
Hash Tables With Finite Buckets Are Less Resistant to Deletions

Yossi Kanizo
Dept. of Computer Science

Technion, Haifa, Israel
ykanizo@cs.technion.ac.il

David Hay
Dept. of Electrical Engineering

Columbia Univ., NY, USA
hdavid@ee.columbia.edu

Isaac Keslassy
Dept. of Electrical Engineering

Technion, Haifa, Israel
isaac@ee.technion.ac.il

Abstract— We show that when memory is bounded, i.e.
buckets are finite, dynamic hash tables that allow insertions
and deletions behave significantly worse than their static coun-
terparts that only allow insertions. This behavior differs from
previous results in which, when memory is unbounded, the two
models behave similarly.

We show the decrease in performance in dynamic hash tables
using several hash-table schemes. We also provide tight upper
and lower bounds on the achievable overflow fractions in these
schemes. Finally, we propose an architecture with content-
addressable memory (CAM), which mitigates this decrease in
performance.

I. I NTRODUCTION

A. Background

Networking devices often usedynamic hash tables, in
which elements keep arriving and departing, and notstatic
ones that are built only once. However, for simplicity, device
designers typically model the performance of the dynamic
hash tables using models of the static hash tables. This paper
shows that these static models can lead to a significantunder-
estimation of the drop ratein the dynamic case.

This under-estimation of the drop rate can potentially
affect the performance of networking devices. Hash tables
form the core building block of many networking device
operations, such as flow counter management, flow state
keeping, elephant traps, virus signature scanning, and IP
address lookup algorithms. If memory is allocated to the
dynamic hash tables according to the static model, many
more elements might need to be dropped from the hash tables
than initially estimated.

Using the static model seems natural. In fact, dynamic
hash tables are known for beingtypically harder to model
than static ones, sometimes even lacking any mathematical
analysis [1]. Therefore, the static model appears to be a
simpler and more accessible option to the network designer.

More significantly, past studies have also found thesame
asymptotic behaviorin dynamic and in static hash tables, in
at least three cases:
(a) In the static case in whichn elements are uniformly
hashed inton infinite buckets, the maximum bucket size
is known to be approximatelylog n/ log log n with high
probability [2], [3]. The dynamic case yields the same
result, assuming alternate departures and arrivals of random
elements while keepingn elements in the hash table after
each arrival.
(b) Likewise, when inserting each element in the least-loaded

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

load

ov
er

flo
w

 fr
ac

tio
n

static
dynamic

(a) d-random with a stash

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

load

ov
er

flo
w

 fr
ac

tio
n

static
dynamic

(b) Cuckoo hashing with a stash

Fig. 1. Overflow fraction with2 hash functions and bucket size1, using
both the static and the dynamic model.

of two random buckets (d-random algorithm withd = 2), the
maximum bucket size islog log n/ log 2+O(1) in the static
case; and again, the dynamic case yields the same result [3],
[4].
(c) Similarly, using the asymmetricd-left algorithm, the static
case and the dynamic case yield again the same bound on
the maximum bucket size [5].
Therefore, as illustrated in these three cases, given a large
number of elements, it appears that the network designer
could use the simpler static model for the dynamic case.

In this paper, we focus on the realistic scenario in which
buckets are finite, as used in networking devices, contrarily
to the infinite-bucket case assumed above. We show that the
dynamic hash table can exhibit asignificantly worsedrop
rate than its static counterpart.

B. Intuitive Example

Fig. 1 plots the system overflow fraction as a function
of the load, i.e. the fraction of elements not placed in the
buckets as a function of the average number of elements per
bucket. It shows the overflow fraction for both a static sys-
tem, where there are only insertions, and a dynamic system,
where we alternate between deletions and insertions while a
fixed load is maintained [4], [6]. To measure the overflow
fraction, it relies on an overflow list, calledstash, to which
new elements are moved when they cannot be inserted in

()1H x

0x

1x

0x 1x

(i)

(ii)

(iii) 1x

. .

(a) Finite buckets

()1H x

0x

1x

(i)

0x (ii)

1x

1x (iii)

. .

(b) Infinite buckets

Fig. 2. An example demonstrating the degradation of performance in
dynamic hash tables.

the hash table. Fig. 1(a) and 1(b) show the overflow fraction
of the d-random algorithm with a stash [4] and the cuckoo
hashing with a stash [7], [8]. The overflow fractions are
obtained in simulations using 2048 buckets,106 rounds with
one random element deletion and one element insertion in
each round, and a standard pseudorandom number generator
to obtain hash values1.

Both figures clearly show a non-negligible degradation in
the overflow fraction of the dynamic system. For instance, the
cuckoo hashing scheme with load of 0.6 yields an overflow
fraction of 0.52% and 2.97% in the static and dynamic
models, respectively. Moreover, while for cuckoo hashing
scheme with load of 0.5 the overflow fraction in the static
model goes to 0 [9], it does so more slowly in the dynamic
case. For instance, form = 1024 we got an overflow fraction
in the static and dynamic models of 0.05% and 0.44%, where
for m = 16384 we got 0.0012% and 0.0606%, respectively.

The intuition behind this difference in behavior is that
if the bucket size is bounded, once an element is placed
in the overflow list it stays there regardless of whether the
corresponding bucket become available later upon deletion.
Therefore, the order of the insertion and deletion operations
directly affects the performance. This is typically not thecase
in the unbounded bucket case, and the difference can cause
a drastic degradation in the scheme performance.

Fig. 2 illustrates this degradation in performance, using
the same scenario both for the finite and the infinite bucket
sizes. For the case of finite buckets, we assume bucket sizes
of 1, an overflow list, and an insertion algorithm that uses
only one hash function. We consider the following scenario:
Let t be the time when a new elementx1 is hashed to a
full bucket j that already stores elementx0 (step (i) in both
Fig. 2(a) and Fig. 2(b)). If a finite bucket is used, thenx1 is
moved to the overflow list (step (ii) in Fig. 2(a)), while in
the infinite-bucket case,x1 is simply stored in bucketj (step
(ii) in Fig. 2(b)). Let t′ > t be the time when elementx0 is
deleted. Assuming that elementx1 is not deleted beforet′,
it stays in the overflow list in the finite-bucket case, while in
the infinite-bucket case it is stored in bucketj (step (iii)).

Therefore, in the dynamic case with finite bucket sizes,

1Simulations with ten times more buckets or rounds yielded near-identical
results.

elementx1 is in the overflow list, even though its corre-
sponding bucketj is empty. This could never happen in the
static case (elements are stored in the overflow list only after
their corresponding buckets are full, and full buckets cannot
become empty). It also could never happen in the dynamic
case with infinite buckets (there is no overflow list).

C. Our Contributions

In this paper, we show that dynamic hash tables with finite
buckets behave worse than static ones.

We start by considering a simplistic dynamic scheme with
a single hash function. We model this hashing scheme analyt-
ically using three different models: a discrete-time Markov
chain, a continuous model with a birth-death chain, and a
fluid model with a continuous-time Markov process. We find
that this simplistic dynamic scheme performs notably worse
than its corresponding static scheme.

Then, we derive a lower bound on the overflow fraction
in the dynamic model ofany hash-table scheme that uses
uniform hash functions and does not move back elements
once they were placed in the overflow list. We prove that
when theaveragenumber of memory accesses per insertion
a increases, the overflow fraction can decrease as slowly as
Ω(1/a). This indicates that the bad performance of dynamic
schemes is fundamental, and is hard to solve by simply using
additional memory accesses.

Next, we introduce an online multiple-choice scheme. We
demonstrate that this scheme reaches that lower bound and
therefore is optimal up to a certain rate of memory access,
which depends on the system parameters.

However, due to the slow decrease of the lower bound,
optimality may be insufficient for certain applications. There-
fore, we suggest changing the assumptions and moving back
elements from the overflow list when a bucket becomes
available upon deletion. We propose the M-B (Moving-
Back) scheme that uses a CAM (content-addressable mem-
ory) device that stores the elements along with their hash
values. A parallel lookup operation is used once an element
is deleted and its bucket becomes non-full. This operation,
supported by the CAM, finds an element in the overflow list
that can be moved back to the bucket. This scheme is shown
to beat the initial lower bound without a CAM.

Finally, we evaluate in this paper all proposed schemes
using simulations as well as experiments with real hash
functions applied on real-life traces.

Paper Organization:We start with preliminary defini-
tions in Section II. Section III presents and analyzes the
single-choiceSINGLE scheme, while Sections IV and V
provide a lower bound on the overflow fraction. Then, in
Section VI we present and analyze the multiple-choiceMUL -
TIPLE scheme, and in Section VII we present the CAM-based
M-B scheme which, upon deletion, moves back elements
from the overflow list. Finally, we evaluate all the analytical
results in Section VIII.

Due to space limits, most proofs are only outlined in
this paper, and presented in full in the online technical
report [10].

II. PROBLEM STATEMENT

A. Terminology and Notations

This paper considerssingle- and multiple-choice hash
schemes with a stash[11], [12]. Such schemes consist of two
data structures:(i) A hash tableof total memory sizem · h,
partitioned intom buckets of sizeh; (ii) An overflow list,
usually stored in an expensive CAM. Note that the overflow
list can also be absent, in which case overflow elements are
simply dropped.

As in traditional hash tables, the schemes should support
three basic operations: element insertions, element deletions,
and lookups. We call the (infinitely long) sequence of these
operations thearrival sequenceof the scheme. In the paper,
we focus mostly on a specific arrival sequence, alternating
between departures of a random element (picked uniformly
at random) and insertions of a new element [4], [6].

Multiple-choice hashing schemes employ up tod prob-
ability distributions over the set of buckets; these distribu-
tions are then used to generate ahash-function setH =
{H1, . . . , Hd} of d independent hash functions. For each
elementx and each operation, the scheme can consider only
the buckets{H1(x), . . . , Hd(x)} (and the overflow list). In
addition, we assume that the scheme must access a bucket
to obtain any information on it (thus, if the hashing scheme
tries to insert an element in a full bucket, it must access the
bucket first).

Our goal is to minimize theexpected overflow fractionof
the scheme, i.e. the fraction of elements that are placed in
the overflow list, subject to the (total and average) number of
memory accesses. We count as one memory access reading
and updating all the elements of a single bucket (this corre-
sponds to the common practice of sizing the bucket size by
the width of the memory word) and we do not count accesses
to the overflow list. We further assume that up tod buckets
can be read in parallel before deciding which one to update,
requiring a total ofd memory accesses.

Formally, the hashing scheme and the optimization prob-
lem are captured by the following two definitions, where the
load c is the ratio of the total number of elementsn by the
total memory sizemh: c = n

mh
.

Definition 1: When the load isc and the bucket size ish,
an 〈a, d, c, h〉 hashing schemeis a scheme with an expected
(respectively, maximum) number of memory accesses per
element of at mosta (respectively,d).

Definition 2: The OPTIMAL DYNAMIC HASH TABLE

PROBLEM is to find an 〈a, d, c, h〉 hashing scheme that
minimizes the expected overflow fractionγ as the number
of elementsn goes to infinity. Whenever defined, letγOPT

denote this optimal expected limit overflow fraction.

B. Arrival Models

Throughout the paper, we will use three different models
for the arrivals and departures of elements: adiscrete model
with a finite number of elements; acontinuous modelwith
a finite number of elements; and afluid model based on
differential equations with an infinite number of elements.

Our objective is to model a constant load, i.e. a constant
number of elements in the system, so that departing elements
are replaced by arriving elements.

Discrete Model — In the discrete model, we assume that
time is divided into time-slots of unit duration, and start at
time t = 0 with n elements in the overflow list. At the start
of each time-slott > 0, an element is chosen uniformly at
random among alln elements in the system to depart. Next,
at the end of time-slott, a new element arrives and is inserted
according to the hashing scheme into either a non-full bucket
or the overflow list. Therefore, by the end of each time-slot
t, there are alwaysn elements in the system, either in the
hash table or in the overflow list.

Continuous Model — The second model is acontinuous-
time model, starting again at timet = 0 with n elements in
the overflow list. In this model, each element stays in the
system for an exponentially-distributed duration of average
1. Therefore, at each infinitesimal time-interval[t, t+ δt],
the probability that a given element departs isn · δt+ o(δt).
For each element departure, another element is automatically
generated and inserted in the system according to the hashing
algorithm into either a non-full bucket or the overflow list.
Again, there are alwaysn elements in the system at each
time t, ensuring a constant load.

Since there aren departures per time-unit on average
instead of a single one, the continuous system can be seen
as a speeded-up version of the discrete system. In fact,
when only looking at the system during the discrete element
departure times, which follow exponentially-distributedinter-
departure times,we obtain the discrete model again.

Incidentally, although each element departure triggers the
arrival of another element with different hashed buckets, we
will sometimes refer by simplicity to the departed element
as if it was reinserted.

Fluid Model — The last model is thefluid model, which
attempts to model the behavior of the continuous system as
the number of elementsn and the number of bucketsm
go to infinity with a constant limit ratioch = limn→∞

n
m

.
In the fluid model, we will often analyze the system using
differential equations, and will be mainly interested in their
fixed-point solutions. Again, we will assume that att = 0,
all elements are in the overflow list.

In the fluid model, as in the finite continuous-time model,
elements stay in the system for an exponentially-distributed
duration of average1, and therefore the departure rate from
each bucket is proportional to the bucket size.

In addition, as in the other models, element departures
trigger element arrivals. Note that in the continuous model,
the average arrival rate per bucket isn

m
, since the arrival

rate isn and there arem buckets. Therefore, in the fluid
model, we model a constant average arrival rate per bucket of
ch = limn→∞

n
m

. Likewise, in the continuous model, when
arriving elements use a uniformly-distributed hash function,
they hash into each bucket at a rate equal to the average
rate of n

m
. In the fluid model, since we consider an infinite

number of buckets, auniformly-distributed hash functionis
not well defined. By extension, and for simplicity, we will

define such a function as one that enables the same arrival
rate ofch to all buckets.

Furthermore, we will define the average hashing rate per
elementa such that it is valid at any timet. We will also
assume that elements may not use hash functions that pick
with higher probability buckets with lower occupancy, i.e.
that the average hashing rate limit ofa is valid given any
bucket size. Thus, if one tenth of the buckets are empty, a
uniform hash will find one tenth of its buckets empty as well.
Of course, an element might still decide to enter a bucket
with lower occupancy with higher probability.

Model Alternatives — In general, to model system
scaling, we would be interested in using either the discreteor
continuous finite models, and then in studying how their so-
lution scales withn. However, given the complex interactions
between then elements, these models often prove intractable.
Therefore, we will use the fluid model in these cases, and will
most oftennot be ableto prove convergence of the discrete
or continuous models to the fluid model. Likewise, we will
not always prove convergence of the differential equations
to the fixed-point solutions. This is, of course, a limit of our
analysis.

On the other hand, for the single-choice hashing scheme
(Section III), we provide a full analysis with the three
models, and prove that the limit of the discrete and con-
tinuous finite models behaves indeed like in the fluid model.
In simulations, we will also show that the scaled systems
converge fast to their fluid model. We refer to [13] for a
more complete discussion of the sufficient conditions for the
convergence to the fluid-limit fixed-point solution.

III. A S INGLE-CHOICE HASHING SCHEME

We start by analyzing a simplistic hashing scheme, which
uses only a single uniformly-distributed hash functionH to
insert elements in the hash table. Each elementx is stored
in bucketH (x), if it is not full, and in the overflow list
otherwise. Since an element uses exactly one hash function,
its average number of memory accesses per element is
a = 1. Of course, this simplistic scheme would probably not
be implemented in advanced networking devices. However,
it provides a better intuition on the reasons behind the
performance degradation in dynamic hash-table schemes.

Discrete Model — We first develop an analytical model
for the scheme within the discrete framework presented in
Section II. Let pk(t) denote the fraction of buckets that
have k elements at the end of time-slott, and p(t) =
(p1(t), . . . , ph(t)). Using this discrete model, we obtain the
following result on the limits of the distribution ofp and of
the overflow fraction.

Theorem 1:Let C =
∑h

ℓ=0

(

n
ℓ

)

(1
m−1)

ℓ. In the discrete
model,
(i) the distribution ofp(t) converges to the Engset distribu-
tion πn [14], [15]; namely,

πn
k =

1

C
·

(

n

k

)

·

(

1

m− 1

)k

. (1)

(ii) the overflow fraction converges to

1

C
·

(

n

h

)

·

(

1

m− 1

)h

·

(

1−
h

n

)

. (2)

Proof: [Proof Outline] As mentioned, the full proof ap-
pears in [10]. We build a birth-death Markov chain to model
the occupancyXi

t of an arbitrary bucketi at timet. We then
show that it is is irreducible, positive recurrent and aperiodic,
and therefore converges to its stationary distributionπn. Last,
we computeπn, and deduce the stationary overflow fraction
γn

SINGLE.
It is interesting to note that Equation (1) can be rewritten

as a truncated binomial expression

πn
k =

(

n

k

)(

1

m

)k (

1−
1

m

)n−k

h
∑

l=0

(

n

l

)(

1

m

)l (

1−
1

m

)n−l
, (3)

which hints at the following interesting equivalent system:
the bucket occupancy is distributed as if then elements were
assigned uniformly at random among them buckets, and
then the buckets with more thanh elements were completely
cleared out and hadall their elements put in the overflow
list. This is in contrast with the static system in which only
elements exceeding the bucket capacity ofh are placed in
the overflow list. Therefore, it nicely illustrates the difference
between the static and dynamic cases.

Continuous Model — We now turn to the continu-
ous model in which elements stay in the system for an
exponentially-distributed duration of average1. It turns out
that the continuous model yields similar results to those of
the discrete model (Theorem 1).

Theorem 2:In the continuous model, the single-choice
hashing scheme has the same stationary distribution and
overflow fraction as in the discrete model.

Proof: [Proof Outline] As in the discrete model, we
build a birth-death chain to model the occupancyXi

t of an
arbitrary bucketi at time t. We obtain a continuous-time
Markov process with rates that are equal to the product of the
transition probabilities in the discrete-time Markov chain by
a scaling factorn, and deduce the equality of the stationary
distribution and overflow fraction in both models.

Fluid Model — We now analyze theinfinite system using
a fluid model. In the fluid model, as in the finite continuous-
time model, elements stay in the system for an exponentially-
distributed duration of average1, and therefore the departure
rate from each bucket is proportional to the bucket size. In
addition, when an element departs, a new element in inserted
into the hash table (or in the overflow list if the corresponding
bucket is full). As explained in Section II, the arrival rateto
each bucket is thereforech = limn→∞

n
m

.
The following theorem, which is based on the M/M/h/h

continuous-time Markov process [15], shows the perfor-
mance of the scheme under the fluid model.

Theorem 3:In the fluid model,
(i) the distribution ofp(t) converges to the stationary distri-

bution π∞, where

π∞
k =

(ch)
k

k!

/ h
∑

l=0

(ch)
l

l!
, k = 0, . . . , h. (4)

(ii) the overflow fraction converges toπ∞
h and follows the

Erlang-B formula.
Proof: [Proof Outline] As previously, we write the

differential equations, and find that they correspond to the
equations ruling an M/M/h/h continuous-time Markov pro-
cess [15]. The drop rate is also found to follow the well-
known Erlang-B formula.

We have seen that the discrete and continuous models
with n elements yield a stationary distributionπn, while
the fluid model yields a fixed-point distributionπ∞. We
will now show that as expected, when scalingn to infinity,
πn converges toπ∞, and so does the associated overflow
fraction.

Corollary 4: Whenn → ∞ with n
m

→ ch,
(i) the stationary distribution converges to the fixed-point
distribution of the fluid model:πn → π∞; and
(ii) the overflow fraction of the discrete (continous) model
converges to the overflow fraction of the fluid model.

Proof: [Proof Outline] We show that for eachn ∈
N

∗ ∪ {∞},
∑h

k=0 π
n
k = 1 and πn

0 > 0, so for k ∈ [0, h],

πn
k /π

n
0 is defined andπn

k = (πn
k /π

n
0) /

(

∑h

l=0 π
n
l /π

n
0

)

.

Then, we prove the convergence ofπn
k /π

n
0 to π∞

k /π∞
0 , which

concludes both the convergence ofπn to π∞ and, since
γn

SINGLE = πn
h ·

(

1− h
n

)

, the convergence ofγn
SINGLE to γ∞

SINGLE.

Finally, we generalize the scheme to deal withprobabilistic
insertions. Namely, there exists someα ∈ [0, 1] such that
each arriving element is either hashed into a bucket as
before with probabilityα, or placed directly in the overflow
list with probability 1 − α, yielding an average number
of memory accessesα (or equivalently, a total number of
memory accessesαn ≤ n, less than the number of elements).
Using the fluid model for simplicity, we obtain the following
result. While this probabilistic scheme is probably not useful
in practice (since the average memory access rate is seldom
less than1), we will later demonstrate that it isoptimalunder
specific conditions.

Theorem 5:In the fluid model, given the single-choice
hashing scheme with an insertion probabilityα, we obtain
a = α ≤ 1, and
(i) the distribution ofp(t) converges to the stationary distri-
bution π∞, where

π∞
k =

(αch)
k

k!

/ h
∑

ℓ=0

(αch)
ℓ

ℓ!
, k = 0, . . . , h. (5)

(ii) the overflow fraction converges to(1− α) + α · π∞
h .

Proof: The differential equations are the same as in the
proof of Theorem 3 when replacingch by αch, sinceα
simply changes the arrival rate. The distribution results are
then immediate. In addition, in the fixed-point equations, an
arriving element either overflows immediately with proba-
bility 1− α, or checks with probabilityα a bucket that can

be full with probability π∞
h , hence the overflow equation

follows as well.

IV. OVERFLOW LOWER BOUND

Our objective is to find a lower bound on the optimal
expected limit overflow fractionγOPT in the OPTIMAL DY-
NAMIC HASH TABLE PROBLEM, and therefore on the ex-
pected overflow fractionγ of any〈a, d, c, h〉 hashing scheme,
when assuming a fluid model. We will study the simpler
case with a single uniformly-distributed hash function, as
defined in Section II. The more general case with several
hash functions using different subtable-based distributions
appears in Section V.

The proof relies on the following result from [16]. Con-
sider an Erlang blocking model withN servers, and suppose
that the arrival rate depends on the system. Letλk be the
arrival rate when there arek transmissions in progress,
k = 0, 1, . . . , N − 1. Then we have:

Lemma 1 (Theorem 4.2 in [16]):For all increasing map-
pings f : R → R and for all t > 0, Ef(X) is concave
increasing as a function ofλk, for k = 0, 1, . . . , N − 1.

We use this lemma to prove the lower-bound result.
Theorem 6:In the fluid model, under the assumptions

above where all buckets have the same probability of being
hashed into, the optimal expected fixed-point overflow frac-
tion γOPT in the OPTIMAL DYNAMIC HASH TABLE PROBLEM

is lower-bounded by

γ∞
LB (a) = 1− a+ a ·

rh

h!

/ h
∑

l=0

rl

l!
, (6)

wherer = ach.
Proof: [Proof Outline] The proof relies on Lemma 1

which demonstrates that the worst-case average bucket oc-
cupancy is at most the average bucket occupancy that occurs
when all memory accesses are used to insert an element. We
then use a standard result from Erlang theory linking the
drop rate to the average occupancy [14], [15] to find a lower
bound on the drop rate.
Note again that the Erlang-B formula appears in the lower-
bound on the overflow. This yields the following optimality
result:

Theorem 7:In the fluid model, the single-choice hashing
scheme is optimal for every average number of memory
accessesa in [0, 1] (and in particular fora = 1).

Proof: For theSINGLE scheme, there is a single hashed
bucket per element, and it is accessed with probabilityα,
thereforea = α. For a ≤ 1, we get

γ∞
LB (a)

(a)
= (1− α) + α ·

(αch)h

h!

/ h
∑

l=0

(αch)l

l!

(b)
= γ∞

SINGLE

where (a) comes from Equation (6),r = ach and a = α,
and (b) from Theorem 5.

Example 1:We illustrate the significance of the lower
bound by considering a simple system with buckets of size
h = 1, implying γ∞

LB (a) = 1− a+ a · c·a
1+c·a = 1− a

1+c·a .
In particular, for a loadc = 1, corresponding to the scaling

case where the number of buckets is kept equal to the
number of elements and thereforelimn→∞

n
m

= 1, we get
γ∞

LB (a) = 1− a
1+a

= 1
1+a

, which shows that the lower-bound
decreases slowly asΘ(1/a) when the average number of
memory accesses per insertiona increases.
For instance, to get a1% drop rate we need each element
to access an average of at leasta = 99 buckets. Of course,
this is impossible to implement in high-speed networking
devices. Thus, this lower bound is essentially animpossibility
result, which shows that it is not easy to obtain efficient hash
tables with deletions.

V. L OWER BOUND WITH MULTIPLE HASH-FUNCTION

DISTRIBUTIONS

We now consider a setting with a setI of I = |I|
subtables, where subtablei ∈ I uses a fractionαi of all
buckets. We will allow for thed hash functions to use up tod
different distributions{fj}1≤j≤d

over theI subtables, where
each distributionfj assigns a probabilityf i

j to subtable
i ∈ I, with

∑

i∈I f i
j = 1, and then uniformly picks

buckets within each subtable (as defined in Section II). We
also assume that each distributionfj is used by a fraction
κj of the total memory accesses. Therefore, subtablei is
accessed with a total probability ofβi =

∑d

j=1 κj · f
i
j , with

∑

i∈I βi = 1. The following result establishes that the lower-
bound is reached when the hash table is used in a uniform
way, i.e. the probabilityβi of accessing a subtable is equal
to its fractionαi in the table, and therefore the lower-bound
is the same as established previously in Theorem 6.

Theorem 8:In the fluid model with multiple distributions
as defined above, the lower-boundγ∞

LB (a) on the fixed-point
overflow fraction is the same as with a unique uniform hash
function, and is reached iff for alli ∈ [1, I], βi = αi, i.e.
the weighted average of all distributions is uniform.

Proof: [Proof Outline] The proof, which is fully pre-
sented in [10], first shows that in the worst-case, each sub-
table follows the worst-case Markov chain established in the
bound above. Then, it computes the average occupancy, and
shows that it is maximized iffαi = βi for all i.

VI. A M ULTIPLE-CHOICE HASHING SCHEME

We now introduce a natural extension to the single-choice
hashing scheme that uses an ordered set ofd hash func-
tions H = {H1, . . . , Hd}, such that all the hash functions
are independent and uniformly distributed. Upon inserting
an elementx, the scheme successively reads the buckets
H1(x), H2(x), . . . Hd(x) and placesx in the first non-full
bucket. If all these buckets are full,x is placed in the over-
flow list. To keep an average number of memory accesses
per element of at mosta, the algorithm attempts to insert
x into the hash table with a probabilityα, otherwise it is
directly placed in the overflow list.

We evaluate the performance of this scheme analytically
using the fluid model.

Theorem 9:Assume the multiple-choice hashing scheme
with a hashing probabilityα. Using the fluid-model fixed-
point distributionπ∞,

(i) π∞ satisfiesπ∞
k (a) =

(ach)k

k!
h
∑

l=0

(ach)l

l!

, for eachk = 0, . . . , h;

(ii) the average bucket access ratea satisfies the fixed-point
equationa = α ·

1−π∞

h
(a)d

1−π∞

h
(a) ;

(iii) the overflow fraction is equal to the lower-bound, and
is thereforeoptimal, for a ∈ [0, aco], whereaco satisfies the

fixed-point equationaco =
1−π∞

h
(aco)d

1−π∞

h
(aco) .

Proof: [Proof Outline] The proof first establishes the
fixed-point distribution as a function ofa. Then, it computes
a given a full-bucket probabilityπ∞

h (a), by analyzing the
successive steps of theMULTIPLE algorithm. It concludes
by using the fact that the probabilityα cannot go beyond 1.

The following example illustrates our results.
Example 2:For the case whereh = 1, solving the fixed-

point equation yieldsaco = 2c−1+
√
1+4c2

2c . Therefore, for a
load of one element per bucket, i.e.c = limn→∞

n
m

= 1,
we getaco = 1+

√
5

2 ≈ 1.62, and the corresponding overflow
fraction is γ∞

LB (aco) = 1.5 −
√
5
2 ≈ 38.2%. Likewise, for a

load of c = 0.1, we getaco = −0.8+
√
1+0.04

0.2 ≈ 1.099, with
the corresponding overflow fractionγ∞

LB (aco) ≈ 0.98%.

VII. M OVING BACK ELEMENTS

So far, we have found optimal schemes for a range of
values ofa, the average number of memory accesses per
element. However, although optimal, the expected overflow
fraction may still be too large.

In the literature, several solutions exist to reduce the drop
rate (or collision probability) in a dynamic system. One such
solution uses limited hash functions in order to be able to
rebalance the hash table in case of deletion [17]. However,
this approach gives up randomness, and the efficiency of a
similar approach appears limited [6]. Another solution, based
on the second-chancescheme [11], moves elements from
one bucket to another by storing hints at each bucket [6].
However, we found in simulations that this solution was
less effective than our suggested scheme presented below
for higher loads, while it was more effective for lower
loads. (Due to space considerations, we present the detailed
simulation results in [10].)

To reduce the overflow fraction, we suggest a scheme
that allows moving elements back from the overflow list to
the buckets upon adeletionoperation2. This scheme can be
combined with any insertion scheme.

Our scheme, called the moving-back scheme (M-B), relies
on a (binary) CAM. In general, a CAM stores keys in
entries. Given some keyk, a parallel lookup is performed
over all entries and the index of the first (that is, highest
priority) entry that containsk is returned from the CAM.
In many cases, this index is later used in order to access in
regular memory a direct-access array that contains the value

2We also consider a scheme that works uponinsertion, however the details
are omitted due to lack of space; moving back elements upon deletion
performs better in general.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

a

γ

lower bound
a

SINGLE
CO

a
MULTIPLE
CO

d−random
d−left
MULTIPLE M−B

Fig. 3. Overflow fraction as a function ofa with d = 4, h = 4, c = 1.

associated withk. CAMs enable constant-time operations,
however they are more expensive and consume more power
than regular memory. It is a common practice to implement
the overflow list in a CAM [1], [11], [12], relying on the fact
that the number of elements in the overflow list is small.

Our scheme uses an auxiliary CAM, besides the primary
CAM used to store the element of the overflow list: For
each elementx that is stored in thei-th entry of the primary
CAM, we store the values{H1(x), H2(x), . . . , Hd(x)} in
entriesd · i, d · i+1, . . . , d · i+(d−1) of the auxiliary CAM.

When an element is deleted from a bucketj that was
previously full, we need to move an elementx from the
overflow list to bucketj such thatj is the result of applying
at least one of the hash-functions onx. We can locate such
an element in constant time by querying the auxiliary CAM
with key j. Suppose the entry returned by the auxiliary CAM
is ℓ, thenx is located in entry⌊ℓ/d⌋ of the primary CAM.

We note that upon moving an element back to the hash
table, one should update the corresponding entries of the
primary and auxiliary CAMs. An efficient way to update is
to write the valuem + 1 in these entries, such that when a
new element is inserted into the overflow list, one can query
the auxiliary CAM with the valuem+1 to decide in which
entry (of the primary CAM) to put the new element.

In [10], we show that whend = 1, the proposed M-B
scheme behaves as in the static case and, ford > 1, we
present an approximate model for the overflow fraction in
caseMULTIPLE scheme is used.

VIII. E XPERIMENTAL RESULTS

A. Simulations

Fig. 3 compares all the schemes. It was obtained with
d = 4 choices, bucket sizeh = 4, n = 4,096 elements and
m = 1,024 buckets, yielding a loadc = 1.

The solid line plots the overflow fraction lower-bound
γLB (a) from Theorem 6. Simulations show that the proposed
M-B scheme beats the lower bound with an overflow fraction
of 4.6%, emphasizing the strength of this architecture. Of
course, the lower bound does not apply to this case, since it
moves back elements from the CAM.

As follows from Theorems 7 and 9, the overflow fractions
γSINGLE (a) and γMULTIPLE (a) of the single-choice (SINGLE)
and the multiple-choice (MULTIPLE) hashing schemes follow
the lower-bound line, respectively untilacoSINGLE = 1 with
γSINGLE = 31.1%, and acoMULTIPLE = 2.195 with γMULTIPLE =
13.5%. Therefore, they are clearly optimal up to a certain
point.

0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

c

γ

MULTIPLE dynamic
MULTIPLE static
MULTIPLE M−B
d−random static

(a) h = 4 andd = 4

2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

d

γ

MULTIPLE dynamic
MULTIPLE static
MULTIPLE M−B
d−random static

(b) h = 4 andc = 1

Fig. 4. Overflow fraction of the proposed moving-back (M-B) scheme (via
simulations).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

load

γ

h=1 (analysis)
h=1 (trace)
h=2 (analysis)
h=2 (trace)

(a) SINGLE

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

load

γ

h=1 (analysis)
h=1 (trace)
h=2 (analysis)
h=2 (trace)

(b) MULTIPLE

Fig. 5. Experiment using real-life traces and hash functionswith SINGLE

and MULTIPLE (d=2).

We further evaluate the performance of our proposed M-
B scheme. Quite surprisingly, when using theMULTIPLE

scheme (of Section VI), the M-B scheme outperforms the
static case of theMULTIPLE scheme (see Fig. 4), and per-
forms similarly to the staticd-random scheme (in the static
case, d-random performs better than our multiple-choice
scheme, albeit consuming significantly more energy [12]).
This can be explained intuitively as follows: our moving-
back strategy moves back an element to the only correspond-
ing bucket which is not full; this is equivalent to inserting
the element to the least occupied bucket as in thed-random
hashing scheme.

B. Experiments Using Real-Life Traces

We have also conducted experiments using real-life traces
recorded on a single direction of an OC192 backbone
link [18]. Our goal is to compare the average overflow frac-
tion retrieved using our models forSINGLE and MULTIPLE

with the corresponding overflow fraction when using a real
hash function on a real-life trace. We used a 64-bit mix
function [19] to implement two 16-bit hash functions. We
usedm = 10,000 buckets, and set a number of elementsn
as corresponding to various values ofh and c. To keep a

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

total num of elements

γ

SINGLE (sim)
SINGLE (model)
MULTIPLE (sim)
MULTIPLE (model)

Fig. 6. Marginal overflow fraction of 100 on-off flows withm = 500,
h = 1 andd = 2

constant desired load, we alternated100,000 times between
an arrival (insertion) of a new TCP packet according to the
trace, and the departure (deletion) of a random TCP packet.
The hash functions were given the source and destination IP
tuple as well as the sequence and acknowledgment numbers
of the TCP packets. Therefore, the hash table stores the latest
TCP packets, and can retrieve any needed packet based on
its header. It can be used to monitor ongoing TCP flows,
given a target numbern of packets that are stored at any
time. Its objective in our experiments was mainly to test the
correctness of our model.

Fig. 5 shows that the results of our experiments are
relatively close to our model. The maximum gap is for the
SINGLE scheme withh = 1 andc = 0.3. Our model predicts
an overflow fraction of23.08%, while the experiment yields
25.67%.

C. Experiments Using an On-off Arrival Model

We also consider a queueing model where at each step
i, bi elements arrive according tok independent on-off
bursty flows of elements [20]; then, after the arrival phase,
one element is randomly deleted. Therefore, the number of
elements in the system keeps changing, contrarily to the
previous models with a constant load.

Fig. 6 shows the marginal overflow fraction under the
above queueing model withk = 100 on-off flows of
elements. Each flow has rateρ = 0.0095 and average burst
size of 10 elements. The figure shows that, given the number
of elements currently in the system, the marginal overflow
fraction is approximately the one we found for the constant-
load case, both forSINGLE and MULTIPLE.

Moreover, by the distribution of the number of elements
in the system given by the queueing model, we are able
to heuristically approximate the overall expected number of
elements in the overflow list. More precisely, we take the
sum-product of the queue size distribution by the distribution
of the overflow fraction as a function of the load. In the case
of SINGLE this model gives an expected number of overflow
elements of 61.63, while simulations yield 61.41. Likewise,
for MULTIPLE, we obtain 40.17 and 40.26, respectively.
Therefore, this heuristic model proves quite accurate.

IX. CONCLUSION

In this paper we demonstrated that when the memory is
bounded, dynamic schemes behave significantly worse than
their static counterparts. This decrease in performance is
inherent to the problem, as shown by our lower bounds.

Moreover, we considered two hashing schemes that we
proved to be optimal: a single-choice hashing scheme that
was used to demonstrate our approach and techniques, and
a multiple-choice scheme that inserts the elements greedily.

However, due to the slow decrease of the lower bound,
optimality may be insufficient for certain applications. There-
fore, we suggested moving back elements from the overflow
list as soon as a deletion occurs. We have shown through
simulations that this strategy beats the lower bound of the
dynamic case (where moving back elements is not allowed).

We also conducted an extensive experimental study to
verify the accuracy of our model, the behavior of the models
under realistic (rather than fully-random) hash functions, and
under variable-load arrival models.

ACKNOWLEDGMENT

This work was partly supported by the European Research
Council Starting Grant n◦ 210389 and by the Legacy Her-
itage Fund program of the Israel Science Foundation (grant
11816/10).

REFERENCES

[1] A. Kirsch, M. Mitzenmacher, and G. Varghese.,Hash-Based Tech-
niques for High-Speed Packet Processing. DIMACS, 2010, ch. 9.

[2] G. H. Gonnet, “Expected length of the longest probe sequence in hash
code searching,”J. ACM, vol. 28, no. 2, pp. 289–304, 1981.

[3] M. Mitzenmacher, A. Richa, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” inHandbook of
Randomized Computing, vol. 1, 2000, pp. 255–312.

[4] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced
allocations,” inACM STOC, 1994, pp. 593–602.

[5] B. Vöcking, “How asymmetry helps load balancing,” inIEEE FOCS,
1999, pp. 131–141.

[6] A. Kirsch and M. Mitzenmacher, “On the performance of multiple
choice hash tables with moves on deletes and inserts,” inAllerton,
2008, pp. 1284–1290.

[7] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:
Cuckoo hashing with a stash,”SIAM J. on Computing, vol. 39, no. 4,
p. 1543, 2009.

[8] R. Kutzelnigg, “A further analysis of cuckoo hashing with a stash and
random graphs of excessr,” Submitted for publication, 2009.

[9] M. Drmota and R. Kutzelnigg, “A precise analysis of cuckoohashing,”
Submitted for publication, 2009.

[10] Y. Kanizo, D. Hay, and I. Keslassy, “Hash tables with finite buckets
are less resistant to deletions,” Comnet, Technion, Israel,Tech.
Rep. TR10-01, 2010. [Online]. Available: http://webee.technion.ac.il/
∼isaac/papers.html

[11] A. Kirsch and M. Mitzenmacher, “The power of one move: Hashing
schemes for hardware,” inIEEE Infocom, 2008, pp. 565–573.

[12] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashing,” in IEEE
Infocom, 2009, pp. 2500–2508.

[13] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” Ph.D. dissertation, Univ. of California at Berkley, 1996.

[14] R. B. Cooper,Introduction to Queueing Theory, 2nd ed. North
Holland, 1981.

[15] L. Kleinrock, Queueing Systems. Wiley, 1975.
[16] P. Nain, “Qualitative properties of the Erlang blocking model with

heterogeneous user requirements,” INRIA, Tech. Rep. 1018, April
1989.

[17] S. Kumar, J. Turner, and P. Crowley, “Peacock hashing: Deterministic
and updatable hashing for high performance networking,” inIEEE
Infocom, 2008, pp. 556–564.

[18] C. Shannon, E. Aben, K. claffy, and D. E. Andersen, “CAIDA
Anonymized 2008 Internet Trace equinix-chicago 2008-03-1919:00-
20:00 UTC (DITL) (collection),” http://imdc.datcat.org/collection/.

[19] T. Wang, “Integer hash function,” http://www.concentric.net/∼Ttwang/
tech/inthash.htm.

[20] A. Adas, “Traffic models in broadband networks,”IEEE Communica-
tions Magazine, vol. 35, pp. 82–89, 1997.

