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Abstract

Bloom Filters particularly suit network devices, because of their low the-
oretical memory-access rates. However, in practice, since memory is often
divided into blocks and Bloom Filters hash elements into several arbitrary
memory blocks, Bloom Filters actually need high memory-access rates. Un-
fortunately, a simple solution of hashing all Bloom Filter elements into a
single memory block yields high false positive rates.

In this paper, we propose to implement load-balancing schemes for the
choice of the memory block, along with an optional overflow list, resulting
in better false positive rates while keeping a high memory-access efficiency.
To study this problem, we define, analyze and solve a fundamental access-
constrained balancing problem, where incoming elements need to be opti-
mally balanced across resources while satisfying average and instantaneous
constraints on the number of memory accesses associated with checking the
current load of the resources. We then use these results and suggest a new
access-efficient Bloom Filter scheme in networking devices, called the Bal-
anced Bloom Filter. Finally, we show that with a worst-case operation cost
of up to 3 memory accesses for each element and an overflow list size of at
most 0.5% of the elements, our scheme can reduce the false positive rate by
up to two orders of magnitude compared to a filter that hashes all elements
into a single memory block.
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1. Introduction

1.1. Motiwwation

The Bloom Filter is a space-efficient randomized data structure that sup-
ports approximate set membership queries [1]. Its accuracy is measured by
its false positive rate (FPR), i.e. the probability that a set membership
query returns TRUE, while the element is not in the set; Bloom Filters al-
ways have zero false negative rate. Bloom Filters are often used in network
applications for caching, routing, forwarding, traffic monitoring, and traffic
measurements [2, 3]. Examples of well-known products using Bloom Filters
and their variants are Mellanox’s IB Switch System [4], Google’s database
system BigTable [5], and the Web Proxy Cache Squid [6].

Unfortunately, while efficient in memory space, Bloom Filters require a
significant number of memory accesses. For instance, a Bloom Filter with
30 bits per element yields negligible FPR, but also requires to access about
30 -In 2 =~ 21 memory bits per query. Note that each of these bits can reside
in an arbitrary location over the memory space. Thus, such a Bloom Filter
would need a prohibitive memory access bandwidth in networking devices
when either implemented in an off-chip setting (that is, requiring to access
21 memory blocks per query) or distributed over a network (equivalently, it
may be required to access 21 nodes per query).

One proposal to improve the access-efficiency of Bloom Filters is to use
a Blocked Bloom Filter [7, 8], in which each element is first hashed using
a single hash function to one of the memory blocks, and then the memory
block operates as a local Bloom Filter. Although this technique is clearly
access-efficient, since each element requires to access a single memory block,
it also suffers from a high FPR, due to a typical load imbalance between the
memory blocks. Such an imbalance is inherent in this scheme due to the
fact that, given n elements and n memory blocks, the maximum block load
is O (logn/loglogn) with high probability, while the average block load is
1 [9].

To tackle this problem, our basic approach is to use load-balancing schemes,
making the number of elements in each memory block as balanced as possi-
ble. We further propose to use an overflow list that stores elements hashed to
overloaded memory-blocks. The overflow list is typically small. For example,
it can be implemented using a content-addressable memory (CAM), which
supports parallel-lookup operations.



We study this problem using a general access-efficient approach to the
balancing problem, a fundamental problem that lies at the core of many op-
erations and applications in modern distributed and communication systems.

We model the balancing problem using a balls and bins model [10], and
more specifically its sequential multiple-choice variant [9]. In this model, n
balls are placed in m bins. Before placing a ball, d bins are chosen according
to some distribution (e.g., uniformly at random) and the ball is placed in
one of these bins following some rule (for example, in the least occupied
bin). Moreover, we consider an extension of this model that allows a small
fraction v of the balls not to be placed in the bins; these balls are either
disregarded or stored in a dedicated overflow list, usually implemented in an
expensive memory (a similar model was considered, for example, in [11]). The
quality of the balancing is measured by the load on the bins: The resulting
load at each bin induces a certain cost, which is calculated by an arbitrary
non-decreasing convex cost function ¢. Our goal is to minimize the overall
expected cost of the system.

We further impose the following restriction: each operation can look at up
to a < d bins on average, before deciding where to place the ball. Note that
in most reasonable scenarios, checking the status of a bin (e.g., its occupancy)
corresponds to either a memory access or a probe over the network. Thus, our
restriction can be viewed as imposing a memory access budget on the insertion
algorithm. Given this access budget, we aim at achieving the highest-quality
balancing.

The above restrictions imply that a lookup operation (e.g., for updating)
is expected to take a < d memory accesses in average for an existing element,
and in any case no more than d memory accesses.

1.2. Our Contributions

In this paper, we propose a new access-efficient Bloom Filter architecture
for networking devices, called Balanced Bloom Filter. We first maintain
balancing schemes to distribute the elements between the memory blocks.
At high level, before inserting an element, these schemes query the load of
a memory block, and in case it exceeds some threshold the choose another
memory block. Memory blocks are chosen by applying hash functions on the
inserted element. We also propose to use an optional overflow list to store

elements that all hash functions used map to already overloaded memory
blocks.



To study this problem, we explore the optimality region of the balancing
problem. Namely, we consider different balancing schemes at different loads,
and determine several selections of the access budget a and the overflow
fraction 7 such that the balancing scheme is optimal with respect to the cost
function ¢. In particular, given some access budget a within a predetermined
range, we will show that our scheme is optimal for some 7(a), and for any ~y
satisfying v > v(a), thus defining an optimality region over the (a,~) plane.

To show optimality, we first provide lower bounds on the minimum cost
of each instance of the problem. The lower bound depends on the access
budget a, the number of hash functions d, and the overflow list size, but,
quite surprisingly, does not depend on the cost function ¢. Our lower bounds
hold when all hash functions have uniform distribution or when their overall
distribution is uniform (in the latter case, the hash function distributions can
be different). Then, we provide three different schemes that meet the lower
bounds on different access budgets; we further find the minimum size of the
overflow list that should be provided in order to achieve optimality. All our
analytical models are compared with simulations showing their accuracy.

We conclude by showing how, with a proper choice of the cost function
¢, the balancing problem can be directly used to optimize Bloom Filters.
For example, for an average number of access operations of a = 1.2, and
~v = 0.5% of the elements stored in the overflow list, the FPR is reduced by
up to two orders of magnitude.

Further, since the cost function ¢ is general, our approach can have many
applications, such as other Bloom Filter implementations [12], Counting
Bloom Filter variants [13, 14], and other applications. We further show
how the solution of this problem can be used to construct linked-list—based
hash tables with optimal variance.

Paper Organization. We first describe our basic architecture of the Balanced
Bloom Filters in Section 2. Then, the optimal balancing problem is defined
in Section 3, followed by our lower bound results in Section 4. The three op-
timal schemes and their analysis are presented in Sections 5, 6, and 7, while
a comparative study appears in Section 8. In Section 9 we show how the
solution of the balancing problem can be used to construct access-efficient
Balanced Bloom Filters. Then, we verify our analysis using trace-driven ex-
periments in Section 10. Finally, Section 11 surveys related work. For brevity,
the detailed proofs and an additional application of the access-efficient load-
balancing problem are presented in the appendices.
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Figure 1: Illustration of a Balanced Bloom Filter implementation based on MHT, with
three subtables.

2. Balanced Bloom Filters

In this section, we present the basic architecture of Balanced Bloom Filter.
Our architecture follows the two guidelines of balancing the elements between
the memory blocks and the usage of an overflow list.

In our basic architecture, illustrated in Fig. 1, each memory block func-
tions as a local Bloom Filter, with the only modification that the memory
block also saves some bits for a counter storing the number of elements in-
serted locally.

Although any balancing scheme can be used, for the purpose of the section
we rely on a special case of the multi-level hash table (MHT) balancing scheme.
The memory is divided into d separate subtables T, ...,T,;, with a uniform
hash function for each one of these subtables. Upon an element arrival, it
is placed in the first subtable in which the corresponding mapped memory
block has load lower than a pre-defined threshold h. If no such memory block
exists, the element is placed in the overflow list.

A lookup operation follows the same steps as an insertion operation: The
local Bloom Filters of the mapped memory blocks are queried one by one,
until either the element is found, or a Bloom Filter with load less than h is
queried. If all Bloom Filters have full load and the element was not found,



then the overflow list is also queried.

Fig. 1 illustrates an insertion of a new element with h = 3. The memory
consists of 3 subtables of decreasing size, with 4, 2 and 1 memory blocks,
respectively. Each memory block is of size 6 bits, with 2 bits for the counter
and 4 for the local Bloom Filter. When element y arrives, it is first hashed
into the memory block of subtable 77 with address 10. The counter at this
memory block indicates that 3 elements have already been inserted. Since
this load is equal to the threshold h = 3, the scheme then tries to insert the
element into subtable T5. In this subtable, the element is hashed into the
memory block with address 01, where there are 2 elements. Since 2 < h, the
element is inserted into this memory block. The dashed arrow to subtable Tj
illustrates a hash function that is not actually performed. In addition, the
element z is in the overflow list because all of its corresponding buckets were
full upon its insertion.

3. Problem Statement

To further study our problem, we first define and solve the optimal access-
constrained balancing problem in the following sections. In this section, we
define the notations and settings of this balancing problem.

Let B be a set of m buckets (or bins) of unbounded size, and let £ be a
set of n elements (or balls) that should be distributed among the buckets.
In addition, denote by r =  the element-per-bucket ratio.

Assume also that there exists an overflow list [11], i.e. a special bucket of
bounded size -n (namely, at most a fraction -y of the elements can be placed
in the list), which can be used by the insertion algorithm at any time. For
example, depending on the application, the overflow list may correspond to a
dedicated memory—e.g., content-addressable memory (CAM)—in hardware-
implemented hash-table, or to the loss ratio when the balancing scheme is
allowed to drop elements.

Elements are inserted into either one of the m buckets or the overflow
list, according to some balancing scheme with at most d hash-functions per
element, which is defined as follows (a similar definition appears in [15]).

Definition 1. A balancing scheme consists of:

(i) d hash-function probability distributions over bucket set B, used to gen-
erate a hash-function set H = {Hy,..., Hy} of d independent random hash
functions;



(ii) an insertion algorithm that places each element x € £ in one of the d
buckets {Hy(x), ..., Hy(z)} or in the overflow list. The insertion algorithm
is an online algorithm, which places the elements one after the other with no
knowledge of future elements.

The access-efficiency of a balancing scheme is measured by the number
of bucket accesses needed to store the incoming elements. We assume that a
balancing scheme needs to access a bucket to obtain any information on it.
We do not count accesses to the overflow list.

We further consider two constraints, which can be seen as either power- or
throughput-constraints depending on the application. First, we require that
the average number of bucket accesses per element insertion must be bounded
by some constant ¢ > 0. In addition, notice that the worst-case number of
bucket accesses per element insertion is always bounded by d, because an
element does not need to consider any of its d hash functions more than
once. These two constraints are captured by the following definition:

Definition 2. An (a,d,r) balancing scheme is a balancing scheme that in-
serts all elements with an average (respectively, mazimum) number of bucket
accesses per insertion of at most a (respectively, d), when given an element
per bucket ratio r.

We are now ready to define the optimal balancing problem, which is the
focus of this paper. Let ¢ : N — R be the cost function mapping the
occupancy of a bucket to its real-valued cost. We assume that ¢ is non-
decreasing and conver. Our goal is to minimize the expected overall cost:

Definition 3. Let O; be a random variable that counts the number of el-
ements in the j-th bucket. Given ~, a, d and r, the OPTIMAL ACCESS-
CONSTRAINED BALANCING PROBLEM consists of finding an {(a,d,r) balanc-
ing scheme that minimizes

1
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Whenever defined, let ¢pgrt denote its optimal cost.

For example, in the trivial case of the identity cost function ¢(z) = x and
no overflow list (7 = 0), ¢ia} corresponds to the average load per bucket,
which is exactly r, no matter what insertion algorithm or hash functions are

used.



4. Theoretical Lower Bounds

We next show a lower bound on the achievable value of the optimal cost

osk, as a function of the number of buckets m, the number of elements n,

the average number of bucket accesses a, and the overflow fraction 7. (The
proof appears in Appendix B.1).

The lower bound is derived using a modified offline setting. In this set-
ting, each bucket access is considered as a distinct element, as if initially a-n
distinct elements were hashed to the buckets, using a single hash function
each. After storing all elements, we conceptually choose exactly (a — 1+ 7)-n
of the elements in a way that minimizes the cost function ¢"*", resulting in
exactly (1 — )-n elements in the buckets. Since the cost function ¢ is convex,
then the marginal cost is the largest in the most occupied buckets. Therefore,
a cost-minimizing removal process would remove element by element, picking
the next element to remove in the most occupied bucket at each time.

Since we picked these elements in an offline manner, we necessarily per-

form better than any online setting. Thus, we bound the achievable value of

BAL
OPT"*

Theorem 1. When all hash functions are uniform, the optimal expected
limit balancing cost ¢gay in the OPTIMAL ACCESS-CONSTRAINED BALANCING

PROBLEM 1is lower-bounded by

k:0+1

EBAL - Z Py (Z) ¢ (Z> ) (2)

where kg is the largest integer such that

a'r(.kigmf)?'r) Fo - <1_ F(%Zj’a'r)) st o

[ (s,x) = f;o ts~le~tdt is the upper incomplete gamma function, and Py is
a specific distribution that depends only on a,r, and v, but does not depend
on the cost function ¢.

Specifically, the distribution P,y is defined as follows:

[ marlen) 0<i<k
—a-r (C”;)ko
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Py (i) = kopo —po — 1+ (1 —7) (4)
—Gg—k}g—l-k'opo—f-r'(l—’y) Z:k0+1
0 otherwise
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Figure 2: The probability density function of the distribution P, over the bucket occu-
pancies with load r = 8, overflow fraction v = 0, and different values of average access
rate a.

a-rI(ko,ar) T'(ko+1,a1)

where = ho—1)1 7 and Po = (ko)!

Interestingly, the element-elimination algorithm does not depend on the
precise convex cost function ¢. This is why the resulting bucket-load distri-
bution P is independent of ¢ as well.

In addition, this distribution P, is defined on a compact space. As a
result, it can also be shown that if a sequence of cost functions {¢;} con-
verges pointwise to some cost function ¢, then the sequence of lower bounds
converges as well to the corresponding lower bound on ¢. This can then be
used to extend the cost functions to the maximum-load metric commonly
used in the literature [9, 16, 17].

Fig. 2 shows the lower-bound distribution P (i) for load r = X = 8,
overflow fraction v = 0 and average access rate a € {1,1.1,1.2}. Note that
when a = 1, all elements use a single lookup, and therefore there is no element
elimination in the offline algorithm. The distribution P,; simply follows a
Poisson distribution with parameter A\ = r, as shown using the solid line.
Then, for larger values of a, the element elimination algorithm reduces the
probability of having a large bin load.

We also consider a setting where ¢ < d different distributions over the
buckets are used by the d hash functions. Denote these distributions by
..., f% and assume that distribution f? is used by a fraction k; of the
total bucket accesses, with Zle k; = 1. We now show that Theorem 1 holds
also in this case when ny:l kp fp(i) = +.



Theorem 2. If Zf)zl k,f,(i) = = then the optimal expected limit balancing

m

cost ¢ony in the OPTIMAL ACCESS-CONSTRAINED BALANCING PROBLEM has

the same lower bound as in Theorem 1.

PRrROOF. The number of elements mapped by the hash functions with distri-
bution f, to bucket i follows approximately a Poisson distribution with rate
ky-a-n- f,(i) (see proof of Theorem 1). Since the sum of Poisson random vari-
ables is also a Poisson random variable, the total number of elements mapped
to the bucket i follows a Poisson distribution with rate an 2221 kpfp(i).
Thus, the proof of Theorem 1 implies that if for every bucket i, this rate

equals 7, we get the same limit lower bound balancing cost ¢p;".

5. SINGLE - A Single-Choice Balancing Scheme

We have found a lower-bound for the optimal cost. In the sequel, we
focus on finding values of @ and ~ in which we can match this bound.

For better intuition, we start by analyzing a simplistic balancing scheme,
denoted SINGLE, that is associated with 2 parameters h and p. This scheme
only uses a single uniformly-distributed hash function H. Each element is
stored in bucket H (x) if it has less than h elements. In case there are exactly
h elements, the element is stored in the bucket with probability p and in the
overflow list with probability 1 — p. Otherwise, the element is stored in the
overflow list.

5.1. Description by Differential Equations

In recent years, several balancing schemes have been modeled using a
deterministic system of differential equations [18, 19, 15, 20]. In this section,
we adopt this approach and provide a succinct description of SINGLE.

In this approach, we consider the element insertion process as performed
between the time ¢t = 0 and ¢ = 1, that is, at time ¢t = % the j-th element is
inserted. Furthermore, let F; (%) denote the fraction of buckets in the hash

table that store exactly 7 elements at time %, just before element j is inserted,

and F (1) be the vector of all F; (£)’s. Also, let AF; (1) SR () —F (L)

n n
denote the change in the fraction of buckets that store exactly i elements

10



between times % and ”%1 Then

2R () =0
(Y F(IN\ ) w B () —p - Ea(2) i=h
(o (20| gm0 1
L(F, (%) — F, (%)) otherwise

At time t =0, F; (0) = 1 if i = 0 and 0 otherwise.

The probability that element j hits a bucket storing ¢ elements is F; (%)
Thus, in the first equation, the fraction of empty buckets decreases when
element j reaches an empty bucket, which occurs with probability of Fj (%)
Likewise, in the second equality, the fraction of buckets that store h elements
increases when element j hits a bucket storing h—1 elements (with probability
of Fj_1 (%)), and decreases with probability of p when the element hits a
buckets storing h elements (with total probability of p - Fj (%)) In the
third equality, the fraction of buckets storing kA + 1 elements increases with
probability of ¢ if element j hits a bucket storing h elements. Last, in all
other cases, the fraction of buckets storing i elements increases if element j
hits a bucket storing 7 — 1 elements, and decreases if it hits a bucket storing
1 elements. Any such increment or decrement is by a value of %, thus, all
equations are multiplied by %

By dividing both sides of the equation by % and considering the fact that
n is large, so that the values of AF; (]%1) are comparatively very small, we
can use the fluid limit approximation, which is often very accurate [18]:

— 2 fo (?) 1=0
i) _ %(fi—l (t)—p-fi(t)) i=h (6)
dt P2 fro () i=h+1

P (fica () = fi (1)) otherwise

More formally, let f (t) 2 (fi(t),..., fa(t)) be the solution of the above
set of linear differential equations when assuming fo(0) = 1 and f;(0) = 0
for each i # 0. Then, by Kurtz theorems [21, 22, 23], the probability that
f deviates from F by more than some constant £ decays exponentially as a
function of n and &2 [18]. For further intuition behind this statement, refer
to [18] and [24, Chapter 3.4].

Fig. 3 shows the evolution over time of fy,..., f3 where r = 2.5, p = 0.5

and h = 2, comparing the model with simulated values. In the simulation
we used n = 25,000, and so m = 10, 000.

11
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Figure 3: simulation vs. analytical model for SINGLE with r = 2.5, p = 0.5 and h = 2

5.2. Optimality Result
In this section, we solve the system of differential equations yielding the
following optimality result.

Theorem 3. Consider the SINGLE balancing scheme with m buckets and
n elements, and use the notations of ko, po, eo and P from Theorem 1.
Then for any value of v, the SINGLE scheme solves the OPTIMAL ACCESS-
CONSTRAINED BALANCING PROBLEM for a = 1 whenever it satisfies the two
following conditions:

(1) h = k’o,’
(ii) p is the solutz’on of the following fized-point equation:
o~ S U = P ().

Proor. We solve the differential equations one by one, substituting the
result of the equation for df&(t) into the equation for 4 T Yeor®)  The first equation
depends only on f; (), and we get immediately that f, (t) = e~ m?, or fo =

e~ "t. Each equation for df#, where i < h, depends only on f;_; (¢) and

fi (t), and we get that for i < h, f; (t) = +(r- Pie—r.
For fy, (t), we get that for 0 <p <1

_ert et et (1))
= 0, Z g (7)
and for p =1, .
fa(t) = m(r )t (8)



We also use the fact that Z?jol fi=1to get frni1(t).

By substituting t = 1 in f; (¢), for ¢ < h, we find that f; (1) = %(T)ie*’".
We note that it is also the probability that an arbitrary bucket stores 7
elements, and that it is equal to P,; (7), thus mimicking the distribution of
P (@) for i < h.

We are left to show that there exists such a p € [0,1] so that using
its value for fy, (1) will result in the exact expression for P (h). When
substituting p = 0, we get that f, (1) = 1 —e™" Z?:_Ol ’;—, which is clearly
larger than P, (h) (it is equal when P (h+ 1) = 0). On the other hand,
when substituting p = 1, we get that f, (1) = %(r)he_r which is lower
than P (h). Thus, using the Intermediate Value Theorem (all functions are
clearly continuous), there exists some p € [0,1] such that f; (1) = P (h).
Since S0 £ (1) = ) P (i) = 1, we get also that fi,yq (1) = P (b + 1).

0

6. SEQUENTIAL - A Multiple-Choice Balancing Scheme

We now introduce the SEQUENTIAL scheme, which is also associated with
two parameters h and p. In the SEQUENTIAL scheme, we use an ordered
collection of d hash functions H = {H, ..., Hy}, such that all functions are
independent and uniformly distributed. Upon inserting an element z, the
scheme successively reads the buckets Hy(z), Ho(x),. .., Hy(z), and places
x in the first bucket that satisfies one of the following two conditions: (i)
the bucket stores less than h elements, or, (ii) the bucket stores exactly h
elements, and z is inserted with probability p. If the insertion algorithm
fails to store the element in all the d buckets, x is stored in the overflow list.
Last, to keep an average number of bucket accesses per element of at most
a, the process stops when a total of a - n bucket accesses has been reached;
the remaining elements are placed in the overflow list.

Using the approach presented in Section 5.1, we describe the dynamics of
the SEQUENTIAL scheme as a system of differential equations, which appear
in Appendix A.l. The resulting system of equations is hard to solve ana-
lytically, implying it cannot be used directly to show optimality (naturally,
the system can be solved numerically to provide a numerical approximation
of the expected balancing cost).

Therefore, we take a different approach. We analyze the SEQUENTIAL
scheme by reducing it to the SINGLE scheme: Since both the SINGLE and
SEQUENTIAL schemes use the same uniform distribution, a new attempt to

13



insert an element after an unsuccessful previous attempt in the SEQUENTIAL
scheme is equivalent to creating a new element in the SINGLE scheme and
then trying to insert it. In other words, the number of elements successfully
inserted by the SEQUENTIAL scheme after considering n elements and using a
total of a-n bucket accesses is the same as the number of elements successfully
inserted by the SINGLE scheme after considering a - n elements. (The proof
appears in Appendix B.2.)

Theorem 4. Consider the SEQUENTIAL balancing scheme with m buckets
and n elements, and use the notations of ko, po, eo and P from Theorem 1.
The SEQUENTIAL scheme solves the OPTIMAL ACCESS-CONSTRAINED BAL-
ANCING PROBLEM whenever it satisfies the three following conditions:

(i) h = ko;

(i) all a-n memory accesses are exhausted before or immediately after trying
to insert the n-th element;

(iii) p is the solution of the Jollowing fized-point equation:

S Yy G p (k).

Moreover the optzmalzty region is given by the overflow list of size vo-n that
results in exhausting all a - n memory immediately after trying to insert the
n-th element.

7. The Multi-Level Hash Table (MHT) Balancing Scheme

The multi-level hash table (MHT) balancing scheme conceptually consists
of d separate subtables 171, . .., Ty, where T} has a;-n buckets, and d associated
hash functions Hy, ..., Hy, defined such that H; never returns values of bucket
indices outside T;.

Using the MHT scheme, element z is placed in the smallest ¢ that satisfies
one of the following two conditions: (i) the bucket H;(x) stores less than h
elements, or, (i) the bucket H;(x) stores exactly h elements, and element x
is then inserted with probability p. If the insertion algorithm fails to store
the element in all the d tables, x is placed in the overflow list. Since that
smallest ¢ with available space is used, the bucket accesses for each element
x are sequential, starting from Hj(z) until a place is found or all d hash
functions are used (and the element is stored in the overflow list).

The description of the dynamics of the MHT scheme using a system of
differential equations (that appears in Appendix A.2) is generally too difficult

14



to solve. As in SEQUENTIAL, this can be circumvented by relying on our
results from the SINGLE scheme.
We skip to the optimality theorem of the MHT scheme.

Theorem 5. Consider an {(a,d,r) MHT balancing scheme in which each sub-
table T; has o - m buckets, with Y a; = 1, and use the notations of ko, po,
ep and P from Theorem 1. Further, let p(a) denote the overflow fraction
of the SINGLE scheme with a - n elements. Then, the {(a,d,r) MHT scheme
solves the OPTIMAL ACCESS-CONSTRAINED BALANCING PROBLEM whenever
it satisfies the following four conditions:

(i) h = ko;

(i) all a-n memory accesses are exhausted before or immediately after trying
to insert the n-th element;

(iii) p is the solution of the following fized-point equation:

Cr Sy o) P (k)

(iv) the subtable sizes a; - m follow a geometric decrease of factor p(a):
s = ( 1—p(a) ) p(a)j_l '

7 1—p(a)?
Moreover, the optimality region is given by the overflow list of size v -n that
results in exhausting all a - n memory accesses immediately after trying to
insert the n-th element. Furthermore, if all four conditions are met then all
buckets have an identical occupancy distribution.

8. Comparative Evaluation and Analysis

Fig. 4(a) shows the optimality region of SEQUENTIAL and MHT with
element-per-bucket ratio » = 8, and d = 3 hash functions. For each value of
the average number of bucket accesses a, it shows the minimum value of the
overflow fraction v that suffices to solve the OPTIMAL ACCESS-CONSTRAINED
BALANCING PROBLEM. For instance, we can see that for a &~ 1.1, SEQUEN-
TIAL achieves optimality for an overflow fraction equal to or larger than
approximately 1%. In addition, Fig. 4(b) shows the optimality region of SE-
QUENTIAL and MHT with ¢ = 1.2 and d = 3 for different values of r. We can
see that MHT scales better to higher loads.

9. Analysis of the Balanced Bloom Filter

In Section 2 we provided a high-level overview of the Balanced Bloom
Filter. In this section, we explain in detail how to use our optimal online
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Figure 4: The overflow fraction 7 induced by applying the SEQUENTIAL and MHT schemes
with worst-case memory access rate d = 3.

schemes to construct the Balanced Bloom Filter, and by this, to achieve a
better FPR for networking devices.

9.1. Balanced Bloom Filter with Overflow List

Blocked Bloom Filters [7, 8] form the first attempt to design an access-
efficient Bloom Filter. They constrain the & hashed bits to be located in the
same memory block, thus causing a single memory access.

The Blocked Bloom Filter mechanism can be modeled using the SINGLE
scheme with no overflow list (7 = 0) and with a cost function ¢ that expresses
the FPR incurred to an element in a given memory block given the number
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of elements are hashed to this memory block:

6 (i) = (1—(1—%)M>Bz<1—e—k§)k, (9)

where B is the size in bits of the memory block and k is the number of hash
functions used. Although the SINGLE scheme is optimal, its average number
of memory accesses a is 1, thus it achieves poor balancing of the elements
resulting in a high FPR. In this section, we explain in detail how to use our
optimal online schemes to achieve a better balancing between the memory
blocks, and consequentially, a better FPR.

Assuming memory blocks of size B bits and bits-per-element ratio [, the
number of elements per bucket r is B/f. Using the optimal online balancing
schemes described above to implement a Balanced Bloom Filter requires

saving b = [log, (ko + 2)] bits in every memory block to count the elements
ki

hashed into each one. Thus, we get ¢ (i) = (1 —e Bb

In the standard Bloom Filter, the optimal FPR is achieved when using
k = r-1n2 hash functions [2]. Although this may not be the best choice in
our settings, we will use the same k for simplicity.

Balancing schemes that read more than one memory block on a query
operation increase the FPR, because a false positive may result from a query
operation on each one of the memory blocks. Thus, since the probability of
false positive in every memory block is relatively small, then the overall false
positive probability, i.e. the FPR, is modeled by ijl P;-FPR;, where P; is
the probability that a query operation results in reading at least 7 memory
blocks, and FPR; is the false positive probability of the j-th memory block
read. Since in our balancing schemes, there exists some constant FPR, where
for all j, FPR; = FPR, the expression above reduces to Z?Zl P; - FPR =
E (P) - FPR, where E (P) is the expected number of memory-block read
operations.

Given an average number of memory accesses a in our balancing schemes,
E (P) # a in general. Querying the Balanced Bloom Filter with elements
that are in the set is expected to have exactly @ memory accesses on average.
This is because the query memory access pattern follows exactly the insertion
memory access pattern. However, for elements that are not in the set, the
average number of memory accesses is expected to be E (P) < d.

Fig. 5 compares the FPR for different values of bits-per-element ratios
with memory block size B = 256. The MHT balancing scheme has a = 1.2
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Figure 5: False positive rates of different Bloom Filter schemes with memory block size of
B = 256 bits and variable load r. SINGLE and MHT use overflow fraction v =~ 0.5%.

and d = 3. Thus, by Theorems 1 and 5, we get that the overflow list size
needed is v ~ 0.5%. For comparison, Fig. 5 presents the performance of both
the SINGLE balancing scheme with the same overflow list size and the Blocked
Bloom Filter, which is equivalent to the SINGLE scheme with no overflow list.

Because of the usage of the small overflow list, the SINGLE balancing
scheme performs only slightly better than the Blocked Bloom Filter scheme.
For low values of bits-per-element ratio, the MHT scheme performs worse.
This is due to the need to check multiple memory blocks (up to d) on a query
operation. However, demonstrating the power in balancing, for larger values
of bits-per-element ratios, the MHT performs better by up to two orders of
magnitude, and only one order of magnitude worse than the standard Bloom
Filter, which uses an access-inefficient scheme with a ~ k accesses. For ex-
ample, for a bit-per-element ratio of 24, £ = 17 hash functions are used,
introducing up to 17 memory-read operations in the standard Bloom Fil-
ter, which can clearly present memory-throughput and power-consumption
issues.

9.2. Balanced Bloom Filter Without Overflow List

In some applications, it may be too expensive to use an overflow list. In
such cases, the overflow list can be avoided using a simple modification on our
basic scheme. Upon an insertion of a new element, the basic scheme runs as
usual, but whenever there is an overflow event, the corresponding element is
just put in one of the d choices at random. Because there is only a small frac-
tion of overflow elements, this is not expected to worsen the FPR of the sys-
tem significantly. However, in the general OPTIMAL ACCESS-CONSTRAINED
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BALANCING PROBLEM, we are no longer able to prove theoretically the op-
timality of the solution, as we could in case one may use an overflow list of
a small size.

10. Trace-Driven Experiments

We conducted experiments of our proposed MHT-based Balanced Bloom
Filter using real-life traces recorded on a single direction of an OC192 back-
bone link [25], where packets are hashed to the memory blocks using a real
64-bit mix function [26]. Our goal is two-folded. First, we would like to
verify that our analysis agrees with results of real-life traces. And second, we
would like to evaluate the case where no overflow list is used, as introduced
in Section 9.2.

In all experiments, we used the MHT-based Balanced Bloom Filter with
a = 1.2, d =3, memory block sizes of either B = 256 or B = 512, a total of
1024 memory blocks, and various values of loads r. By Theorems 1 and 5, we
get that the overflow list size required in the basic scheme is v ~ 0.5%. We
further find by Theorem 5 the partition of the memory blocks to subtables.
Notice that this partition depends on the load r. To hash the elements
into the memory blocks, we used a real 64-bit mix function. However, to
set the k£ bits within the corresponding memory block, we used a standard
randomization procedure. The total FPR is then computed by the number of
set bits and the number of elements recorded by the counter at each memory
block.

Fig. 6 shows the FPR found by our experiments of both the basic MHT-
based Balanced Bloom Filter scheme, and the variation where no overflow list
is used. First, the experiment results of the basic MHT-based scheme verifies
the accuracy of out analysis. We note that our experiments also show that
the fraction of elements in the overflow list and the average number of access
operations per element are approximately v = 0.5% and a = 1.2, respectively.
These results further validate our analysis. In addition, if an overflow list
is not used, the FPR becomes slightly worse. For a bits-per-element ratio
of 40 and a memory block size B = 256, our experiments show an FPR of
2.0-1077 and 3.6- 1077 for the basic scheme and the scheme with no overflow
list, respectively. While for the same configuration with a memory block size
B = 512, experiments show FPRs of 3.7-107% and 1.1-1077.

Finally, Fig. 6 also depicts the FPR of the blocked Bloom Filter [7, 8],
and shows that even if no overflow list is used, the FPR can be drastically
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Figure 6: Trace-driven experiments of the MHT-based Balanced Bloom Filter scheme dif-
ferent values of r.

reduced: For instance, for a bits-per-element ratio of 40 and a memory block
size B = 256, our experiments show that the FPR is reduced from 3.4-107°
to 3.6 - 1077, This improvement of approximately two orders of magnitude
demonstrates the power of the suggested balancing schemes.

11. Related Work

The Blocked Bloom Filter [8, 7] is one of the first implementations of
access efficient Bloom Filters. In the Blocked Bloom Filter, each element is
first hashed using a single hash function to one of the memory blocks, and
then the memory block operates as a local Bloom Filter. Other designs of an
access-efficient (or, alternatively, energy-efficient) Bloom Filter exploit the
fact that a query returns TRUE if and only if all corresponding bits are set to
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1 (27, 28, 29]. Thus, the hash functions can be applied sequentially only until
some hash function maps to a bit set to 0. In practice, the hash functions
may be partitioned into several sets, and the query is performed set by set,
where all hash functions in some set are applied in parallel.

We next survey works that are related to the balancing problem.

The balancing problem was also extensively investigated in the last decades
for various applications involving allocations of resources [30]. Prime exam-
ples include task balancing between many machines [31], item distribution
over several locations [32], bandwidth allocation in communication chan-
nels [30] or within switches and routers [33], and hash-based data struc-
tures [34].

Our paper is related to the sequential static multiple-choice balls-and-bins
problem described above [9, 19]. In this model, n balls are placed sequentially
into m bins. Each ball can be placed only in one of d bins that are chosen
according to some distribution (e.g., uniformly at random) and the ball is
placed in one of these bins following some rule (for example, in the least
occupied bin).

The work in [9] shows that when n = m and balls are placed into the
least occupied bin, the maximum bin size is loglogn/log2 + O(1) for d = 2,
compared to approximately logn/loglogn for d = 1. This result had a large
impact on modern algorithms and data structures (see surveys in [19, 35]).

Note that while most papers considered the maximum load of the sys-
tem, while our paper considers the entire load distribution (including the
maximum load).

Access-constrained hash-schemes were also considered in [15], which, how-
ever, did not consider a cost minimization problem and cannot deal with
infinite-size bins. Our paper is different since it deals with a general balanc-
ing problem and aims at minimizing a general cost function given a known
overflow list size, while [15] considered the size of the overflow list given
bounded-size bins.

Finally, we note that concurrently [36], another work has also proposed to
balance the elements in the context of Bloom Filters [37]. However, beyond
the mere balancing approach, we further provide a theoretical framework
for the general problem of balancing the elements subject to a given access
budget.
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12. Conclusion

In this paper we presented an access-efficient variant of Bloom Filters
for networking devices, called the Balanced Bloom Filter. In this variant,
each element is first assigned to a memory block, where a local Bloom Filter
is maintained. Our basic approach was two-folded. First, we proposed to
maintain load-balancing schemes: a simple approach (using only a single
hash function), a sequential approach, and a mutli-level hash-table approach.
And second, we proposed to use an overflow list that can store elements that
are hashed to overloaded buckets.

To study this problem, we presented an access-constrained balancing
problem and showed that, for some specific parameters, our proposed load-
balancing schemes are optimal.

Since the cost function is very general, the balancing problem can be
used in other contexts. We demonstrated how it can be used in order to
find optimal balancing schemes that take into account the variance of the
query-time and not just its expected or worst-case time.
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Appendix A. The Dynamics of the Proposed Schemes

Appendiz A.1. The SEQUENTIAL Scheme

We start analyzing the SEQUENTIAL scheme by first assuming that there

is no constraint on the total number of bucket accesses (that is, a = o0)
and characterizing the dynamics of the scheme as a system of differential
equations.

25



As before, let f; (t) represent the fraction of buckets storing i elements at
time ¢, then

—%'fO'(t)g(t) =0
dfi(t> - % (fh—l (t)—p-fh(t))g(t) i=h (A 1)
T I SO PI i=h+1 |
2 (ficr (t) = fi() g (1) otherwise
where

= S (A= p) - F )+ fo ()
L= (L=p) - fa (8) + fors ()"
= ((=p) O+ s ()

with fo(0) = 1 and f;(0) = 0 for each ¢ # 0 as an initial condition. Comparing
with the differential equations of the SINGLE scheme (Equation (5)), there
is an additional factor of g (¢). For instance, in the first equation, fy(t)

is replaced by fo (¢) g (£) = S22y [((1 =)« fu(8) + fus ()" - fo ()], which
represents the sum of the probabilities of mapping to an empty bucket after
being mapped £ = 0,1,...,d — 1 times to a bucket in which the element
could not be stored; in other blocks, each bucket either already had h + 1
elements, or had h element but with probability of 1 — p the element was
denied insertion.

We are also interested in the average number of bucket accesses per-
formed during this process. Let f¢  usyrar (1) denote the cumulative number
of bucket accesses performed by time ¢, normalized by n. It can be modeled
as

(A.2)

Poewmrn O 57 ()0 = ) - ()™ (A
where
Full) = (1=D) fu(0) + fur () (A4)

and f&uevmia (0) = 0 as an initial condition.

The differential equation reflects the fact that at a given time ¢, the
cumulative number of bucket accesses increases by 1 < k < d bucket accesses
whenever in the first £ —1 bucket accesses an element is not stored and in the
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next one the element is stored. It also increases by d bucket accesses whenever
in the first d — 1 bucket accesses an element is not stored, independently of
the bucket state in the d-th bucket access.

Appendiz A.2. The MHT Scheme

The system of differential equations that characterizes the dynamics of
MHT is influenced by the static partitioning of the memory among subtables,
which introduces extra variables. Specifically, let f;; (¢) be the fraction of
buckets in subtable T} that store exactly ¢ elements. Then:

— oo (8) g5 (t) i=0
dfi; (t) ) o (Pherg () == fu (8) g; (1) i=h
dt ) ke g (895 (1) i=ht1 (A.5)
oszm (fim1y (t) = fij (1)) g5 (t) otherwise
where -
g; (1) = [T (1 =p) fak (8) + fasr (1) (A.6)
k=1

represents the probability that all the insertion attempts in subtables T4, - - -, T4
do not result in storing the element, and thus that MHT will attempt to insert
the element in subtable 7. By convention g; (¢) = 1. The initial conditions
are f; ;(0) =1 for i =0 and f;; (0) = 0 otherwise.

As in the SEQUENTIAL scheme, let f% . (t) denote the cumulative number
of bucket accesses done by time ¢, normalized by n. Then the following
differential equation reflects the dynamics of fg,, (t):

" d—1

P ) _ g0 (1) + 3 k-0 ) (L= (L= 0) fre () — e (1)) (A)
k=1

with f4..(0) = 0.

This description of the dynamics of the MHT scheme using a system of
differential equations is difficult to solve. Our approach relies on the fact
that each subtable follows a local SINGLE scheme. More specifically, all ele-
ments attempting to access some subtable 7} only access a single uniformly-
distributed bucket in 7j, and if this bucket is full, do not consider any other
bucket in 7). Thus, within each subtable T}, MHT behaves like SINGLE, with
a number of initial elements that depends on previous subtables.
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Let fI™C"(t) be the fraction of buckets that store exactly i elements at
time ¢ in the SINGLE scheme. As in the proof of Theorem 3, it is given by:

%(rr . t)ie_r't Z < h
e~ Pt _ et h‘_l M ) —
fiSINGLE (t) = (1-p)" hf%—f)h E;:o 1 i=h (A.8)

=300 &(r-tye =

e—pTt et h—1 (’F~t~(1—p))j
(= O 2=

t=h+1

Also, let v (f) be the fraction of the elements that are not stored in
the buckets out of all the elements that arrived up to time ¢t. Given all
JFPNGLE (1)’s, it is simply the complementary of the expectation of the number
of elements in the buckets up to time ¢ normalized by the total number of
elements arrived up to this time:

h+1
m .
,yélNGLE (t)=1- nt Z'LfiSINGLE (t). (A.9)
=0

Let n; (t) denote the number of elements that are considered in subtable
T} up to time ¢, and 7; (t) denote the fraction of these elements that are not
placed in subtable T;. We will express these using fi™* and ~f ..., the
corresponding functions in the SINGLE scheme.

Note that as shown in Equations (A.8) and (A.9), fF™ (¢) and v o ()
only depend on the time ¢, the number of elements n, the number of buck-
ets m, the bucket size h and the probability p; thus, we refer to them as
ENCLE (¢t omy by p) and A (B, M, 1, by p). We obtain the following theo-
rem, which is valid for any arbitrary partition of the subtables.

Theorem 6. Consider an {(a,d,r) MHT balancing scheme in which for each
1 <j <d, subtable T; has a; - m buckets, with Y «; = 1. Then, as long as
fir (1) < a, the functions n;(t), o4 (t) and f;; (t) satisfy

7j—1
nit) = net-J]k), (A10)
k=1
'V; (t> = 7§1NGLE (17 Q1T T (t) ) h,p) ) (A'11>
fi,j (t) = fiSINGLE (1, QMm, 14 (t) s h,p) . (A12)
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PRrROOF. By the definition of the MHT scheme, it follows immediately that
nj (t) =5, (t) 1 (t); since ny (t) = n - t (all elements go through the first
subtable), we get that n; (t) =n-t- Hk e ().

Equations (A.11) and (A.12) are immediately derived by setting the right
parameters for each SINGLE scheme within each subtable T);; namely, its total
number of buckets is «; - m and the number of elements by time ¢ is n; (t).

O

Appendix B. Omitted Proofs
Appendiz B.1. Proof of Theorem 1

We derive the lower bound on the balancing by computing the best-case
distribution of each bucket in an offline setting. We assume that whenever an
hash function points to some bucket, an element is inserted into this bucket,
having a total of a - n elements at the end of the process. Then, we remove
exactly (@ — 1+ ) - n elements, which results in (1 — ) - n total elements
in the buckets. We remove the elements in a way that minimizes the cost
function @"A*".

In fact, by the convexity of the cost function ¢, minimizing the total cost
" can be done by removing the (a — 1 4+ ) -n elements greedily, each time
from one of the most occupied buckets. This is because the marginal cost is
the largest (due to convexity) in those buckets. In the sequel, we relate to
this process as the remowval process.

We consider every hash value as a distinct element. Therefore, the number
of elements (out of total a - n elements) that are mapped to bucket j € B
follows a Binomial distribution with a - n independent experiments and a

success probability of % . Let Q; (1) = ain (l)l (1 — E)Cm * denote the

m

probability that bucket j stores ¢ elements before the removal process.

Let M; (i) be the probability that bucket j stores i elements after the
removal process. As we show now, M; (i) has to satisfy two constraints. First,
since in the removal process elements are only removed (and not inserted),
then the probability that some bucket stores less than 7 elements after the
removal process cannot be larger than before the removal process. Thus, for

every i: 4 '
> OM;(k) =) Q;(k). (B.1)
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Second, since we end up with exactly (1 — ) - n elements, then:

> (zi M, @) =(1-7)n, (B.2)

=0

that is, the expected number of elements in all the buckets after the removal
process must be (1 — ) - n.

As we are looking for a lower bound on the balancing cost, our goal is
to pick the bucket distribution that minimizes that cost. Consider bucket
7 and assume that the expected occupancy after the removal process is Ej.
Since all hash functions are uniform, by symmetry Ey must be at most .
We construct the following distribution that minimizes the balancing cost of
bucket 7. The idea is to keep the original probabilities for low values of buffer
occupancies, until the point where the expected occupancy Ej is reached. On
this point, we share the remaining probabilities such that we get the exact
expected occupancy. Specifically, let ky be the largest integer such that

ko ko
> Q5 () + ko (1 -2 @ @) < Ey. (B.3)

That is, kg is the buffer occupancy until which we keep the original proba-
bility. Let eg = Efioi -Q; (i) and py = Efio Q; (7). In the sequel, we use e
and pg to construct the remainder of the distribution, that is, the probability
for buffer occupancies ky and kg + 1.

We define the following distribution P; (7):

Q; (1) 0<i<ko
Qj(i)+€0+k‘o+1 i—=k

P (i) = —kopo — po — Eo - (B.4)
—60—]€0+/€0])0+E0 Z:/{?0+1
0 otherwise

P; (i) satisfies both constraints from Equations (B.1) and (B.2). First,
since we kept the original probabilities until buffer occupancy kg, and then
shared the remaining probabilities between kg and ko + 1, then for every
i, Yoo P (k) > > _oQj (k). Second, let P;(i) be the random variable
that corresponds to the distribution P; (7). Then, the expected number of
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elements in bucket j is:

_ ko+1
E(F@) = Y i-p)
= eo — koQj (ko) + ko (ko) + (B.5)
(ko + 1) P; (ko + 1)
= ky

Thus, P; (i) satisfies the two constraints.

We now show that it minimizes the cost function, over all distributions
that satisfy both constraints. Let G, (i) be a distribution over the buffer
occupancies after the removal process that satisfies both constraints. Let ig
be the smallest integer such that G; (i) # P; (io); if such iy does not exist, we
are done since G; () coincides with P; (7). We will show that G; (ig) > Pj (io).
Also, let iy be the largest integer such that G; (i1) > P; (i1).

We now show that if iy and i, are defined, then G, (ig) > P; (i), and
11 — 1o > 2. We distinguish between 3 cases: 1g > ko, 19 = ko and ig < k.

First, in case of iy > ko, for every bucket occupancy i < kg, G, (1) = P; (i).
Thus, G, (i) = P; (i) for every i, as G; (i) satisfies the second constraint
(Equation (B.2)), implying that iy and i; are not defined.

In case iy < ko, by the first constraint (Equation (B.1)) and the fact that
P;(i) = Q;(7) for every i < ig, we get that G, (ig) > P; (ip). We now show
that i1 > ko, implying that iy —ig > 2. Assume on the contrary that i; < ko,
then Gj (ko +1) < Pj(ko+1) and for every i > ko + 1, G; (i) = 0. Let
G, (i) be the random variable that corresponds to G, (7). Since E{G; (i)} =
E{]gj (i)} and for any random variable X that takes values in N, E(X) =
Yoo Pr{X >}, we get that

ko+1 oo ko+1 oo
DGO =3 > Pi(0). (B.6)
i=1 (=i i=1 k=i
Thus,
ko+1 00

—0. (B.7)

P PMACES A0

By the definition of P; (i), for every i < ko, > ,—, P; (¢) = >_,2,Q; (). So,

ZO i@(z)-i@j(f) +Gj(ko+1)— Pj(ko+ 1) =0. (B.8)
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The first constraint (Equation (B.1)) states that 3,_ G, (£) > >20_, Q; (¢),
thus, Y °,°. G, (0) < 37,2, Q; (£). Also, we know that G; (ko + 1) < P (ko + 1).
Since G; (ig) # Qj (i), we get that the total sum cannot be zero, that is, at
least one element in the sum is negative (but none is positive). Therefore,
11 > k?g.

The last case to consider is when iy = ko. If G; (ig) < P; (io), then G; (i)
clearly does not satisfy the second constraint (Equation (B.2)) as for every
i < ko, Gj(i0) = P;(ip). Therefore, G;(ig) > Pj(ig). Furthermore, the
second constraint implies that there must be some integer i; > ko + 1 such
that G (i1) # 0. Therefore, i1 — iy > 2.

We are now ready to define another distribution, G (i), which also has
minimal cost function:

Gj (Z) —w 1€ {io,il}
G, (7) otherwise

where w = min{G} (i9) — P; (io) , G (i1) — P; (41) }. Notice that G, () is well-
defined since i, — ip > 2. In addition, w > 0 since G, (i9) > P; (ip) and
Gy (i1) > Pj (i1). Hence, G’ (i), which clearly preserves both constraints, has
a cost no larger than G; (i). By continuing this process, we end up with
P; (i) no matter what G (i) is, as i1 — ip decreases at each step by at least
1. This implies that P; (i) minimizes the cost function.
Finally, since we are interested in the limit balancing cost lower bound
ook, we consider the limit distribution Py (7) of the distribution P; (i) that
was found to be optimal for any finite parameters. This is done by using
the Poisson approximation for the binomial distribution @), () of the buckets
occupancy before the removal process [15, 38, 39], where we use the same
approximation to find the values of kg, py and eg. Also, by symmetry we get

thatEoz%:%(l—’y). O

Appendixz B.2. Proof of Theorem /J

We compare the SEQUENTIAL scheme with the SINGLE scheme. In the
SEQUENTIAL scheme we continually try to insert each element, until either
it is placed or all d functions are used.

Note that all hash functions have the same (uniform) distribution over all
buckets. Thus, for every i, f; () are independent of the exact elements that
are hashed. Therefore, applying d; < d hash functions on the same element
is equivalent to applying a single hash function on d; elements. This implies
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we can use the results of the SINGLE scheme, in which a total of a-n elements
are considered and therefore a total of a - n bucket accesses are performed.

Given an average number of bucket accesses a, we set h = kg, and let
SEQUENTIAL operate until a is reached, that is, until time ¢ < 1 such that
Jssquentiar (to) = a. We apply the SINGLE dynamics to get f; (o), and get
that

i(a- r)le T i<h
e,p.a-r e—ar Z a 7- 1 p)) Z _ h
Filte) = 4 G, O (B.10)
7 1— Z l'( )]e ar__ e .

h
e—ar a'rl p)) (1—p) Z:h+1
h AT TP

Using the same consideration as in the proof of Theorem 3, we find that there
is some p € [0,1] such that f; (ty) is exactly Py (i), for every i.

However, note that the SEQUENTIAL scheme cannot bring to any de-
sired number of bucket accesses a, and is limited to f& i mnmar (1). Since
Jooquenar, (1) increases as ko decreases, and ky decreases as 7 increases, then
the minimum ~ such that the SEQUENTIAL scheme achieves optimality, for a
given a and 7, is given by 7 such that f&  oema (1) = a. Thus, we get the
optimality region of this scheme. 0]

Appendiz B.3. Proof of Theorem 5

Given the average number of bucket accesses a, we set h = ky. We would
like to let MHT operate until a is reached, that is, until time ¢y < 1 such that
four (to) = a. However, f&,.. (t) depends on the subtables sizes a;’s.

Up to time ty, in which we aim to exhaust all a-n bucket accesses, we used
exactly n; (tp) times the hash function H; (z) in subtable 7). Since we aim
at an optimal balancing cost, the necessary condition on the distributions of
the hash functions, given in Theorem 2, immediately implies that

a; = ";1 fts). (B.11)
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By substituting the expression for «; in (A.10), we get:

n; (to)
7; (t(J) - 'Y;NGLE (1> TJL T m,n; (t> ,h,p)

n;(to) h+1
nylto), (t
- 1 na " } :Z-foSINGLE (1’71]( O)m,nj (t),h,p)

n;(t) = n-a
m h+1
- 11— ) | SINGLE (| n.h
n . a ; ZfZ ( ) m7 a/ n? 7p)
- ’Y;NGLE (17 m,a-n, h,p) =P (a) (B12>

It is important to notice that, quite surprisingly, 'y;f (to) does not depend on
J- .
We now obtain the time t, by observing that n; (t)) = n-to-p(a)’ ", thus
i—1 i
a; = %. Since ZZ:1 ap = 1, we get 22:1 % = 1, and therefore ¢,
is given by the sum of a geometric series:

m:a<%ff£%>. (B.13)

This, in turn, immediately gives us the claimed memory partitioning «;.

We now turn to show that all bucket distributions are identical. In sub—
table T}, the total number of elements considered is n; (to) = n - to - p (a)’ ",

while there are m-a; = m- (%) p(a)’~" buckets. Hence, by Theorem 6,
we get that the fraction of buckets in subtable 7; that store exactly 7 elements

fij (t) is given by

foes (1, " <—1 —pla) ) p(@ ™ n-to-play”! ,h,p) (B.14)

1-p(a)?

and by substituting to = a (%), we get that f; ; (1) = [N (1, m, a - n, h, p).

Finally, as in the proof of Theorem 4, the MHT scheme cannot bring to
any desired average number of bucket accesses a, but is limited to f,. (1).

Since f&,, (t) increases as ko decreases, and ky decreases as 7 increases, then

the minimum ~ such that the MHT scheme achieves optimality, for a given a

and r, is given by 7o such that f%,. (1) = a. Since ty = a (%), we seek
d

~ such that a = 11__’;((‘2) . Thus, we get the optimality region of this scheme.

OJ
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Appendix C. Variance of the Query-Time in Chain-Based Hash-
Tables

The balancing problem can be directly used in order to construct an
access-constrained balancing scheme with optimal variance over its query
time. In such a scheme, the time it takes to complete a lookup operation
directly depends on the occupancy of the buckets. For example, suppose
that there is only one hash-function H, and some element y is mapped to a
bucket H(y); in order to query y we need to go over all elements of H(y) in
case y is not in the table, or on average over half of them in case y is in the
hash-table.

Note that the average load is simple to obtain and equals W We
next show how to find balancing schemes with minimal occupancy variance.
This is simply done by defining the appropriate cost function: ¢(i) = i* —

<(1—v)n>2-

Thus,
BAL . 1 - 2 (1—"}/)77, ? 1 1 - 2 2
o = 3 (0 (U2 ) - kS - sy
1 m
= lim EZVar(Oj):Var(O), (C.1)
j=1

where O; is the random variable representing the occupancy of bucket j. By
symmetry, all variables O; have the same distribution and thus the same
variance, which is denoted by Var(O). This immediately implies that the
schemes we presented can be used in order to build a hash-table with optimal
variance.
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