Hash Tables With Finite Buckets Are Less Resistant to Deletions

Yossi Kanizo
Dept. of Computer Science
Technion, Haifa, Israel
ykanizo@cs.technion.ac.il

Abstract—We show that when memory is bounded, i.e.
buckets are finite, dynamic hash tables that allow insertions
and deletions behave significantly worse than their static coun-
terparts that only allow insertions. This behavior differs from
previous results in which, when memory is unbounded, the two
models behave similarly.

We show the decrease in performance in dynamic hash tables
using several hash-table schemes. We also provide tight upper
and lower bounds on the achievable overflow fractions in these
schemes. Finally, we propose an architecture with content-
addressable memory (CAM), which mitigates this decrease in
performance.

I. INTRODUCTION

A. Background

Networking devices often usdynamic hash tables, in
which elements keep arriving and departing, and static

David Hay

Dept. of Electrical Engineering
Columbia Univ., NY, USA
hdavid@ee.columbia.edu

overflow fraction

overflow fraction

I
~

Isaac Keslassy

Dept. of Electrical Engineering
Technion, Haifa, Israel
isaac@ee.technion.ac.il

o
w

o
N
T

o
[

static -
[| - —+—dynamic -

-

°
S

oo
N

0.3 0.4 0.5 0.6 0.7 0.8 0.9
load

(a) d-random with a stash

1

o
w

o
)

o
=
T

o

static
|- —+— dynamic

o
N

0.3 0.4 0.5 0.6 0.7 0.8 0.9
load

(b) Cuckoo hashing with a stash

ones that are built only once. However, for simplicity, devi o _ o
designers typically model the performance of the dynamil'c;:'(ﬁhlthe (s)t‘;i'g";ﬁ’ dfracé'znn‘;"r‘nh?c *:gggefl“”“'o”s and bucket size using
hash tables using models of the static hash tables. This pape Y '

shows that these static models can lead to a significaaer-

estimation of the drop ratén the dynamic case. of two random buckets#¢random algorithm withl = 2), the
This under-estimation of the drop rate can potentiallynaximum bucket size imglogn/log 2+ O(1) in the static
affect the performance of networking devices. Hash tablegse; and again, the dynamic case yields the same result [3],
form the core building block of many networking devicefs),
operations, such as flow counter management, flow stgig) Similarly, using the asymmetritleft algorithm, the static
keeping, elephant traps, virus signature scanning, and {Zse and the dynamic case yield again the same bound on
address lookup algorithms. If memory is allocated to thghe maximum bucket size [5].
dynamic hash tables according to the static model, mamyherefore, as illustrated in these three cases, given e larg
more elements might need to be dropped from the hash tablggmper of elements, it appears that the network designer
than initially estimated. could use the simpler static model for the dynamic case.
Using the static model seems natural. In fact, dynamic | this paper, we focus on the realistic scenario in which
hash tables are known for beirgpically harder to model pyckets are finite, as used in networking devices, congraril
than static ones, sometimes even lacking any mathematigglthe infinite-bucket case assumed above. We show that the

analysis [1]. Therefore, the static model appears to be @namic hash table can exhibit significantly worsedrop
simpler and more accessible option to the network designegte than its static counterpart.

More significantly, past studies have also found shaene N
asymptotic behavioin dynamic and in static hash tables, inB- Intuitive Example
at least three cases: Fig. 1 plots the system overflow fraction as a function
(@) In the static case in which elements are uniformly of the load, i.e. the fraction of elements not placed in the
hashed inton infinite buckets, the maximum bucket sizebuckets as a function of the average number of elements per
is known to be approximatelyogn/loglogn with high bucket. It shows the overflow fraction for both a static sys-
probability [2], [3]. The dynamic case yields the samdem, where there are only insertions, and a dynamic system,
result, assuming alternate departures and arrivals oforand where we alternate between deletions and insertions while a
elements while keeping elements in the hash table afterfixed load is maintained [4], [6]. To measure the overflow
each arrival. fraction, it relies on an overflow list, callestash to which
(b) Likewise, when inserting each element in the leastddad new elements are moved when they cannot be inserted in



® H(x,@ elementz; is in the overflow list, even though its corre-

Hix) sponding buckej is empty. This could never happen in the
] (0 static case (elements are stored in the overflow list onbr aft
(i) ] () their corresponding buckets are full, and full buckets cann
— " become empty). It also could never happen in the dynamic
=™ i) T case with infinite buckets (there is no overflow list).
o T ® ©“LLE ( ’
— C. Our Contributions
@y [T TTTTT] &9 (i) () In this paper, we show that dynamic hash tables with finite
(a) Finite buckets (b) Infinite buckets buckets behave worse than static ones.

We start by considering a simplistic dynamic scheme with
a single hash function. We model this hashing scheme analyt-
ically using three different models: a discrete-time Marko
chain, a continuous model with a birth-death chain, and a

the hash table. Fig. 1(a) and 1(b) show the overflow fractiofiuid m.odell Wit,h a continupus-time Markov process. We find
of the d-random algorithm with a stash [4] and the cuckodhat thls simplistic d_ynam|c_ scheme performs notably worse
hashing with a stash [7], [8]. The overflow fractions ard"an its corresponding static scheme. ,
obtained in simulations using 2048 bucket8® rounds with Then, we derive a lower bound on the overflow fraction
one random element deletion and one element insertion i e dynamic model ofiny hash-table scheme that uses
each round, and a standard pseudorandom number gener&fgform hash functions and does not move back elements
to obtain hash valués once they were placed in the overflow list. We prove that

Both figures clearly show a non-negligible degradation if/hen theaveragenumber of memory accesses per insertion
the overflow fraction of the dynamic system. For instance, th INcréases, the overflow fraction can decrease as slowly as
cuckoo hashing scheme with load of 0.6 yields an overfloﬂ(l/a)' T_h's indicates that the_ bad performance O_f dynam_lc
fraction of 0.52% and 2.97% in the static and dynamiéCh?meS is fundamental, and is hard to solve by simply using
models, respectively. Moreover, while for cuckoo hashingdditional memory accesses.

scheme with load of 0.5 the overflow fraction in the static 'N&Xt, we introduce an online multiple-choice scheme. We
model goes to 0 [9], it does so more slowly in the dynamigemonstrate that this scheme reaches that lower bound and

case. For instance, fon = 1024 we got an overflow fraction therefore is optimal up to a certain rate of memory access,

in the static and dynamic models of 0.05% and 0.44%, whet¥hich depends on the system parameters.

for m = 16384 we got 0.0012% and 0.0606%, respectively. jowever, due to the slow decrease of the lower bound,
The intuition behind this difference in behavior is tha'[Opt'mallty may be |nsuff|.C|ent for certain gppllcatlons.eTe-

if the bucket size is bounded, once an element is placéare’ we suggest changing the assumptions and moving back

in the overflow list it stays there regardless of whether thE€ments from the overflow list when a bucket becomes

corresponding bucket become available later upon deletio@“@ilable upon deletion. We propose the M-B (Moving-

Therefore, the order of the insertion and deletion openatio Back) sqheme that uses a CAM (content—addrgssabl_e mem-
directly affects the performance. This is typically not tese ory) device that stores the elements along with their hash

in the unbounded bucket case, and the difference can cad@éues' A parallel lookup operation is used once an element
a drastic degradation in the scheme performance is deleted and its bucket becomes non-full. This operation,

Fig. 2 illustrates this degradation in performance, usin upported by the CAM, finds an element i_n the overf_low list
the same scenario both for the finite and the infinite buck at can be moved back to the bucket. This scheme is shown

sizes. For the case of finite buckets, we assume bucket Si}gsg_eat"the initial :ower _bouhn_d without ﬁ CAM. d sch
of 1, an overflow list, and an insertion algorithm that uses inally, we evaluate in this paper all proposed schemes

only one hash function. We consider the following scenarig!Sing Simulations as well as experiments with real hash

Let ¢t be the time when a new element is hashed to a functions applied on _rea}l-life traces. h orelimi defini
full bucket j that already stores elemeng (step (i) in both Pf'iper Or_ganlzanon.\_Ne start with preliminary defini-
Fig. 2(a) and Fig. 2(b)). If a finite bucket is used, thenis tlpns in Sgcnon Il. Section I pr(_asents gnd analyzes the
moved to the overflow list (step (ii) in Fig. 2(a)), while in single-choice SINGLE scheme, while Sections IV and V

the infinite-bucket cases; is simply stored in bucket (step provilde a lower bound on the overflow frgction. Then, in
(ii) in Fig. 2(b)). Lett’ > ¢ be the time when element, is Section VI we present and analyze the multiple-choice. -
deleted. Assuming that element is not deleted before TIPLE scheme, and in Section VIl we present the CAM-based
it stays in the overflow list in the finite-bucket case, white i M-B scheme Wh'c_h’ upon deletion, maves back elements
the infinite-bucket case it is stored in buckifstep (). from the overflow list. Finally, we evaluate all the analglic

Therefore, in the dynamic case with finite bucket sizeé’,esu'tS in Section y“_l' . .
Due to space limits, most proofs are only outlined in

1Simulations with ten times more buckets or rounds yielded rentical this paper, and presented in full in the online technical
results. report [10].

Fig. 2. An example demonstrating the degradation of perforemanc
dynamic hash tables.



Il. PROBLEM STATEMENT Our objective is to model a constant load, i.e. a constant
number of elements in the system, so that departing elements
are replaced by arriving elements.

This paper considersingle- and multiple-choice hash  pjscrete Model —In the discrete modelwe assume that
schemes with a stagh1], [12]. Such schemes consist of tWo{ime s divided into time-slots of unit duration, and stait a
data structured(i) A hash tableof total memory sizen -k, time ¢ = 0 with n elements in the overflow list. At the start
partitioned intom buckets of sizeh; (i) An overflow list  of each time-slot > 0, an element is chosen uniformly at
usually stored in an expensive CAM. Note that the overflowsndom among alh elements in the system to depart. Next,
list can also be absent, in which case overflow elements ggthe end of time-slat, a new element arrives and is inserted
simply dropped. according to the hashing scheme into either a non-full ucke

As in traditional hash tables, the schemes should suppejf the overflow list. Therefore, by the end of each time-slot
three basic operations: element insertions, elementidetgt ; there are always, elements in the system, either in the
and lookups. We call the (infinitely long) sequence of thesgash table or in the overflow list.
operations tharrival sequencef the scheme. In the paper, continuous Model — The second model is @ntinuous-
we focus mostly on a specific arrival sequence, alternatingme model starting again at time = 0 with n elements in
between departures of a random element (picked uniformiye overflow list. In this model, each element stays in the
at random) and insertions of a new element [4], [6]. system for an exponentially-distributed duration of agera

Multiple-choice hashing schemes employ upddrob- 1. Therefore, at each infinitesimal time-intervial ¢ + t],
ability distributions over the set of buckets; these distfi the probability that a given element departsuisst + o(6t).
tions are then used to generatehash-function set{ = For each element departure, another element is autontgatical
{H1,...,Ha} of d independent hash functions. For eactyenerated and inserted in the system according to the lashin
elementz and each operation, the scheme can consider ondygorithm into either a non-full bucket or the overflow list.
the buckets{H:(z),..., Ha(z)} (and the overflow list). In  Again, there are always elements in the system at each
addition, we assume that the scheme must access a bugkgfe ¢, ensuring a constant load.
to obtain any information on it (thus, if the haShing scheme Since there aren departures per time-unit on average
tries to insert an element in a full bucket, it must access th@stead of a single one, the continuous system can be seen
bucket first). as a speeded-up version of the discrete system. In fact,

Our goal is to minimize thexpected overflow fractioof  \when only looking at the system during the discrete element
the scheme, i.e. the fraction of elements that are placed departure times, which follow exponentially-distribufater-
the overflow list, subject to the (total and average) numbber @eparture timesye obtain the discrete model again
memory accesse$Ve count as one memory access reading |ncidentally, although each element departure triggees th
and updating all the elements of a single bucket (this correyrival of another element with different hashed buckets, w
sponds to the common practice of sizing the bucket size Ryjll sometimes refer by simplicity to the departed element
the width of the memory word) and we do not count accesses if it was reinserted.
to the overflow list. We further assume that updtduckets Fluid Model — The last model is théluid mode] which
can be read in parallel before deciding which one to updatgttempts to model the behavior of the continuous system as
requiring a total ofd memory accesses. the number of elements and the number of buckets

Formally, the hashing scheme and the optimization prolgo to infinity with a constant limit ratieh = lim, . 2.
lem are captured by the following two definitions, where then the fluid model, we will often analyze the system using
load ¢ is the ratio of the total number of elementsby the (differential equations, and will be mainly interested irith
total memory sizenh: c = . fixed-point solutions. Again, we will assume thattat 0,

Definition 1: When the load i and the bucket size s, all elements are in the overflow list.
an (a, d, c, h) hashing schemis a scheme with an expected |n the fluid model, as in the finite continuous-time model,
(respectively, maximum) number of memory accesses pelements stay in the system for an exponentially-disteibut
element of at most (respectivelyd). duration of average, and therefore the departure rate from

Definition 2: The OPTIMAL DYNAMIC HASH TABLE  each bucket is proportional to the bucket size.

PROBLEM is to find an (a,d,c,h) hashing scheme that |n addition, as in the other models, element departures
minimizes the expected overflow fractionas the number trigger element arrivals. Note that in the continuous model
of elementsn goes to infinity. Whenever defined, leter the average arrival rate per bucket Js, since the arrival
denote this optimal expected limit overflow fraction. rate isn and there aren buckets. Therefore, in the fluid

. model, we model a constant average arrival rate per bucket of
B. Arrival Models ch = lim,,_,o . Likewise, in the continuous model, when

Throughout the paper, we will use three different modelarriving elements use a uniformly-distributed hash futi
for the arrivals and departures of elementstigcrete model they hash into each bucket at a rate equal to the average
with a finite number of elements; @ntinuous modewith  rate of . In the fluid model, since we consider an infinite
a finite number of elements; and fluid modelbased on number of buckets, aniformly-distributed hash functiois
differential equations with an infinite number of elementsnot well defined. By extension, and for simplicity, we will

A. Terminology and Notations



define such a function as one that enables the same arri@ the overflow fraction converges to

rate ofch to all buckets. A
Furthermore, we will define the average hashing rate per Loy (). 1— h ) 2)
elementa such that it is valid at any time. We will also ¢ \h m—1 n

: ; Proof: [Proof Outline] As mentioned, the full proof ap-
assume that elements may not use hash functions that pick . . _ .
with higher probability buckets with lower occupancy, i e pearsin [10]. We build a birth-death Markov chain to model

that the average hashing rate limit @fis valid given any the occupancyX; of an arbitrary bucket at time. We then

bucket size. Thus, if one tenth of the buckets are empty,sgow that itis is irreducible,. positi\_/e recurren.t anq o,
uniform hash will find one tenth of its buckets empty as weIIf"anI therefore converges to its stationary distributinLast,

Of course, an element might still decide to enter a buckdfe computer™, and deduce the stationary overflow fraction

with lower occupancy with higher probability. TsineLE i ) -_
Model Alternatives — In general, to model system It is mterestmg to n_ote that Eq_uaﬂon (1) can be rewritten

scaling, we would be interested in using either the disarete as a truncated binomial expression

continuous finite models, and then in studying how their so- n 1\* 1\"k

lution scales withh. However, given the complex interactions (k) (m) ( - m>

between the: elements, these models often prove intractable. Ty = - ; — 3)

Therefore, we will use the fluid model in these cases, and will 3 (n) (1> (1 3 1)

most oftennot be ableto prove convergence of the discrete l m m

. . . . X 1=0
or continuous models to the fluid model. Likewise, we will

not always prove convergence of the differential equationdhich hints at the following interesting equivalent system
to the fixed-point solutions. This is, of course, a limit of ou the bucket occupancy is distributed as if thelements were
analysis. assigned uniformly at random among the buckets, and

On the other hand, for the single-choice hashing schenifgen the buckets with more thanelements were completely
(Section 1Il), we provide a full analysis with the threedeared out and hadll their elements put in the overflow

models. and prove that the limit of the discrete and Corli_st. This is in contrast with the static SyStem in which Only
tinuous finite models behaves indeed like in the fluid modef“.'Iements exceeding the bucket capacityhoére placed in

In simulations. we will also show that the scaled system@e overflow list. Therefore, it nicely illustrates the difénce
converge fast to their fluid model. We refer to [13] for a€tween the static and dynamic cases.

more complete discussion of the sufficient conditions fer th Continuous Model — We now turn to the continu-
convergence to the fluid-limit fixed-point solution. ous model in which elements stay in the system for an
exponentially-distributed duration of averagelt turns out

that the continuous model yields similar results to those of
the discrete model (Theorem 1).

We start by analyzing a simplistic hashing scheme, which Theorem 2:In the continuous model, the single-choice
uses only a single uniformly-distributed hash functiinto  hashing scheme has the same stationary distribution and
insert elements in the hash table. Each elemeig stored overflow fraction as in the discrete model.
in bucket H (), if it is not full, and in the overflow list Proof: [Proof Outline] As in the discrete model, we
otherwise. Since an element uses exactly one hash functidnyjild a birth-death chain to model the occupangy of an
its average number of memory accesses per elementagbitrary bucket: at time ¢. We obtain a continuous-time
a = 1. Of course, this simplistic scheme would probably noMarkov process with rates that are equal to the product of the
be implemented in advanced networking devices. Howevdransition probabilities in the discrete-time Markov ahaiy
it provides a better intuition on the reasons behind thae scaling factomn, and deduce the equality of the stationary
performance degradation in dynamic hash-table schemes.distribution and overflow fraction in both models. [ ]

Discrete Model — We first develop an analytical model Fluid Model — We now analyze thafinite system using
for the scheme within the discrete framework presented i fluid model. In the fluid model, as in the finite continuous-
Section II. Letp,(t) denote the fraction of buckets thattime model, elements stay in the system for an exponentially
have k elements at the end of time-slgt and p(t) = distributed duration of average and therefore the departure
(p1(t),...,pn(t)). Using this discrete model, we obtain therate from each bucket is proportional to the bucket size. In
following result on the limits of the distribution gf and of addition, when an element departs, a new element in inserted

IIl. A SINGLE-CHOICE HASHING SCHEME

the overflow fraction. into the hash table (or in the overflow list if the correspomyi
Theorem 1:Let C = Z?:O (;})(ﬁ){ In the discrete bucket is full). As explained in Section Il, the arrival rate

model, each bucket is thereforgh = lim,, o -

(i) the distribution ofp(t) converges to the Engset distribu- The following theorem, which is based on the M/M/h/h

tion 7™ [14], [15]; namely, continuous-time Markov process [15], shows the perfor-

mance of the scheme under the fluid model.
1 n 1 k 1 Theorem 3:In the fluid model,
c \k) ’ (1) (i) the distribution ofp(¢) converges to the stationary distri-

n
T = _
k m—1



bution 7, where be full with probability 7;°, hence the overflow equation
follows as well. [ ]

(ch)* /<~ (ch)
T = kl/z T k=0 k. ) IV. OVERFLOW LOWERBOUND
= Our objective is to find a lower bound on the optimal
expected limit overflow fractiony,er in the OPTIMAL DY-
Proof. [Proof Outline] As previously, we write the NAMIC HASH TABLE PROBLEM, and therefore on the ex-

differential equations, and find that they correspond to th%ected overfI(_)w fractio_ry ofany{a,d,c, h.> hashing S"h‘?me'
when assuming a fluid model. We will study the simpler

equations ruling an M/M/h/h continuous-time Markov pro- ] ; : _ .
cess [15]. The drop rate is also found to follow the well.case with a single uniformly-distributed hash function, as
known Erlang-B formula defined in Section Il. The more general case with several

We have seen that the discrete and continuous modagsh functions using different subtable-based distidimsti

with n elements yield a stationary distributiati*, while appears in Sec’qon V. .
the fluid model yields a fixed-point distribution>. We The proof relies on the following result from [16]. Con-

will now show that as expected, when scalingo infinity, sider an Erlang blocking model witN servers, and suppose

7" converges tar™, and so does the associated overflod'at the arrival rate depends on the system. Agtbe the
fraction. arrival rate when there aré transmissions in progress,

Corollary 4: Whenn — oo with 2 — ¢h, k=0,1,...,N — L Then we have:

(i) the stationary distribution con\;:-:-rges to the fixed-point . Lemma 1 (Theorem 4.2 in [16])For all increasing map-

distribution of the fluid modelx™ —s 7> and pings f : R — R and for allt > 0, Ef(X) is concave
(iiy the overflow fraction of the discrete (continous) modelNCréasing as a function ofy, for k =0,1,...,N — L.

converges to the overflow fraction of the fluid model. V\:]e use this Ierr;]maﬂto_dprovz tTe IO\(/jver-br?und result.
Proof: [Proof Outline] We show that for each < Theorem 6:In the fluid model, under the assumptions
N* U {oo}, ZZ:O 70 =1 anday > 0, so fork € [0,h], above where all buckets have the same probability of being

hashed into, the optimal expected fixed-point overflow frac-

n n g 1 n — n n h n n
/7 is defined andry = (7}/7g)/ (Zz:o /76 ). tion yopr in the OPTIMAL DYNAMIC HASH TABLE PROBLEM
n oo oo 1 .
Then, we prove the convergencengf/q to mi° /G, which s |ower-bounded by

concludes both the convergence ©f to = and, since
YeinoLe = T - (1 - ﬁ)* the convergence ofg g, e t0 YohoLe: ) r - r
" ™ ’YLB(a):l_a""a'ﬁ m (6)

Finally, we generalize the scheme to deal witiobabilistic
insertions Namely, there exists some € [0,1] such that Wherer = ach.
each arriving element is either hashed into a bucket as Proof: [Proof Outline] The proof relies on Lemma 1
before with probabilitye, or placed directly in the overflow Which demonstrates that the worst-case average bucket oc-
list with probability 1 — «, yielding an average number cupancy is at most the average bucket occupancy that occurs
of memory accesses (or equivalently, a total number of when all memory accesses are used to insert an element. We
memory accessesn < n, less than the number of e|ements)_then use a standard result from Erlang theory |Inklng the
Using the fluid model for simplicity, we obtain the following drop rate to the average occupancy [14], [15] to find a lower
result. While this probabilistic scheme is probably not usef bound on the drop rate. u
in practice (since the average memory access rate is selddtfte again that the Erlang-B formula appears in the lower-
less tharl), we will later demonstrate that it @ptimalunder bound on the overflow. This yields the following optimality
specific conditions. result:

Theorem 5:In the fluid model, given the single-choice Theorem 7:In the fluid model, the single-choice hashing
hashing scheme with an insertion probability we obtain Scheme is optimal for every average number of memory

(i) the overflow fraction converges tg° and follows the
Erlang-B formula.

a=a<1,and accesses in [0,1] (and in particular for = 1).

(i) the distribution ofp(t) converges to the stationary distri- Proof: For thesINGLE scheme, there is a single hashed
bution 7>°, where bucket per element, and it is accessed with probability

thereforea = «. Fora <1, we get
o (ach)k h (ozch)e k=0 b 5 ,
T = i Zig! , =0,...,h. (5) . (@ (ach)h (ach)! ) o
£=0 Ve (@) = (1-a)+a- l Z o Jsinee
! —~

(i) the overflow fraction converges (@ — a) + « - m;°.
Proof: The differential equations are the same as in thevhere (a) comes from Equation (6),= ach anda = «,

proof of Theorem 3 when replacingh by ach, sincea and (b) from Theorem 5. [ ]

simply changes the arrival rate. The distribution resutess a Example 1:We illustrate the significance of the lower

then immediate. In addition, in the fixed-point equations, abound by considering a simple system with buckets of size

arriving element either overflows immediately with proba+# = 1, implying 75 (a) =1 —a+a- 5o =1 — 3%,

bility 1 — «, or checks with probabilityx a bucket that can In particular, for a loac: = 1, corresponding to the scaling




case where the number of buckets is kept equal to the (ach)*

number of elements and therefdien,, . 5, = 1, we get (i) 7 satisfiest°(a) = hki' foreachk =0, ..., h;
v0s (a) = 1— 1% = 11, which shows that the lower-bound Z (ach)’

decreases slowly a®(1/a) when the average number of — !

memory accesses per insertionincreases. (i) the average bucket access ratsatisfies the fixed-point

For instance, to get 4% drop rate we need each e|ememequationa —a- 1—#2"((&);.

to access an average of at least 99 buckets. Of course, (jiy the overflow fraction is equal to the lower-bound, and
this is impossible to implement in high-speed networkingg thereforeoptimal for a € [0, a*], wherea®® satisfies the
devices. Thus, this lower bound is essentiallyrapossibility fixed-point equations® — 1—7$° (a%0)?

result, which shows that it is not easy to obtain efficient hash ) N :
tables with deletions. Proof: [Proof Outline] The proof first establishes the

fixed-point distribution as a function af Then, it computes

V. LOWERBOUND WITH MULTIPLE HASH-FUNCTION a given a full-bucket probabilityr;°(a), by analyzing the
DISTRIBUTIONS successive steps of theuLTIPLE algorithm. It concludes

We now consider a setting with a s@t of I = |Z| by using the fact that the probability cannot go beyond 1.

subtables, where subtablec Z uses a fractiom® of all .
buckets. We will allow for thel hash functions to use up tb
different distributions{ f; }, ., over thel subtables, where  * ) X - LT
each distribution; alssigﬁjsfa probabilityf? to subtable lpolgt efquatlonl yields: :b"'k%%.rTherefoLe,_forla
i € I, with Y,.; fi = 1, and then uniformly picks '°3¢ ©' On€ ele\r/ngent per bucket, .= limy oo 7, = 1,
buckets within each subtable (as defined in Section I1). W&€ geta® = 52> ~ 1.62, and the corresponding overflow
also assume that each distributigp is used by a fraction fraction is~¥ (a®°) = 1.5 — @ ~ 38.2%. Likewise, for a
r; of the total memory accesses. Therefore, subtabie load of c = 0.1, we getac® = =9-8EVIF0.04 1 999, with
accessed with a total probability gf = Z;l:l Kj- j’f, with  the corresponding overflow fractior[f (a®°) =~ 0.98%.
>;ez 8" = 1. The following result establishes that the lower-
bound is reached when the hash table is used in a uniform
way, i.e. the probability3’ of accessing a subtable is equal SO far, we have found optimal schemes for a range of
to its fractiona’ in the table, and therefore the lower-boundvalues ofa, the average number of memory accesses per
is the same as established previously in Theorem 6. element. However, although optimal, the expected overflow
Theorem 8:In the fluid model with multiple distributions fraction may still be too large. _
as defined above, the lower-boung (a) on the fixed-point In the literature, several solutions exist to reduce thedro

overflow fraction is the same as with a unique uniform hasfte (or collision probability) in a dynamic system. Onetsuc
function, and is reached iff for all € [1,1], 3¢ = o, i.e. solution uses limited hash functions in order to be able to

the weighted average of all distributions is uniform. rebalance the hash table in case of deletion [17]. However,
Proof: [Proof Outline] The proof, which is fully pre- this approach gives up randomness, and the efficiency of a
sented in [10], first shows that in the worst-case, each supiMilar approach appears limited [6]. Another solutiorsdza
table follows the worst-case Markov chain established é thon the second-chancescheme [11], moves elements from
bound above. Then, it computes the average occupancy, &t Pucket to another by storing hints at each bucket [6].

The following example illustrates our results.
Example 2:For the case wherg = 1, solving the fixed-

VIlI. M OVING BACK ELEMENTS

shows that it is maximized iff = 3 for all i. m However, we found in simulations that this solution was
less effective than our suggested scheme presented below
VI. A MULTIPLE-CHOICE HASHING SCHEME for higher loads, while it was more effective for lower

We now introduce a natural extension to the single-choide@ads. (Due to space considerations, we present the detaile
hashing scheme that uses an ordered sei bfsh func- simulation results in [10].)
tions # = {H,...,Hy}, such that all the hash functions To reduce the overflow fraction, we suggest a scheme
are independent and uniformly distributed. Upon insertinghat allows moving elements back from the overflow list to
an elementz, the scheme successively reads the bucketBe buckets upon deletionoperatioR. This scheme can be
H,(z), Ho(x),... Hy(x) and placesr in the first non-full combined with any insertion scheme.
bucket. If all these buckets are fult,is placed in the over-  Our scheme, called the moving-back scheme (M-B), relies
flow list. To keep an average number of memory access@8 a (binary) CAM. In general, a CAM stores keys in
per element of at most, the algorithm attempts to insert entries. Given some ke, a parallel lookup is performed
= into the hash table with a probability, otherwise it is over all entries and the index of the first (that is, highest

directly placed in the overflow list. priority) entry that containg: is returned from the CAM.
We evaluate the performance of this scheme analytically many cases, this index is later used in order to access in
using the fluid model. regular memory a direct-access array that contains thevalu

Theorem 9:Assume the multiple-choice hashing scheme ) ; ) )
We also consider a scheme that works ujmertion however the details

Wit_h a _haghin.g prObab”itW' USing the fluid-model fixed- are omitted due to lack of space; moving back elements uponiatelet
point distribution7°, performs better in general.



: :
0.2r] MULTIPLE dynamic

+ -+ MULTIPLE static

0.3 B 0.15F

—*— MULTIPLE M-B 4
I%er bound > 01l © -+ d-random static B
> 0.2 * aS\NGLE —
CO +
o PuumieLe ® 0051 J//g/
0.1 + d-random B . f
O d-left o 0.5 0.6 0.7 0.8 0.9 1
O MULTIPLE M-B c
0 n n . . . . .
1 15 2 25 3 35 4
a (@) h=4andd =4

Fig. 3. Overflow fraction as a function of with d =4, h =4, ¢ = 1. 0.2 ‘ ‘  MULTIPLE dynamic] |
+ - MULTIPLE static
015¢ —*— MULTIPLEM-B ]

> oakb O - d-random static

associated withk. CAMs enable constant-time operations, oosl % 4 . .
however they are more expensive and consume more power 0 ‘ ‘ ‘ ‘

than regular memory. It is a common practice to implement ’ ’ et ° !
the overflow list in a CAM [1], [11], [12], relying on the fact (b) h =4 ande =1

that the number of elements in the overflow list is small. _ _ _
Our scheme uses an auxiliary CAM. besides the prima@g' éll ‘Ovt)erﬂow fraction of the proposed moving-back (M-Bheme (via
! . Imulations).
CAM used to store the element of the overflow list: For
each element: that is stored in thé-th entry of the primary

CAM, we store the value§H;(z), Hy(x),...,Hq(x)} in 04l X
entriesd-i,d-i+1,...,d-i+(d—1) of the auxiliary CAM. - o i (meer |
When an element is deleted from a buckethat was x It e
previously full, we need to move an elementfrom the %2 03 o4 05 06 o7 08 09 1

overflow list to bucketj such thatj is the result of applying o

at least one of the hash-functions enWe can locate such (a) siNGLE

an element in constant time by querying the auxiliary CAM et @nalysis) |

with key j. Suppose the entry returned by the auxiliary CAM R et e g/g/@/@/a/f

is ¢, thenz is located in entry|¢/d| of the primary CAM. ozl X h=2(ace) S k" o
We note that upon moving an element back to the hash 0%2/?/7 L ‘

table, one should update the corresponding entries of the PR e e e

primary and auxiliary CAMs. An efficient way to update is (b) MULTIPLE

to write the valuem + 1 in these entries, such that when a_ , _ _ o

new element is inserted into the overflow list, one can query)%, SOLT'IE;‘E’:TJ‘:"Z”; using real-life traces and hash functioits SINGLE
the auxiliary CAM with the valuen + 1 to decide in which '

entry (of the primary CAM) to put the new element.

In [10], we show that whenl = 1, the proposed M-B e further evaluate the performance of our proposed M-
scheme behaves as in the static case anddfor 1, we B scheme. Quite surprisingly, when using theJLTIPLE
present an approximate model for the overflow fraction iBcheme (of Section VI), the M-B scheme outperforms the
CaseMULTIPLE scheme is used. static case of theMULTIPLE scheme (see Fig. 4), and per-
forms similarly to the statiei-random scheme (in the static
case, d-random performs better than our multiple-choice
scheme, albeit consuming significantly more energy [12]).

Fig. 3 compares all the schemes. It was obtained Witlihjs can be explained intuitively as follows: our moving-
d = 4 choices, bucket sizé = 4, n = 4,096 elements and pack strategy moves back an element to the only correspond-
m = 1,024 buckets, yielding a load = 1. ing bucket which is not full; this is equivalent to inserting

The solid line p|0tS the overflow fraction |0Wer'b0undthe element to the least Occupied bucket as inddnandom
e (a) from Theorem 6. Simulations show that the proposefiashing scheme.

M-B scheme beats the lower bound with an overflow fraction ) . )

of 4.6%, emphasizing the strength of this architecture. OB- Experiments Using Real-Life Traces

course, the lower bound does not apply to this case, since itWe have also conducted experiments using real-life traces

moves back elements from the CAM. recorded on a single direction of an OC192 backbone
As follows from Theorems 7 and 9, the overflow fractiondink [18]. Our goal is to compare the average overflow frac-

Ysivere (@) and yyumieie (a) Of the single-choice INGLE)  tion retrieved using our models f@INGLE and MULTIPLE

and the multiple-choiceMuLTIPLE) hashing schemes follow with the corresponding overflow fraction when using a real

the lower-bound line, respectively untl{} .. = 1 with hash function on a real-life trace. We used a 64-bit mix

Yeinore = 31.1%, and a?) 1o = 2.195 with yyuree =  function [19] to implement two 16-bit hash functions. We

13.5%. Therefore, they are clearly optimal up to a certairusedm = 10,000 buckets, and set a number of elements

point. as corresponding to various values /ofand c. To keep a

VIIl. EXPERIMENTAL RESULTS
A. Simulations



0.8

Moreover, we considered two hashing schemes that we
proved to be optimal: a single-choice hashing scheme that
was used to demonstrate our approach and techniques, and
a multiple-choice scheme that inserts the elements ggeedil

However, due to the slow decrease of the lower bound,
optimality may be insufficient for certain applications.efa-
fore, we suggested moving back elements from the overflow
list as soon as a deletion occurs. We have shown through
simulations that this strategy beats the lower bound of the
dynamic case (where moving back elements is not allowed).
constant desired load, we alternatiil,000 times between  We also conducted an extensive experimental study to
an arrival (insertion) of a new TCP packet according to theerify the accuracy of our model, the behavior of the models
trace, and the departure (deletion) of a random TCP packeinder realistic (rather than fully-random) hash functjcarsd
The hash functions were given the source and destination IfAder variable-load arrival models.
tuple as well as the sequence and acknowledgment numbers ACKNOWLEDGMENT
of the TCP packets. Therefore, the hash table stores tret late
TCP packets, and can retrieve any needed packet based o his work was partly supported by the European Research
its header. It can be used to monitor ongoing TCP flowssouncil Starting Grant h210389 and by the Legacy Her-
given a target numben of packets that are stored at anyitage Fund program of the Israel Science Foundation (grant

O SINGLE (sim)
SINGLE (model)

M
MULTIPLE (model) o XXX 1
X

0.6

X MULTIPLE (sim)

> 04

0.2r

300 400 500 600
total num of elements

0 100 200 700

Fig. 6. Marginal overflow fraction of 100 on-off flows witl = 500,
h=1andd =2

time. Its objective in our experiments was mainly to test thd 1816/10).

correctness of our model.
Fig. 5 shows that the results of our experiments are,,
relatively close to our model. The maximum gap is for the

SINGLE scheme withh = 1 and¢ = 0.3. Our model predicts [2]
an overflow fraction o23.08%, while the experiment yields

(3]
25.67%.
C. Experiments Using an On-off Arrival Model [4]

We also consider a queueing model where at each step)
i, b; elements arrive according té independent on-off
bursty flows of elements [20]; then, after the arrival phase,[6]
one element is randomly deleted. Therefore, the number of
elements in the system keeps changing, contrarily to thé’]
previous models with a constant load.

Fig. 6 shows the marginal overflow fraction under thes]
above queueing model witlk = 100 on-off flows of
elements. Each flow has rape= 0.0095 and average burst
size of 10 elements. The figure shows that, given the numbguo]
of elements currently in the system, the marginal overflow
fraction is approximately the one we found for the constant-
load case, both fosINGLE and MULTIPLE. [11]

Moreover, by the distribution of the number of elements
in the system given by the queueing model, we are ablk
to heuristically approximate the overall expected numider g13]
elements in the overflow list. More precisely, we take the
sum-product of the queue size distribution by the distrdyut
of the overflow fraction as a function of the load. In the casgs)
of SINGLE this model gives an expected number of overflowl6]
elements of 61.63, while simulations yield 61.41. Likewise
for MULTIPLE, we obtain 40.17 and 40.26, respectivelyj17]
Therefore, this heuristic model proves quite accurate.

IX. CONCLUSION (18]

In this paper we demonstrated that when the memory Eg]
bounded, dynamic schemes behave significantly worse than
their static counterparts. This decrease in performance [x]
inherent to the problem, as shown by our lower bounds.

] R. B. Cooper,Introduction to Queueing Theary2nd ed.

REFERENCES

A. Kirsch, M. Mitzenmacher, and G. Varghesélash-Based Tech-
niques for High-Speed Packet ProcessinIMACS, 2010, ch. 9.
G. H. Gonnet, “Expected length of the longest probe sagaen hash
code searching,J. ACM vol. 28, no. 2, pp. 289-304, 1981.

M. Mitzenmacher, A. Richa, and R. Sitaraman, “The powerwb t
random choices: A survey of techniques and resultsfamdbook of
Randomized Computingol. 1, 2000, pp. 255-312.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balande
allocations,” iINnACM STOGC 1994, pp. 593-602.

B. Vocking, “How asymmetry helps load balancing,”llBEE FOCS
1999, pp. 131-141.

A. Kirsch and M. Mitzenmacher, “On the performance of muéip
choice hash tables with moves on deletes and insertsAllerton,
2008, pp. 1284-1290.

A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robustshing:
Cuckoo hashing with a stash$IAM J. on Computingvol. 39, no. 4,
p. 1543, 2009.

R. Kutzelnigg, “A further analysis of cuckoo hashing i stash and
random graphs of excess’ Submitted for publication2009.

] M. Drmota and R. Kutzelnigg, “A precise analysis of cuckmashing,”

Submitted for publication2009.

Y. Kanizo, D. Hay, and |. Keslassy, “Hash tables with tinbuckets
are less resistant to deletions,” Comnet, Technion, Isr&eth.
Rep. TR10-01, 2010. [Online]. Available: http://webeetteion.ac.il/
~isaac/papers.html

A. Kirsch and M. Mitzenmacher, “The power of one move: Hagh
schemes for hardware,” ifEEE Infocom 2008, pp. 565-573.

] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashing |IEEE

Infocom 2009, pp. 2500-2508.

M. Mitzenmacher, “The power of two choices in randomizead
balancing,” Ph.D. dissertation, Univ. of California at Bley, 1996.
North
Holland, 1981.

L. Kleinrock, Queueing Systems Wiley, 1975.

P. Nain, “Qualitative properties of the Erlang bloogimodel with
heterogeneous user requirements,” INRIA, Tech. Rep. 10i8jl A
1989.

S. Kumar, J. Turner, and P. Crowley, “Peacock hashindeinistic
and updatable hashing for high performance networking,IBEE
Infocom 2008, pp. 556-564.

C. Shannon, E. Aben, K. claffy, and D. E. Andersen, “CAID
Anonymized 2008 Internet Trace equinix-chicago 2008-03t2®0-
20:00 UTC (DITL) (collection),” http://imdc.datcat.orgliection/.

T. Wang, “Integer hash function,” http://www.conceatmet/ Ttwang/
tech/inthash.htm.

A. Adas, “Traffic models in broadband network#EE Communica-
tions Magazinevol. 35, pp. 82—89, 1997.



