SAL: Scaling Data Centers
Using Smart Address Learning

Alexander Shpinerl, Isaac Keslassyl, Carmi Arad?, Tal Mizrahi!2, and Yoram Revah?

ITechnion, {shalex@tx, isaac@ee}.technion.ac.il
Marvell Israel, {carmi, talmi, yoramr} @marvell.com

Abstract—Maulti-tenant data centers provide a cost-effective
many-server infrastructure for hosting large-scale applications.
These data centers can run multiple virtual machines (VMs) for
each tenant, and potentially place any of these VMs on any of the
servers. Therefore, for inter-VM communication, they also need to
provide a VM resolution method that can quickly determine the
server location of any VM. Unfortunately, existing methods suffer
from a scalability bottleneck in the network load of the address
resolution messages and/or in the size of the resolution tables.

In this paper, we propose Smart Address Learning (SAL), a
novel approach that expands the scalability of both the network
load and the resolution table sizes, making it implementable on
faster memory devices. The key property of the approach is to
selectively learn the addresses in the resolution tables, by using
the fact that the VMs of different tenants do not communicate. We
further compare the various resolution methods and analyze the
tradeoff between network load and table sizes. We also evaluate
our results using real-life trace simulations. Our analysis shows
that SAL can reduce both the network load and the resolution
table sizes by several orders of magnitude.

I. INTRODUCTION

Multi-tenant data centers provide an increasingly popular
solution for hosting large-scale service applications [1]. Their
appeal comes from their scalability, since they are increasingly
cost-effective as they get larger [2]. To ensure scalability,
data center providers run multiple virtual machines (VMs) per
data center, and can allocate the VMs of a client application
to multiple servers, thus also achieving load balancing, fault
tolerance and power saving. For efficient implementation of
these features, the network has to support unbounded VM
placement and migration such that any VM is able to be
assigned to any server. In particular, it must provide resolution
of the VM location for inter-VM communication: when a new
connection is created between two VMs, the initiating VM
needs to retrieve the location of the other VM. The services
for the physical location resolution of the logical entities have
to be supplied by the data center network infrastructure, e.g. by
network probing, by the forwarding tables, or by some level of
indirection relying on a central database.

Unfortunately, existing location resolution methods often
suffer from scalability issues, especially with the resolution
network load and the forwarding table size. This is because
the network load of the resolution request broadcast messages
increases with the number of VMs [3], [4], while it should be
kept low in order to leave bandwidth for the application data
communication. Moreover, the forwarding-table entries needed

for the ever-increasing number of VMs would not fit anymore
the on-chip memory that is needed to allow fast access and
update times [5], [6]. These issues get especially acute as data
centers grow, and may become critical in future multi-tenant
data centers, which are expected to include millions of VMs
(11, [2].

Several architectures have been proposed to break this scala-
bility bottleneck by using overlay networks [3], [7]-[12]. These
architectures partition the data center network into segments of
broadcast domains, thus solving the problem for intra-segment
VM communication given fixed segment sizes. In addition,
these architectures use network devices called edge bridges
to connect between the segments and the network core. The
edge bridges provide address resolution for inter-segment VM
communication. They can be implemented either in the server
hypervisors or at the top-of-rack switches. Unfortunately, they
still do not solve the scalability problem of inter-segment
address resolution. In fact, [4], [12], [13] state that the overlay
network may still suffer from a bottleneck in resolving target
stations physical address (MAC or IP) at the overlay edge
gateway nodes within the data center. The address resolution
broadcast storms may even cause loss of traffic if the cache
is too small, and may consume significant bandwidth at large
networks.

In this paper, we propose a new address resolution approach
called Smart Address Learning (SAL). SAL enables scaling the
data center while keeping both the resolution table sizes and
the network load low. To do so, we use the fact that VMs of
different tenants do not communicate directly. Thus, the edge-
bridge resolution tables only need to learn addresses of the
VMs that belong to the tenants they serve. For instance, if an
edge bridge serves a local network with VMs of a tenant i, it
only needs to follow the location of the other VMs of tenant
i, and can ignore the resolution information of VMs of any
tenant j # 4. This selective learning makes the table usage more
efficient and increases its hit rate. In addition, SAL decreases
the network load, because the VM location updates are only
sent to the tables that serve the same tenant, instead of being
flooded.

The SAL approach can be easily combined in current data
center architectures with any network core routing protocol
and it is distributed, scalable and fault-tolerant. It supports any
common network core protocol and topology. We introduce two
versions of our approach: pull and push, which differ by the

trigger of address learning.

We further provide an analytical model for the evaluation
of the table sizes and the network load under SAL and other
resolution methods. In addition, we compare SAL against
alternative methods using simulations based on synthetic as well
as real-life VM creation, placement and tenancy traces. Due
to the publication page limits, extended duscussions, analysis,
proofs and simulations are provided in [14].

To our knowledge, this paper is the first to introduce a model
for comparing address resolution methods in data centers, as
well as the first to evaluate them using real-life trace simula-
tions.

Our analytical model and simulation results show that SAL
can reduce the network load for a given resolution table size
by up to four orders of magnitude. It also yields a lower update
rate and a higher hit rate in the resolution table, thus potentially
enabling implementation of fast on-chip resolution tables even
for large multi-tenant data centers.

II. RELATED WORK

In recent years, several overlay network architectures have
been proposed to break this limitations in the data centers [3],
[7]-[11]. In these architectures, the VM packets are encapsu-
lated in (or rewritten with) the overlay network headers. The
overlay network header is used to route the packet through the
network core, which can be implemented using various routing
protocols such as commodity Ethernet, hierarchical IP routing,
TRILL or MPLS. The encapsulation point, denoted edge bridge,
can be for instance the server hypervisor or the top-of-the-rack
switch.

The overlay methods can be roughly divided into three
categories:

Central database — The central database approach is
used in VL2 [7] and Portland [10]. The distributed hash table
on the aggregation switches, as used in SEATTLE [9], also
relates to this category. In this approach each VM location is
listed in a unique central consistent database. The edge bridge
resolves the location by sending a unicast request message to
the consistent directory. Note that the edge bridges also hold
a cache table that lists the recently-used resolution entries.
The usage of a central address resolution database has several
drawbacks. These methods may have scalability problems in
large data centers due to frequent resolution updates, unbal-
anced request rates, fault-tolerance issues, and longer delays
for retrieving the information. For instance, [10] states that
for maintaining the resolution requests, approximately 70 pro-
cessing cores are needed, which is beyond the capacity of a
single commodity machine. VL2 [7] replicates the database to
multiple cached servers. However, this raises consistency and
concurrent-replication issues, as well as potential scalability
problems when the update rate is high. Moreover, it requires
maintaining additional servers for backing up the data. It is
also vulnerable to malicious attacks, which lead to service
unavailability if the fabric manager fails to perform address
resolution [15]. In addition, SEATTLE [9] presents potential
fault-tolerance weakness, because the mapping DBs/switches

are not backed up, and in a case of DB/switch failure, all
the associated mapping information is lost. DHT replication
is possible, but generates additional complexity [16].

We next examine two distributed approaches:

Pull — The distributed Pull approach does not rely on
a consistent database, but on broadcasting resolution request
messages over the network and learning the resolution from the
reply. The address resolution is pulled on-demand, meaning,
at the time the resolution is required at the edge bridge.
This approach is used in EtherProxy [3] and several other
architectures. Unfortunately, this broadcasting may evolve into
a vast flooding of the data center network core, and therefore
cause a prohibitive network load. Note that here as well, the
edge bridges may hold a cache table that lists the recently used
resolution entries, and attempt to store entries for the active
connections. However, these entries may be inconsistent. Initial
VXLAN [8] implementations configured multicast groups per
tenant, and broadcasted the address resolution request over
the tenant multicast group only. However, the network devices
failed to support the large required number of multicast groups.
Thus, the VXLAN address resolution was moved to be central-
DB-managed in latter implementations [17].

Push — The distributed Push approach relies on sending
address resolution updates with each location change. The
edge bridges learn the VM addresses at each location update,
and manages resolution tables at the edge bridges. Thus,
it avoids request broadcasting, but requires larger resolution
tables. Keeping the location information consistent and close to
the VM allows for a faster start-up time of the new connections
and a lower network load. For instance, this approach is used in
Netlord NL-ARP address learning approach [11]. Netlord repli-
cates the resolution database on every server, and therefore uses
a maximal possible number of entries. The edge bridge sends
an update message upon every change of the VM status that it
is responsible of, similarly to the gratuitous ARP mechanism.
Unfortunately, in order to be efficient, this approach requires
large tables. Note that if the table capacity is large enough and
the update messages always arrive within a negligible time,
the push architectures tables are always consistent. Usually, the
Push approach is combined with the Pull approach for resolving
cases with resolution table inconsistency due to table overflow
or resolution packet losses.

In summary, both current centralized and distributed address
resolution approaches in the data center have limited scalability
when the number of VMs increases.

As mentioned before, our suggested approach is based on
selective learning of addresses from the incoming resolution
request messages. A similar idea is used in the selective ARP
learning [18], where an ARP table is configured to learn a pre-
configured specific set of IP addresses. However, the selective
ARP learning approach uses only a passive filtering, without
dynamic adaption to VM re-placement and to tenancy.

III. NETWORK MODEL AND ASSUMPTIONS

We begin by defining the network model, as illustrated in
Figure 1. The model is fairly standard and follows recent

. R

e e \\. S
L2 network ‘“":.)_} Network Core * EBII ,* \j L2 network
 — 1 ,\/'/ (". J ~\(
™ e~ P e
| /e =]
J

Server i
e

AA-LA Resolution Table Server

VM AL

/
Local VMs Table
VM AA

Dest MAC | Part

VM LA | Update time

EB - Edge Bridge
AA - Application Address
LA - Location Address

Fig. 1. Network Model. The edge bridge (EB) connects the VMs in its
L2 network to the other VMs through the data center network core. The EB
implements overlay network encapsulation. It uses two tables for the address
resolution. The first is a consistent table that lists all the local VMs under
the EB, while the second lists the address resolution of the VMs outside the
network under the EB. In the paper, we focus on the scalability of the second
table.

literature [3], [7], [10].

We use the terms application address (AA) and location
address (LA) to define both the addresses in the user VM
address space and in the physical data center address space,
respectively [7]. By the term resolution we further refer to the
translation of the AA address of a VM into its LA address.

We denote as an edge bridge (EB) the encapsulation point
where the inter-VM data packets are encapsulated in (or rewrit-
ten with) the overlay data center network header. In general,
the encapsulation point can be either the ToR switch, the
aggregation switch, or the server hypervisor. We assume for
simplicity that the communication inside the local network
under the EB is L2-protocol based, but other methods would
hold as well.

Furthermore, broadcast ARP-request messages that are in-
jected by a VM are stopped at the EB and do not propagate to
the core network. For the address resolution requests for VMs
outside the L2 network, the EB replies using an ARP-reply
message with its own MAC address. This common approach is
also used by many other overlay network architectures [3], [7],
[10].

Our model supports any common network core protocol and
topology. The routing between the EBs can be implemented
using standard IP routing with ECMP, MPLS or TRILL tunnels,
layer-2 Ethernet with VLANSs , or any other protocol, as long
as each EB can communicate with each other EB.

Each edge bridge stores an LA-fo-AA resolution table and a
local forwarding table. The LA-to-AA resolution table is used
to resolve the destination AA for a given LA. The next section
introduces SAL, a novel learning scheme for the resolution
entries. In addition, the local forwarding table lists the AAs of
all the VMs under the edge bridge layer-2 network together with
their layer-2 MAC addresses and the output port towards them.
We assume that the placement controller of the data center
keeps the forwarding table consistent.

The resolution tables in our model avoid using the time-
out mechanism for the entries. The old, last recently used,
inconsistent entries are overwritten, when a new resolution
information is required to be written to a full memory.

Finally, in the multi-tenant environment, the VMs are divided
into groups of tenants. The VMs of a tenant are assumed to

communicate only between themselves, and possibly with hosts
outside of the data center, but not with VMs of other tenants.
This is logical, since they belong to different applications.
It also makes sense for security isolation. Therefore, VMs
typically only communicate with a small number of other VMs
[9], [19], [20]. We will leverage this assumption in the paper
to reduce the amount of information that needs to be stored in
the resolution tables. For simplicity, we start by focusing on
internal VM-to-VM communication in this paper, and neglect
the communications to hosts outside of the data center. We
later discuss how the inter-tenant communication support can
be implemented with our approach.

IV. SMART ADDRESS LEARNING (SAL)
A. SAL Overview

This section presents our suggested Smart Address Learning
(SAL) approach. SAL implements a distributed resolution
database, in which the resolution tables are stored on the edge
bridges (EBs).

In SAL, the EB resolution tables only store the addresses of
the VMs that belong to the tenants of the VMs hosted in the
EB network.

More specifically, any EB that broadcasts an address res-
olution request message will include the AA and LA of its
requesting VM. Upon receiving the message, the other EBs
will selectively learn this AA-to-LA mapping in their resolution
table if and only if their network contains another VM of the
same tenant as the requesting VM. Therefore, EBs without VMs
of this tenant can disregard this message, and as a result their
resolution can typically be smaller than without this selective
learning. The EBs do not need to store any global resolution
information.

This section presents how our suggested SAL algorithm
updates the EB resolution tables following a VM location
update, i.e. following a VM creation, destruction or migration.
We consider two variants of the update method: pull and push.

In the pull version, the location information is pulled by
the EB when this information is required by the encapsulation
process, and is not available in its resolution table. On the other
hand, in the push variant, the location updates are immediately
propagated to other forwarding databases on selected EBs.

Intuitively, the pull version is preferable when the location
update rate is high relative to the address resolution request rate,
and when pushing the updates through broadcasting is costly.
We further analyze the tradeoffs involved in the next sections.

B. Pull Update (On-Demand Update)

In the pull variant, the location information is pulled to the
EB resolution table at the time of resolution request if the
information is unavailable in the table. The update is done by
broadcasting an address resolution request message to all the
other EBs, and receiving a reply from the EB that hosts the
requested VM. The request message also contains the AA and
LA of the source VM that requests the resolution. In SAL, the
smart learning ensures that other EBs that receive this request
message only insert this LA address in their tables if they host

VM of the same tenant. Each EB knows which tenant VMs it
serves using the information from the local VMs forwarding
table.

Note that if a VM is migrated during an active connection,
its resolution update can be pushed immediately in order to
avoid a communication disruption by the migration process. In
addition, due to the inconsistent information in the resolution
tables, it may happen that an EB receives a data message that is
destined to the VM that was previously hosted in its network,
but already migrated from it. Then the EB answers the source
EB with an error message, and the source EB will re-initiate
the full address resolutions process. Incidentally, an optional
alternative implementation for the EB is to redirect the packets
to the EB of the updated VM location, and then ask it to inform
back the source EB of the new location.

C. Push Update (On-Change Update)

In the push variant, the updates are pushed to the resolution
tables. In our suggested SAL algorithm, in order to reduce
network load, the location update broadcast is replaced with
messages (several unicast or single multicast) to selected EBs
only.

Specifically, upon VM location change, the update is propa-
gated (pushed by either the migration source or the destination
EB) immediately only to the EBs that host VMs of the same
tenant of the VM. Note that SAL does not require the EB to
have a global knowledge on which tenants have clients under
each EB, but only the information of tenant VMs that it serves.
The destination EBs are known to the sending EB, because
it holds the address resolution of all the tenant VMs in its
address resolution table. When an update needs to be sent, the
EB selects from the forwarding database the location addresses
(the destination EBs) of all the VMs of the tenant whose VM
is updated. An easy and fast selection can be achieved by
assigning application addresses (AAs) that contain the tenant
ID in the specific bits, or even better, by logically organizing
the table as a tree with a single node per AA, pointing to the
different VMs. No additional global information about the VM
location is required to be stored.

Special treatment is required in the following two cases. First,
when a VM is assigned to an EB network where no other VM
of the same tenant exists, the EB needs to retrieve the location
information of all other VMs of the tenant. This can be done
by broadcasting a request message to all other EBs, or with the
assistance of the data center placement controller.

In a second special case, the last VM of a tenant in an EB
is removed due to deletion or migration to other EBs. In this
case, the EB can remove all the location entries of all other
VMs of this tenant in other EBs. This can be done easily by
the EB itself, by checking the number of remaining VMs of
the tenant in its resolution table after removing a VM.

Inconsistency of the information in the resolution tables may
still occur with the push variant. It can happen if the message
arrival fails, or if the table is filled up. To overcome this
inconsistency, the pull update mechanism is still preserved in
the push variant. If the requested entry is missing from the

TABLE I
ANALYSIS NOTATIONS

N # of EBs 128
% # of VMs per EB 640
T # of tenants 5000
U # of VMs per tenant (= VN /T) 16
C Active Connections (< VN(U — 1)) 1.2-10°
B EB resolution table capacity 10°
Ac Total VM creation rate (1/sec) 10
Am Total VM migration rate (1/sec) 1

Ad Total VM destruction rate (1/sec) 10
Au Total VM location update rate (l/sec) | 21
As Total resolution request rate (1/sec) 10°

resolution table in the EB, a resolution request is broadcasted
to all the other EBs.

V. ANALYTICAL MODEL
A. Notations and Assumptions

We would now like to compare the various approaches
by formally analyzing their performance. Unfortunately, the
performance of each approach is sensitive to many parameters,
such as the data center topology, the placement policy, the
number of tenants, the distribution of VMs per tenant, the rate
of VM creations, migrations and destructions, the burstiness
of the application changes, and so on. As a result, to gain
some insight, we are reduced to providing a first model in
significantly simplified settings. In our analysis we compare
the following approaches: Central DB, Push with and without
SAL, and Pull with and without SAL. Note that in our model,
the Central DB results are also valid for the DHT-Based DB.

Table I illustrates the settings for our model. We make
several simplifying assumptions. First, we assume equal-sized
tenants, with a fixed number of VMs per tenant, and a fixed
table capacity at each EB. As well we assume fixed rates of
various VM location update events and VM resolution requests,
each following exponentially-distributed inter-event times. We
further assume links with infinite capacity and zero propagation
time. These assumptions are of course somewhat simplistic,
yet they help us better understand the tradeoffs involved in the
algorithm design.

Additionally, we consider two simple VM placement strate-
gies: packed and round-robin. These two placement strategies
are two extremes that typically cause the best- and worst-
performance cases. The best case typically corresponds to the
packed placement, in which VMs of a tenant are locally packed
under the lowest number of EBs as possible. This placement
is typically chosen to minimize the network load. On the other
hand, the worst case typically corresponds to the round-robin
placement, in which VMs of a tenant are spread equally among
the servers. This placement strategy may be chosen for its fault-
tolerance properties.

Finally, to quantify our models, as shown in Table I, we
assume some typical values (based on [1], [2], [7], [10], [21]-
[27], as well as private talks to industry engineers). Also, we
assume that the EB is the ToR switch.

TABLE II
NETWORK LOAD UNDER ROUND-ROBIN PLACEMENT.

[Architecture [[Network Load under Round-robin Placement |
Yi-1
Central DB || 2X\s(1 mein{I:\(Tl]] hHa min{lv%} +
2min1, D)y)
. TY1-1
Push M(N — 1) + AsN(1 min{1, ~LT—})(1
min{1, 2 })
SALPwsh || Au(min{U, N} — 1) + WO — DI =
: [71-1 .
min{1, TU })(1—11’111’1{1,#@})
Pull AsN(1 B %)((1 — min{L, &) +
mm{l,v—N})\uJ:‘&)
V/TT-1 -
SAL-Pull || AsN(1 — fBTW)(u; min{1, pmmprry)) +
(mln{l’ U-min{V,T} }) >\u+u&)

B. Network Load

Next we evaluate the network load of the address resolution
management packets as a function of VM location updates
and address resolution requests rates. The network load is
expressed as the rate of address resolution packets. For ease
of an evaluation, a single multicast or broadcast packet to k
destinations is counted as k packets.

The network load estimation of the resolution architectures
is summarized in Table II, and fully proved and analyzed in
[14].

Figure 2 shows the network load as function of number
of EBs N in the round-robin placement. We can see that
Push with SAL often outperforms the other approaches. Figure
2(b) is especially interesting because it illustrates the scalability
of the push version of SAL. It presents the network load as
function of number of EBs (V) scaling also the number of
tenants (7), such that the ratio N/T is kept fixed.

VI. SIMULATIONS
A. Simulator

We implemented an event-driven simulation of the data
center network address resolution system. The simulation in-
cludes VM location update events, i.e. creations, migrations and
destructions, as well as VM address resolution events, which are
initiated by VMs and request for a resolution of other VMs.

We implemented the following address resolution schemes:
Central DB, Push with and without SAL, and Pull with and
without SAL. The Pull scheme consists of three variants besides
SAL. On the figures they are marked by Pull (complete), Pull
(connection) and Pull (conservative). The difference between
these three Pull schemes is the way in which the EB learns
resolution information from the incoming broadcast resolution
requests that are not destined to the EB. In Pull (complete),
the EBs stores information of each incoming resolution request
message. In Pull (connection), only the entries that already exist
in the resolution table are updated, but no new entry is learned.
This method is similar to ARP. Lastly, in Pull (conservative),
the EB learns only from resolution requests it initiated and the
resolution requests that are destined to it.

In all the schemes, the table lengths are limited by a fixed
table capacity. When an entry is added to a full table, the
oldest entry is overwritten. In addition, an entry with a wrong
information is revealed when it is accessed. The wrong entries
and the missing entries are resolved by the broadcast resolution
request messages to all the servers — except for the Central
DB scheme, where the resolution is done by an access to the
central directory.

The output of the simulator includes the number of transmit-
ted resolution messages, as well as the occupancy, the number
of updates, and the hit percentage of the resolution tables. For
simplicity, we neglect the impact of the network topology. Thus,
each unicast message between a pair of VMs is counted as
a single message, and a multicast or a broadcast message is
counted as the number of recipients. For example, a request
broadcast by an EB in a data center with N EBs is counted
as N — 1 messages, since it is sent to N — 1 EBs; and the
unicast reply is counted as a single message. Pulling the address
resolution data base in the Central DB architecture is counted
as two messages: one for the request and one for the reply.
Revealing a wrong entry costs two additional messages: one
for sending a packet to a wrong destination, and the second
for receiving a reply message indicating that the destination is
wrong.

B. Synthetic Trace Simulation Results

We start by running simulations with a synthetically-
generated trace. We use the typical values from Table I, and
vary the table capacity B from 10 to 10 entries. The placement
distribution is uniform, such that at every placement decision,
the edge bridge for each VM is chosen uniformly over all VMs.
New VMs pick uniformly their tenants. The VM chosen for
migration or destruction are also picked uniformly. At the initial
state of the simulations, the data center is full with random
VMs up to its capacity (V' - N). The simulations are run until
the steady state.

Figures 3(a), 3(b) and 3(c) show the impact of the resolution
table capacity on the mean resolution packet network load,
the largest mean update rate of a table, and the mean hit
rate, respectively, for each of the architectures. Note that for
the Central DB, the shown table capacity is for the tables in
EBs and not for the central data base. The discussion on the
simulation results, as well as additional simulations with real-
life benchmark trace is published in [14].

VII. CONCLUSIONS

In the paper we proposed Smart Address Learning (SAL), a
novel approach that expands the scalability of current address
resolution mechanisms in the data centers, for both the network
load and the resolution table sizes, which makes it possible to be
implemented on faster memory devices. The key property of the
approach is to selectively learn the addresses in the resolution
tables, based on the fact that the VMs of different tenants do
not communicate.

We presented an analytical model of the network load for
the presented resolution methods. We further used the model

e
10" 0 . ,.’ /
==Push+SAL r’ 107 =f=Push+SAL
B B 10 ©Pull+SAL Y B © Pull+SAL B 10°
9 S “M:Push Q"'" 3 “M:Push o S
™ ™~ & Pull E g & pPull "" x
S5 5 £ Central DB 5 5
% 1 ==Push+SAL % o % % =}=Push+SAL
z o © Pull+SAL z 10° z z 10° © Pull+SAL
“M:Push s W-Push
& Pull @ Pull
o & Central DB & Central DB
10' o 10° 10 10’ X 10° 10" 10' 0 10° 10 10' 3 10° 10
Number of EBs Number of EBs Number of EBs Number of EBs
(a) Fixed parameters. (b) Number of tenants scales with (c) Number of tenants and rates (d) Number of tenants, table capac-
N. scale with V. ity and rates scale with V.
Fig. 2. Model of network load vs. number of EBs in a round-robin placement
10° 10° 10° Vad ®
s P
oo LU - TEEreet e ® &";\
o
104 10" v
6 4
- 10 3 ¢
© o 4 E o
g, I . At 2 Rl
y————=—— ~
B —+—Push+SAL -e 5 ——Push+SAL 2 102 —+—Push+SAL
E -0~ Pull+SAL 2 10° | »@~Pull+SAL 2 {+0~Pull+SAL
% 10| "®" Pull (complete) o & @ @ Pull (complete) @ Pull (complete)
=%-Push =#:Push 10° r =#:Push
=&~ Central DB o ||~ Central DB '\,‘ -8~ Central DB
Pull (conservative) 10 Pull (conservative) ’L»‘ Pull (conservative)
,||"@" Pull (connection) - @ Pull (connection) 74»’ @ Pull (connection)
10 ' B 4 6 v ' 4 6 10 ' B i 4 6
10 10 10 10 10 10

10
Table Capacity

10
Table Capacity

10
Table Capacity

(a) Network Load vs. Resolution Table Capacity. (b) Largest Table Update Rate vs. Resolution (c) Mean Table Hit Rate vs. Resolution Table

Table Capacity.

Fig. 3.

and simulations to evaluate the tradeoff of the network load
and the resolution table size. Our analysis showed that both the
network load and the resolution table sizes can be reduced by
orders of magnitude depending on the system parameters.

More generally, to our knowledge, this paper is the first to
introduce a model for comparing address resolution methods in
data centers, as well as the first to evaluate them using real-life
trace simulations.

This work was partly supported by the Hasso Plattner Insti-
tute Research School, the Gordon Fund for Systems Engineer-
ing, the Intel ICRI-CI Center, the Israel Ministry of Science and
Technology, and the Technion Funds for Security Research.

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]

REFERENCES

J. Metzler and A. Metzler et al., “The emerging data center LAN,”
Webtorials Analyst Division, Cloud Networking Reports 2010 - 2012.
N. Ilyadis, “The evolution of next-generation data center networks for
high capacity computing,” in VLSI Circuits (VLSIC), 2012.

K. Elmeleegy and A. Cox, “Etherproxy: Scaling Ethernet by suppressing
broadcast traffic,” in IEEE INFOCOM, 2009.

L. Dunbar et al, “Address resolution for large data center problem
statement,” in ARMD BOF, 2011.

D. Meyer, L. Zhang, and K. Fall, “Report from the IAB workshop on
routing and addressing,” in IETF, RFC 4984, 2007.

G. Hankins, “Pushing the limits, a perspective on router architecture
challenges,” in North American Network Operators Group 53, 2011.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” ser. ACM SIGCOMM, 2009.

M. Mahalingam et al., “VXLAN: A framework for overlaying virtualized
layer 2 networks over layer 3 networks,” in Network Working Group
Internet Draft, 2011.

C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: a scalable
ethernet architecture for large enterprises,” in ACM SIGCOMM, 2008.

Capacity.

Synthetic Event Trace Simulation Results.

[10] R. Niranjan Mysore et al., “Portland: a scalable fault-tolerant layer 2 data

(11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

(21]
[22]
[23]
[24]
[25]
[26]

[27]

center network fabric,” in ACM SIGCOMM, 2009.

J. Mudigonda et al., “NetLord: a scalable multi-tenant network architec-
ture for virtualized datacenters,” ser. ACM SIGCOMM, 2011.

T. Narten, M. Karir, and I. Foo, “Address resolution problems in large
data center networks,” in Internet Engineering Task Force (IETF), 2013.
L. Dunbar, W. Kumari, and I. Gashinsky, “Practices for scaling ARP and
ND for large data centers,” in Network Working Group Draft, 2013.

A. Shpiner et al., “SAL: Scaling data centers using smart address
learning,” http://webee.technion.ac.il/~isaac/p/tr14-02_sal.pdf, 2014.

F. Bari et al., “Data center network virtualization: A survey,” IEEE
Communications Surveys and Tutorials, 2012.

R. Rodrigues and B. Liskov, “High availability in DHTSs: Erasure coding
vs. replication,” in /PTPS, 2005.

G. Kinghorn, “Cisco VXLAN innovations overcoming
P multicast challenges,” http://blogs.cisco.com/datacenter/
cisco-vxlan-innovations-overcoming-ip-multicast-challenges/, 2013.

R. Chamarajanagar et al., “Selective passive address resolution learning,”
in US Patent Application 20080144634, 2008.

S. Kandula et al., “The nature of data center traffic: measurements and
analysis,” in ACM IMC, 2009.

P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained datacenters,” in
ACM SIGCOMM, 2012.

R. Katz, “Tech titans building boom,” IEEE Spectrum, vol. 46, no. 2, pp.
40 -54, Feb. 2009.

Q. Zhang et al., “Cloud computing: state-of-the-art and research chal-
lenges,” Journal of Internet Services and Applications, 2010.

C. Guo et al., “SecondNet: a data center network virtualization architec-
ture with bandwidth guarantees,” in ACM Co-NEXT, 2010.

“Amazon web services LLC,” https://aws.amazon.com.

“Microsoft Corporation, an overview of Windows Azure.”

A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: performance
isolation for cloud datacenter networks,” in HotCloud, 2010.

D. Armannsson et al., “Controlling the effects of anomalous arp behaviour
on ethernet networks,” in ACM CoNEXT, 2005.

