if ties
are broken randomly).1 This is surprising because MSM max-
imizes the instantaneous throughput by transferring the max-
imum number of cells during each time-slot.

The instability result in [1] is based on a counterexample that
holds for . In this letter we extend the proof to ,
and hence prove that MSM is unstable for any switch. We also
derive the exact throughput formula for the case. Our
results are mainly of theoretical interest (it is unusual to build
2 2 switches); the letter completes existing results, extending
them to switches of any size.
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1We assume here that MSM breaks ties randomly. In [2] it is shown that oth-
erwise, MSM could be stable forN � 2.

II. PROBLEM STATEMENT

We will consider a packet switch with two inputs and two
outputs, i.e., .

Notation: Time-slot represents the interval .
Let denote the VOQ at input destined to output.

contains packets at the end of time-slot, with
for all by convention. packets arrive

at at the beginning of time-slot and packets
depart from it at the end of the time-slot, with ,

. The service indicator is 1 if is
serviced at time, and 0 otherwise. There is a departure
from if it both receives a service and is nonempty. As
a consequence, for , satisfies the following
equation:

(1)

where the notation is equivalent to .
Arrivals: For our counterexample, it is sufficient to assume
that the arriving traffic follows a Bernoulli i.i.d. distribution
with mean rate arriving to . We will consider the
following type of traffic:

(2)

where and are positive constants. It is assumed that no
input or output is oversubscribed, i.e., .
Services:VOQs are serviced according to a MSM algo-
rithm with ties broken randomly.
Stability: A queue is said to beunstableif after a finite
time, its occupancy never returns to zero with probability
one. Note that with Bernoulli traffic, this is implied by the
queue having a positive drift, which happens if the service
rate is less than the incoming traffic rate. A switch is said
to beunstableif any of its queues is unstable.

III. I NSTABILITY OF MSM WHEN

Our approach is to find values ofand such that the service
rate of is less than its arrival rate.

Lemma 1: At the end of a time-slot, at least one of the two
queues and is empty

(3)

Proof: By induction. The case when is clear. As-
sume that this property holds until the end of some time-slot

. Consider the following two cases.
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Case 1) At least one of the two queues is empty after the
arrivals at time-slot . It will still be empty after
departures, hence the property holds for time-slot

.
Case 2) Both queues are occupied after the arrivals in

time-slot . MSM will choose the configuration
with size two that serves and (because
is always empty). By assumption, at least one of
the two queues was empty at the end of time-slot,
therefore this queue will be empty after the service,
and the property holds for .

Let be the service probability of at time-slot , i.e.,
, and the probability that both

and are empty at time-slot, i.e.,
. The following two lemmas provide upper bounds

on and that will be useful for showing the instability
of MSM.

Lemma 2: (Bound on ) For any ,

(4)

Proof: Let , and consider whether is served at
time-slot . There are two cases.

Case 1) With probability ,
. There are three possibilities. If both and

have arrivals, which happens with probability,
will not be served. With probability ,

only one of the two queues has an ar-
rival, then is served with probability 1/2, if it is
nonempty. Finally, with probability , neither
of has an arrival, in which case the prob-
ability that is served cannot exceed 1. Hence, an
upper bound on the probability that receives ser-
vice in this case is:

Case 2) With probability ,
. By Lemma 1 , only one of the two queues

is nonempty. There are two possibilities.
If the empty one has an arrival (which occurs with
probability ), then will not be served. However,
if the empty one does not have an arrival and remains
empty (with probability ), then is served
only if it is nonempty, and then only with probability
1/2. Thus, we get the upper bound of in this
case,

.

Combining the two cases yields
.

Lemma 3: (Bound on ) For any ,

(5)

Proof: Let . We will show that
, by considering two cases.

Case 1) . Consider the following possible
succession of events: (which

Fig. 1. Throughput ofQ given by Theorem 4, by the exact formula in
Theorem 6, and by simulation.

implies ), and . This succes-
sion of events happens with probability ,
and after this succession of events it is clear that

. We did not consider other
possible events, therefore,

.
Case 2) . In this case, will remain

nonempty as long as , which happens
with probability . Therefore,

.

Hence , proving the lemma.
Theorem 4: MSM is unstable for whenever

(6)

Proof: From Lemmas 2 and 3, we get , where

, for all . If we can find a tuple
such that , then would have more

arrivals than services, and MSM would be unstable. Solving
yields (6), which is true over a nonempty set for any

.
For example, when , the switch is unstable for

, i.e., for a load such that .
As we will see shortly, this bound is not tight.

Corollary 5: MSM is unstable for any switch of size .
Proof: The case was proved in [1], and in

Theorem 4.

IV. M AXIMUM THROUGHPUT OF A2 2 MSM SWITCH

Even though the objective of this letter was only to prove that
the 2 2 MSM switch is unstable, it is actually possible to deter-
mine its exact throughput, as shown by the following theorem.
The proof of a slightly more general form of the theorem can be
found in [4].



498 IEEE COMMUNICATIONS LETTERS, VOL. 7, NO. 10, OCTOBER 2003

Theorem 6: A 2 2 maximum size matching switch under

admissible Bernoulli i.i.d. traffic of rate with

has less than 100% throughput if and only if

(7)

For example, when , the switch is unstable if and only
if , compared to the sufficiency condition

given by Theorem 4.
Fig. 1 shows the service rate of when , given

by Theorem 4, by the exact formula in Theorem 6, and by
simulation. As shown in the figure, the theoretical values from
Theorem 6 agree extremely well with the simulations.
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