
This work was supported by a Wakerly Stanford Graduate Fellowship and by the Powell Foundation.

Abstract -- Internet routers frequently use a crossbar switch to interconnect linecards.
The crossbar switch is scheduled using an algorithm that picks a new crossbar configu-
ration every cycle. Several scheduling algorithms have been shown to guarantee 100%
throughput under a variety of traffic patterns. The first such algorithm was the maxi-
mum weight matching (MWM) algorithm in which the weight is the sum of the occupan-
cies of the queues. We explore whether alternative weight functions, such as using the
sum of the square of the occupancies, leads to stronger or weaker stability. The first
result of this paper is that a broad class of weight functions give rise to strong stability,
including the sum of the squares, the sum of the cubes and so on. A counter-intuitive
result, indicating a limitation of the Lyapunov method, is that the sum of the square root
of the occupancies is not included in this class, even though simulation suggests that the
resulting average delay is lower than for the other functions. We also consider the sim-
pler, , randomized scheduling algorithm (TASS) proposed by Tassiulas. We
show similar results for different weight functions as for MWM. We finally show that
TASS gives 100% throughput when the weights are noisy, or out-of-date.

I. INTRODUCTION

It is common for high performance packet switches (e.g. Internet routers, ATM switches
and Ethernet switches) to use a crossbar switching fabric and input queues to hold packets
during times of congestion. Karol et al. [1] showed that input queued switches can suffer from
reduced throughput due to head of line blocking. And so it is now common for input queued
packet switches to maintain virtual output queues (VOQs) [2]. Such switches, when combined
with a suitable scheduling algorithm, have been shown to achieve 100% throughput [3][4] for
traffic that is uniformly or non-uniformly distributed over the outputs of the switch. The abil-
ity of a switch to achieve 100% throughput is desirable to a network operator, as it assures that
all of the (expensive) link capacity can be utilized.

A scheduling algorithm known to provide 100% throughput is maximum weight matching
(MWM) [4]. In cell time , the scheduler calculates weight by summing the occupancies

of all the virtual output queues. It then finds the switch configuration that maximizes . In [4]

it is shown that this algorithm leads to strong stability: i.e. for all i,j, where

 is the occupancy at time n of the VOQ at input i that holds cells destined for output j.

It is worth asking if calculating weights as the sum of the VOQ occupancies is the best, or
only, way to achieve strong stability. For example, what if the weight was the sum of the

O Nlog()

n w

w

E Xij n()[] ∞<

Xij n()

Analysis of scheduling algorithms that provide 100%
throughput in input-queued switches

Isaac Keslassy, Nick McKeown
Computer Systems Laboratory, Stanford University

Stanford, CA 94305-9030
{keslassy, nickm}@stanford.edu

square of the occupancies, i.e. ; or perhaps . Will this lead to

strong stability, and if so, what weight function should we choose? We will explore this ques-
tion in the first part of the paper and show that a broad class of weight functions lead to strong
stability, while some others lead to weaker forms of stability, and yet others lead to known
instability.

Unfortunately, the scheduling algorithms that achieve 100% throughput using a maximum
weight matching are not implementable in hardware at high speed, and so are not used in prac-
tice. On the other hand, implementable and widely used hardware algorithms such as WFA
[6], PIM [7] and iSlip [8], can not guarantee 100% throughput. And so Tassiulas recently pro-
posed a new randomized scheduling algorithm (TASS, [9]). Using memory, TASS exploits
the correlation between successive cell times to approximate MWM. Let the weight of
any match M be the sum of the lengths of the virtual output queues it services, and let

 and be the matches that TASS and MWM choose at time step n. Then

TASS works as follows. At the end of each time step , the scheduler keeps in memory

. At the following time step , it computes a new match , and compares

 with , keeping the match that has the biggest weight. Thus,

. (1)

In the case of Bernoulli i.i.d. traffic, if for all with , then
Tassiulas proves that TASS achieves 100% throughput. Therefore, when the above conditions
are satisfied, it is possible to obtain 100% throughput using a much simpler scheduling algo-
rithm. Indeed, the only complexity added to the computation of lies in the computation

and comparison of the weights. This represents an additional complexity, where N
is the number of ports (neglecting for the moment the role of weights in the complexity).
Since choosing randomly among all possible matches satisfies the above conditions,

one can therefore prove strong stability in steps – this is to be compared with

 for a sequential computation of MWM (Gabow and Tarjan [10]), and

 for a parallel computation of MWM with a polynomial number of proces-
sors (Goldberg et al., [11]).

We are interested in several aspects of the TASS algorithm:
1. TASS attempts to track MWM. Is the difference in the weight of the match bounded in

each step? We show that the bound is finite at each step.
2. What if, like we did above for MWM, we calculated the weight differently? For example,

with some function of the VOQ occupancies. We show that a broad class of weight func-
tions provide 100% throughput.

3. Finally, what if the weights are noisy, due perhaps to rounding errors when calculating
weights, or if a small number of bits is used to represent the weight? Or perhaps the sched-
uler is pipelined and is using weight information that is out of date when the calculation is
performed? We show that when the weights are noisy or out of date within a finite bound,
then 100% throughput is still guaranteed.

w Xij
2

n()
i j,
∑= w Xij n()

i j,
∑=

w M()

TASS n() MWM n()
n 1–

TASS n 1–() n C n()
w C n()() w TASS n 1–()()

TASS n() C n()= if w C n()() w TASS n 1–()()≥
TASS n() TASS n 1–()= otherwise.




Pr C n() MWM n()=() ε> n ε 0>

C n()
O Nlog()

C n()
O Nlog()

O N2.5 Nlog()

O N2 3/ Nlog()4()

II. CHOOSING THE WEIGHT IN THE MWM ALGORITHM

A. Notations

Several notations will be used in this article. is the number of ports of the packet switch.

 is the matrix representing the lengths of the VOQs. is the number of cells going

from input to output , with .

A match is a permutation matrix of size . The weight of a match with respect to

 is .

For every time slot n, and are respectively the arrival and departure matrices.

Thus, with . The arrival rate matrix is noted .

It is said to be admissible if and for all i,j.

B. The weight dilemma

In this section, we will focus on the schemes, called , in which the weight of a

VOQ depends only on its queue length: . For instance, the default MWM

in [4] is , Maximum Size Matching (MSM) is , and MWM with

the squares of the queue lengths is .
Intuitively, in order to maximize the throughput, one should maximize the instantaneous

throughput, and therefore use MSM. However, this intuition proves wrong, and it is known
that MSM does not achieve 100% throughput while does [4]. This difference
between both schemes comes from the fact that MSM does not take into account queue
lengths. Therefore, one could wonder: since packet switch stability increases when the heavi-
est queues are advantaged, shouldn’t the heaviest queues be given an even greater weight?

What if we use , or instead of ?

C. The Weight Choice

One way to choose the weight function is to obtain stability results for each weight function,
and see which one gives the strongest stability results. The following theorem, valid within a
large class of functions , shows that the Lyapunov method used in [4] suggests stronger
stability with increasing powers of the occupancy.

Theorem 1 Assume that is nonnegative and continuously differentiable on , and

that . Then, for any Bernoulli iid admissible traffic, and for

all i,j, satisfies:

(2)

Proof: The proof is similar to the proof that MWM-X has 100% throughput. Let be such

that and for any i,j. Define: ,

N

X N N× Xij

i j 1 i j N≤,≤
M N N× M

X w M() wX M() X M,〈 〉 XijMij
i j,
∑= = =

A n() D n()
X n 1+() X n() A n() D n()–+= X 0() 0= λ

λij
i

∑ 1< λij
j

∑ 1<

MWM f X()–

w i j,() f X i j,()()=

MWM X– MWM X 0>()δ–

MWM X2–

MWM X–

MWM X2– MWM X3– MWM X–

f .()

f .() ℜ+

f′ u()
x 1– x 1+,[]

max

f x()
--

 
 
 

x ∞→
lim 0=

MWM f X()–

E f Xij n()()[] ∞<

ε

λij
i

∑ 1 ε–≤ λij
j

∑ 1 ε–≤ ∆ n() A n() D n()–≡

, , , and

. Then:

Using the integral version of Taylor formula:

In particular,

(using Birkhoff’s theorem [12]). Hence, since ,

Let . Then, since is continuous, there exists K such that for all ,

. Thus,

.

Since is arbitrary, it is possible to assign . Using the fact that is a constant

and applying the Foster-Lyapunov theorem ([4][9]) leads to: , hence

 for all i,j.

r
Corollary 1 With any Bernoulli iid admissible traffic, and for all i,j:
1. For , we have .

2. For , we have , and therefore .

MWM MWM f Q()–≡ F x() f u() ud
o
x∫≡ F X n()() F Xij n()()

i j,
∑≡

DRIFT E F X n 1+()() F X n()()– X n()[]≡

DRIFT E F X n() n()∆+() F X n()()– X n()[]=

E F Xij n() ∆ij n()+() F Xij n()()– X n()[]
i j,
∑=

E f Xij n() u+() ud
0

∆ij n()

∫ X n() .
i j,
∑=

DRIFT E ∆ij n() f Xij n()()⋅ ∆ij n() u–() f′ Xij n() u+() ud⋅
0

∆ij n()

∫ X n()+
i j,
∑=

E f X n()() n()∆,〈 〉 X n()[] E
∆ij

2
n()

2
-------------- f′ u()

Xij n() 1– Xij n() 1+,[]
max

 
 
 

X n()
i j,
∑+≤

E f X n()() n()∆,〈 〉 X n()[] E f X n()() A n() D n()–,〈 〉 X n()[]

E f X n()() A n() MWM n()–,〈 〉 X n()[]

f X n()() λ 1 ε–() M⋅ WM n()–,〈 〉 ε f X n()() MWM n(),〈 〉–

=

=

=

0 ε f Xij n()()
i j,

max⋅–≤

1– ∆ij n() 1≤ ≤

DRIFT ε f Xij n()()
i j,

max⋅– N2

2
------ f′ u()

Xij n() 1– Xij n() 1+,[]
max

 
 
 

i j,
max⋅+≤

ε′ 0> f′ x 0≥

f′ u()
x 1– x 1+,[]

max εε′
N2
------- f x()⋅ K+<

DRIFT ε 1 ε′
2
----– 

  f Xij n()()
i j,

max⋅ ⋅– K N2⋅
2

---------------+≤

ε′ ε′ 1= K N2⋅
2

E f Xij n()()
i j,

max
 
 
 

∞<

E f Xij n()()[] ∞<

MWM X– E Xij n()[] ∞<

MWM X2– E Xij
2 n()[] ∞< E Xij n()[] ∞<

3. For , we have .

Proof: (1) is obvious, and was already proved in [1].
(2) follows from Cauchy-Schwarz theorem.
(3) is obvious, using an infinitely differentiable function equal to on and

(for instance with polynomial interpolation).
r

Corollary 2 Assume that and are two positive constants. With any Bernoulli i.i.d.

admissible traffic, and any scheme satisfying the conditions of the above theo-

rem, if for all , then the packet switch is strongly stable, i.e. for all i,j,

.

Proof: For all , , thus which implies

.

r

Corollary 3 With any Bernoulli i.i.d. admissible traffic, and are
strongly stable.

D. Simulations

From the theorems above, we could easily believe that giving a greater importance to long
queues brings stronger stability, and perhaps lowers delays. However, surprisingly, our simu-

lations indicate that this assumption is wrong. As shown in Figure 1, had a lower

average delay than , which had a lower average delay than .,

This simulation is for the 3-port switch configuration described in [4], for which MSM is

unstable1. Nevertheless, these results are representative of the results obtained as well with
most of the other traffic patterns. Thus, this could mean that strong stability and low average
delays are not necessarily linked ; this could also mean that the Lyapunov techniques used
above do not necessarily reflect everything as far as stability is concerned.

III. Does TASS Track MWM?

The objective of the TASS scheduling algorithm is to approximate MWM, by successively

1. The traffic was Bernoulli i.i.d., and the simulation run for 500,000 time slots.

MWM X– E Xij n()[] ∞<

f .() 0{ } [1 ∞),

a b

MWM f X()–

f x() ax≥ x b≥
E Xij n()[] ∞<

x 0≥ f x() a x b–()≥ E a Xij n() b–()[] ∞<

E Xij n()[] ∞<

MWM X– MWM X2–

MWM X–

MWM X– MWM X2–

 Figure 1: Average delay for .MWM Xα–

average delay

32
34
36
38
40
42
44

0 1 2 3 4

alpha

av
er

ag
e

d
el

ay

guessing new matches and keeping the heaviest ones. Does it succeed in tracking MWM? If it
is possible to show that TASS does succeed in approximating MWM, then analyzing MWM
will be helpful for analyzing TASS. The following theorem shows that TASS does indeed
track MWM within a finite bound.

Theorem 2 Let . Then:

(3)

Proof: Let and let be the pair .
We use the following properties:

1. ,

2. For any match M, ,

3. .
Then:

. Hence:

Thus, and for . is bounded by a con-

verging geometric series. Let . Then and

 for . Hence and .

r
Hence the expected difference between the weights of TASS and MWM is bounded. This

means that TASS does indeed track closely MWM.

IV. CHOOSING THE WEIGHT IN THE TASS ALGORITHM

We can now ask the same question about TASS that we asked about MWM: is it best to use
the sum of the VOQ occupancies, or would some other function lead to stronger stability or
lower delay?

A. Theory

As with , let’s define as TASS with weight function . With

several strong properties established for , we verify that they extend to

, which is an approximation of . It is quite surprising that for the
same broad conditions, it is indeed possible to get the same strong stability properties for

δ n() E w MWM n()() w TASS n()()–[]≡

δ n() ∞<

d n() w MWM n()() w TASS n()()–≡ Y n() X n() d n(),()

Pr C n 1+() MWM n 1+()=() ε>
X n() M,〈 〉 X n() MWM n(),〈 〉≤

X n 1+() TASS n 1+(),〈 〉 X n 1+() TASS n(),〈 〉≥

E d n 1+() X n()[] E X n 1+() MWM n 1+() TASS n 1+()–,〈 〉 Y n()[]=

1 ε–()E X n 1+() MWM n 1+() TASS n 1+()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[]≤
1 ε–()E X n 1+() MWM n 1+() TASS n()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[]≤
1 ε–()E X n() MWM n 1+() TASS n()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[]

1 ε–()E A n() D n()– MWM n 1+() TASS n()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[].+
≤

1 ε–()E X n() MWM n 1+() TASS n()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[]
1 ε–() 2N⋅+

≤

1 ε–() d n() 2N+()⋅≤
n 1+()δ E d n 1+()[]=

E E d n 1+() Y n()[]{ }=

E 1 ε–() d n() 2N+()⋅{ }≤
1 ε–() n()δ 2N+()⋅≤

0()δ 0= n 1+()δ 1 ε–() n()δ 2N+()⋅≤ n 0≥ n()δ

u n() 2N 1 ε–()⋅
ε

---------------------------- n()δ–= u 0() 2N 1 ε–()⋅
ε

----------------------------=

u n 1+() 1 ε–() u n()⋅≥ n 0≥ 0 1 ε–()n u n()≤ ≤ n()δ 2N 1 ε–()⋅
ε

----------------------------≤

MWM f X()– TASS f X()– f .()
MWM f X()–

TASS f X()– MWM f X()–

.

Theorem 3 Assume that is nonnegative and continuously differentiable on , and

that . Then, for any Bernoulli iid admissible traffic, and for

all i,j, satisfies:

(4)

Proof: The proof is similar to that for , and we will use the same notation

below, including and .

Define .

Define to be the pair , , and

.
Since V has two distinct members, we’ll bound each one of them.

The first member of V is . As in Theorem 1,

From Theorem 2 we know,

The second member of V is . From Theorem 2 we know,

Therefore, using the integral inequality from Theorem 2,

.

Summing the inequalities from both members of V:

TASS f X()–

f .() ℜ+

f′ u()
x 1– x 1+,[]

max

f x()
--

 
 
 

x ∞→
lim 0=

TASS f X()–

E f Xij n()()[] ∞<

MWM f X()–

MWM MWM f X()–≡ TASS TASS f X()–≡
d n() w MWM n()() w TASS n()()–≡ f X n()() MWM n() TASS n()–,〈 〉=

Y n() X n() d n(),() V Y n()() d n()
ε

----------- F X n()()+≡

DRIFT E V Y n 1+()() V Y n()()– X n()[]=

d n()
ε

E d n 1+() Y n()[]
1 ε–()E f X n 1+()() MWM n 1+() TASS n 1+()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[]≤
1 ε–()E f X n 1+()() MWM n 1+() TASS n()–,〈 〉 Y n() C n 1+() MWM n 1+()≠,[]≤

1 ε–()d n() 1 ε–() E f′ Xij n() u+() ud
0

∆ij n()

∫ MWM n 1+() TASS n()–,〈 〉 Y n()
i j,
∑+≤

E d n 1+() Y n()[] 1 ε–()d n() 1 ε–() ε ε′ f Xij n()()
i j,

max⋅ ⋅ K N2⋅+()+≤

F X n()()
E f X n()() n()∆,〈 〉 X n()[]

E f X n()() A n() MWM n()– MWM n() TASS n()–+,〈 〉 Y n()[]=

f X n()() λ 1 ε–() M⋅ WM n()–,〈 〉 ε f X n()() MWM n(),〈 〉– d n()+≤

ε f Xij n()()
i j,

max⋅– d n()+≤

E F X n 1+()() F X n()()– X n()[]

ε f Xij n()()
i j,

max⋅– d n() N2

2
------ f′ u()

Xij n() 1– Xij n() 1+,[]
max

 
 
 

i j,
max⋅+ +≤

ε 1 ε′
2
----– 

  f Xij n()()
i j,

max⋅– d n() KN2

2
----------+ +≤

DRIFT ε 1 ε′
2
----– 

  f Xij n()()
i j,

max⋅– KN2

2
---------- 1 ε–()

ε
---------------- εε′ f Xij n()()

i j,
max 2KN2+⋅

 
 
 

⋅+ +≤

Hence, choosing small enough finally brings .

r
The following corollaries are straightforward.

Corollary 4 With any Bernoulli i.i.d. admissible traffic, and for all i,j:
1. For , we have .

2. For , we have , which implies that .

3. For , then .

In particular, this corollary proves that using , it is possible to achieve both a
fixed mean and a fixed variance of any VOQ length. Indeed, more generally, it is possible to

get a bounded moment of the queue sizes with for any .

Corollary 5 Assume that and are two positive constants. With any Bernoulli i.i.d.

admissible traffic, and any scheme satisfying the conditions of the above theo-

rem, if for all , then the packet switch is strongly stable.

Corollary 6 With any Bernoulli i.i.d. admissible traffic, and are
strongly stable.

B. Simulations

Our simulations of TASS used the same configuration as those of MWM, and are shown in
Figure 2. The that was chosen was generated by iSlip, in order to be closer to current
real algorithms. Interestingly, the results are the same as those for MWM, and inverse to what

could be expected from the above theorems: has the best delays, followed

by , , and finally (not represented
here because unstable).

DRIFT f Xij n()()
i j,

max
 
 
 

ε– ε′ 1 ε
2
---– 

 ⋅+
 
 
 

⋅ KN2 1 2ε′ 1 ε–()⋅+{ }⋅+≤

ε′ E f Xij n()()
i j,

max
 
 
 

∞<

TASS X– E Xij n()[] ∞<

TASS X2– E Xij
2 n()[] ∞< E Xij n()[] ∞<

TASS X– E Xij n()[] ∞<

TASS X2–

nth TASS Xn– n 1≥

a b

TASS f X()–

f x() ax≥ x b≥

TASS X– TASS X2–

C n()

TASS iSlip X––

TASS iSlip X–– TASS iSlip X2–– TASS iSlip X 0>()δ––

 Figure 2: Average delay for . TASS Xα–

average delay

34
36
38
40
42
44
46

0.5 1.5 2.5 3.5

alpha

av
er

ag
e

d
el

ay

V. NOISE

A. Rounding Errors

The previous section proved several stability results for , with a large class of

functions . However, if is, for example, the square root, it is obvious that the packet switch
will have to do some rounding before computing the maximum weight match. Additionally,
the bandwidth of the channels between the linecards and the arbiter is limited, and therefore
rounding weights may be useful to reduce the number of bits communicated to and stored by
the scheduler.

For brevity, we’ll only consider here the algorithm with . Assume that is the

quantization noise matrix at time slot , is the quantized weight matrix,
and TZ and MZ are the TASS and MWM algorithms with the perceived weight matrix equal
to Z. Thus, there exists such that . Then the following theorem

shows that for a bounded error , TASS keeps its strong stability properties.

Theorem 4 Assume that there exists a constant B such that for all n. Then, for
any Bernoulli i.i.d. admissible traffic, and for all i,j, TZ satisfies:

(5)

Proof: Assume that , , and

. Analyzing the two parts of V:

Similarly,

 (with K1 a finite constant).

Thus (with K2 a finite constant).

Finally , hence the result.

r

B. Delay Is Noise

The theorem on rounding noise has an application. Suppose that one wants to implement a
pipelined version of TASS. Since there is a delay between the moment when weights are mea-
sured and the moment when they are used, the weights that are used in the computation are
out-of-date. However, this delay is fixed, and therefore the number of arrivals and departures
during this time is bounded – and so the noise is also bounded. Therefore, we have the follow-
ing corollary.

Corollary 7 The pipelined version of TASS is strongly stable for any Bernoulli i.i.d. admis-
sible traffic.

TASS f X()–

f f

f X() X= E n()
n Z n() X n() E n()+=

ε′ 0> Pr C n() MZ n()=() ε′>
E n()

E n() B≤

E Xij n()[] ∞<

e n() Z n() MZ n() TZ n()–,〈 〉≡ V n() e n()
ε′

---------- X2 n()
2

--------------+≡

DRIFT E V n 1+() V n() X n()–[]≡
E e n 1+() X n()[]

1 ε′–() e n() E Z n 1+() Z n()– MZ n 1+() TZ n()–,〈 〉 Z n() C n 1+() MZ n 1+()≠,[]+{ }⋅
1 ε′–() e n() E n()∆ E n 1+() E n()–+ MZ n 1+() TZ n()–,〈 〉

Z n() C n 1+() MZ n 1+()≠,
[

]
+{

}
⋅

1 ε′–() e n() 2N B 1+()+{ }⋅

≤
≤

≤

E X2 n 1+() X2 n()–
2

-- X n() ε– Xij n()
i j,

max⋅ d n() K1+ +≤

DRIFT ε– Xij n()
i j,

max⋅ d n() e n()– K2+ +≤

d n() e n()– Z n() E n()– MWM n() TZ n()–,〈 〉 Z n() MZ n() TZ n()–,〈 〉–
Z n() MWM n() MZ n()–,〈 〉 E n() MWM n() TZ n()–,〈 〉–

0 N+≤

=
=

DRIFT ε– Xij n()
i j,

max⋅ N K2+ +≤

Proof: Suppose that the pipeline delay is equal to k.

Hence and we can apply Theorem 4. (Note that it was also proved that a pipe-
lined version of LPF is strongly stable in [5])

r
Hence, we can consider Theorem 4 as generally representing a result on uncertainties of

weights, these uncertainties coming from various sources such as rounding errors, pipelining,
holding decisions, quantizing values, etc.

VI. CONCLUSIONS

In this paper we consider the performance of several crossbar scheduling algorithms. We
focus on throughput, and explore the conditions under which the algorithms are strongly sta-
ble and give rise to 100% throughput. As a result, we find that various weight functions, noisy
weights and even out-of-date weights give rise to 100% throughput.

VII. REFERENCES

[1] M. Karol, M. Hluchyj, S. Morgan: "Input versus Output Queueing on a Space-Division
Packet Switch", IEEE Trans. on Communications, vol. COM-35, no. 12, December 1987,
pp. 1347-1356.

[2] Y. Tamir, G. Frazier: "High-Performance Multi-Queue Buffers for VLSI Communication
Switches", Proc. of the 15th Int. Symp.on Computer Architecture, ACM SIGARCH vol.
16, no. 2, May 1988, pp. 343-354.

[3] J. Dai and B. Prabhakar, "The throughput of data switches with and without speedup," in
Proceedings of IEEE INFOCOM '00, Tel Aviv, Israel, March 2000, pp. 556 -- 564.

[4] N. McKeown, V. Anantharam and J. Walrand, "Achieving 100% throughput in an input-
queued switch," IEEE INFOCOM 96, pp. 296-302, 1996.

[5] N. McKeown and A. Mekkittikul, "A practical scheduling algorithm to achieve 100%
throughput in input-queued switches", IEEE INFOCOM 98, pp. 792-799, 1998.

[6] Y. Tamir and H. Chi. Symmetric crossbar arbiters for VLSI communication switches.
IEEE Transactions on Parallel and Distributed Systems, 4(1):13--27, January 1993.

[7] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker,“High-speed switch schedul-
ing for local-area networks,” ACM Transactions on Computer Systems, vol. 11, no. 4, pp.
319 – 352, 1993.

[8] N. McKeown, "iSLIP: A Scheduling Algorithm for Input-Queued Switches", IEEE Trans-
actions on Networking, Vol 7, No.2, April 1999

[9] L. Tassiulas, "Linear complexity algorithms for maximum throughput in radio networks
and input queued switches", IEEE INFOCOM 98, vol. 2, pp. 533--539, 1998

[10] H.N. Gabow and R.E. Tarjan, “Faster Scaling Algorithms For Network Problems”, SIAM
Journal on Computing, 18:1013-1036, 1989

[11] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. “Sublinear-Time Parallel Algorithms for
Matching and Related Problems”. Journal of Algorithms, 14:180--213, 1993

[12] Birkhoff, G.; “Tres obervaciones sobre el algebra lineal,” Univ. Nac. Tucumán Rev. Ser.
A5 (1946), pp.147-150.

X n() X n k–() A n k– l+() D n k– l+()–{ }
l 0=

k 1–

∑+

Z n() A n k– l+() D n k– l+()–{ }
l 0=

k 1–

∑+

=

=

E n() k≤

