
The Bloomier Filter: An Efficient Data Structure for Static Support

Lookup Tables ∗

Bernard Chazelle
†

Joe Kilian
‡

Ronitt Rubinfeld
‡

Ayellet Tal
§

“Oh boy, here is another David Nelson”
Ticket Agent, Los Angeles Airport

(Source: BBC News)

Abstract

We introduce the Bloomier filter, a data structure for
compactly encoding a function with static support in
order to support approximate evaluation queries. Our
construction generalizes the classical Bloom filter, an
ingenious hashing scheme heavily used in networks and
databases, whose main attribute—space efficiency—is
achieved at the expense of a tiny false-positive rate.
Whereas Bloom filters can handle only set membership
queries, our Bloomier filters can deal with arbitrary
functions. We give several designs varying in simplicity
and optimality, and we provide lower bounds to prove
the (near) optimality of our constructions.

1 Introduction

A widely reported news story1 describes the current
predicament facing air passengers with the name of
David Nelson, most of whom are being flagged for extra
security checks at airports across the United States: “If
you think security at airports is tight enough already,
imagine your name popping up in airline computers
with a red flag as being a possible terrorist. That’s
what’s happening to David Nelsons across the country.”
The problem is so bad that many David Nelsons have
stopped flying altogether. Although the name David
Nelson raises a red flag, security officials won’t say if
there is a terror suspect by that name. “Transportation
Security Administration spokesman Nico Melendez said

∗This work was supported in part by NSF grant CCR-998817,
hARO Grant DAAH04-96-1-0181, and NEC Laboratories Amer-
ica.

†Princeton University and NEC Laboratories America,
chazelle@cs.princeton.edu

‡NEC Laboratories America, {joe|ronitt}@nec-labs.com
§Technion and Princeton University,

ayellet@ee.technion.ac.il
1 http://news.bbc.co.uk/2/hi/americas/2995288.stm,

http://www.kgun9.com/story.asp?TitleID=3201&. . .
. . . ProgramOption=News

the problem was due to name-matching technology used
by airlines.”

This story illustrates a common problem that arises
when one tries to balance false negatives and false
positives: if one is unwilling to accept any false negatives
whatsoever, one often pays with a high false positive
rate. Ideally, one would like to adjust one’s system
to fix particularly troublesome false positives while still
avoiding the possibility of a false negative (eg, one would
like to make life easier for the David Nelsons of the world
without making life easier for Osama Bin Laden). We
consider these issues for the more prosaic example of
Bloom filters, described below.

Historical background Bloom filters yield an ex-
tremely compact data structure that supports mem-
bership queries to a set [1]. Their space requirements
fall significantly below the information theoretic lower
bounds for error-free data structures. They achieve
their efficiency at the cost of a small false positive rate
(items not in the set have a small constant probability
of being listed as in the set), but have no false nega-
tives (items in the set are always recognized as being in
the set). Bloom filters are widely used in practice when
storage is at a premium and an occasional false positive
is tolerable. They have many uses in networks [2]: for
collaborating in overlay and peer-to-peer networks [5,
8, 17], resource routing [15, 26], packet routing [12, 30],
and measurement infrastructures [9, 29]. Bloom fil-
ters are used in distributed databases to support ice-
berg queries, differential files access, and to compute
joins and semijoins [7, 11, 14, 18, 20, 24]. Bloom filters
are also used for approximating membership checking
of password data structures [21], web caching [10, 27],
and spell checking [22].

Several variants of Bloom filters have been pro-
posed. Attenuated Bloom filters [26] use arrays of Bloom
filters to store shortest path distance information. Spec-
tral Bloom filters [7] extend the data structure to sup-
port estimates of frequencies. In Counting Bloom Fil-
ters [10] each entry in the filter need not be a single bit
but rather a small counter. Insertions and deletions to
the filter increment or decrement the counters respec-
tively. When the filter is intended to be passed as a

message, compressed Bloom filters [23] may be used in-
stead, where parameters can be adjusted to the desired
tradeoff between size and false-positive rate.

We note that a standard technique for eliminating
a very small number of troublesome false positives is to
just keep an exception list. However, this solution does
not scale well, both in lookup time and storage, when
the list grows large (say comparable to the number of
actual positives).

This Work A Bloom filter is a lossy encoding
scheme for a set, or equivalently, for the boolean char-
acteristic function of the set. While Bloom filters al-
low membership queries on a set, we generalize the
scheme to a data structure, the Bloomier filter, that
can encode arbitrary functions. That is, Bloomier fil-
ters allow one to associate values with a subset of the
domain elements. The method performs well in any
situation where the function is defined only over a
small portion of the domain, which is a common oc-
currence. In our (fanciful) terrorist detection example,
suspicious names would map to suspect and popular,
non-suspicious names (eg, David Nelson) would map
to sounds-suspicious-but-really-ok; meanwhile, all but a
tiny fraction of the other names would map to ok. This
third category is the only source of error. Bloomier fil-
ters generalize Bloom filters to functions while maintain-
ing their economical use of storage. In addition, they
allow for dynamic updates to the function, provided the
support of the function remains unchanged.

Another application of Bloomier filters is to build-
ing a meta-database, ie, a directory for the union of a
small collection of databases. The Bloomier filter keeps
track of which database contains information about each
entry, thereby allowing the user to jump directly to the
relevant databases and bypass those with no relation to
the specified entry. Many such meta-databases already
exist on the Web: for example, BibFinder, a Computer
Science Bibliography Mediator which integrates both
general and specific search engines; Debriefing, a meta
search engine that uses results from other search en-
gines, a meta-site for zip codes & postal codes of the
world, etc. Bloomier filters can be used to maintain lo-
cal copies of a directory in any situation in which data
or code is maintained in multiple locations.

Our Results Let f be a function from D =
{0, . . . , N − 1} to R = {⊥, 1, . . . , 2r − 1}, such that
f(x) = ⊥ for all x outside some fixed (arbitrary) subset
S ⊆ D of size n. (We use the symbol ⊥ either to
denote 0, in which case the function has support S, or to
indicate that f is not defined outside of S.) Bloomier
filters allow one to query f at any point of S always
correctly and at any point of D \ S almost always
correctly; specifically, for a random x ∈ D \ S, the

output returns f(x) = ⊥ with probability arbitrarily
close to 1. Bloomier filters shine especially when the
size of D dwarfs that of S, ie, when N/n is very large.
The query time is constant and the space requirement
is O(nr); this compares favorably with the naive bound
of O(Nr), the bound of O(nr log N) (which is achieved
by merely listing the values of all of the elements in
the set) and, in the 0/1 case, the O(n log N

n) bound
achieved by the perfect hashing method of Brodnik
and Munro [3]. (Of course, unlike ours, neither of
these methods ever errs.) Bloomier filters are further
generalized to handle dynamic updates. One can query
and update function values in constant time while
keeping the space requirement within O(nr), matching
the trivial lower bound to within a constant factor.
Specifically, for x ∈ S, we can change the value of f(x),
though we cannot change S.

We also prove various lower bounds to show that
our results are essentially optimal. First we show that
randomization is essential: over large enough domains,
linear space is not enough for deterministic Bloomier
filters. We also prove that, even in the randomized case,
the ability to perform dynamic updates on a changing
support (ie, adding/removing x to/from S) requires a
data structure with superlinear space.

Our Techniques Our first approach to imple-
menting Bloomier filters is to compose an assortment
of Bloom filters into a cascading pipeline. This yields
a practical solution, which is also theoretically near-
optimal. To optimize the data structure, we change
tack and pursue, in the spirit of [4, 6, 19, 28], an alge-
braic approach based on the expander-like properties of
random hash functions.

As with bloom filters, we assume that we can use
“ideal” hash functions. We analyze our algorithms in
this model; heuristically one can use “practical” hash
functions.

2 A Warmup: the Bloom Filter Cascade

We describe a simple, near-optimal design for Bloomier
filtering based on a cascading pipeline of Bloom filters.
For illustrative purposes, we restrict ourselves to the
case R = {⊥, 1, 2}. Let A (resp. B) be the subset of
S mapping to 1 (resp. 2). Note that the “obvious”
solution which consists of running the search key x
through two Bloom filters, one for A and one for B, does
not work: What do we do if both outputs contradict
each other? One possible fix is to run the key through
a sequence of Bloom filter pairs: (F(Ai),F(Bi)), for
i = 0, 1, . . . , α and some suitable parameter α. The first
pair corresponds to the assignment A0 = A and B0 = B.
Ideally, no key will pass the test for membership in
both A and B, as provided by F(A0) and F(B0), but

we cannot count on it. So, we need a second pair of
Bloom filters, and then a third, a fourth, etc. (The idea
of multiple Bloom filters appears in a different context
in [7].) Generally, we define Ai to be the set of keys in
Ai−1 that pass the test in F(Bi−1); by symmetry, Bi is
the set of keys in Bi−1 that pass the test in F(Ai−1). In
other words, Ai = Ai−1 ∩ B∗

i−1 and Bi = Bi−1 ∩ A∗
i−1,

where A∗
i and B∗

i are the set of false positives for F(Ai)
and F(Bi), respectively.

Given an arbitrary key x ∈ D, we run the test with
respect to F(A0) and then F(B0). If one test fails and
the other succeeds, we output 1 or 2 accordingly. If both
tests fail, we output ⊥. If both tests succeed, however,
we cannot conclude anything. Indeed, we may be faced
with two false positives or with a single false positive
from either A or B. To resolve these cases, we call the
procedure recursively with respect to F(A1) and F(B1).
Note that A1 (resp. B1) now plays the role of A (resp.
B), while the new universe is A∗∩B∗. Thus, recursively
computed outputs of the form ‘in A1’, in B1’, ‘not in
A1 ∪ B1’ are to be translated by simply removing the
subscript 1.

For notational convenience, assume that |A| =
|B| = n. Let ni be the random variable max{|Ai|, |Bi|}.
All filters use the same number of hash functions, which
is a large enough constant k. The storage allocated
for the filters, however, depends on their ranks in the
sequence. We provide each of the Bloom filters F(Ai)

and F(Bi) with an array of size 2ki

kni. The number α
of Bloom filter pairs is the smallest i such that ni = 0. A
key in Ai ends up in Ai+1 if it produces a false positive
for F(Bi). This happens with probability at most

(k|Bi|
/

2ki

kni)
k = 2−ki+1

. This implies that a key in A

belongs to Ai with probability at most 2−(ki+1−k)/(k−1);
therefore,

Eni ≤ n2−(ki+1−k)/(k−1) and
Eα ≤ 2 log log n/ log k.

The probability that a search key runs through the i-th
filter is less than 2−ki

, so the expected search time is
constant. The expected storage used is equal to

E

α
∑

i=0

2ki

kni = kn

α
∑

i=0

2−(ki−k)/(k−1) = O(km).

Note that, if N is polynomial in n, we can stop
the recursion when ni is about n/ logn and then use
perfect hashing [3, 13]. This requires constant time and
O(n) bits of extra storage. To summarize, with high
probability a random set of hash functions provides a
Bloomier filter with the following characteristics: (i)
the storage is O(kn) bits; (ii) at most a fraction O(2−k)
of D produces false positives; and (iii) the search time

is O(log log n) in the worst case and constant when
averaged over all of D.

3 An Optimal Bloomier Filter

Given a domain D = {0, . . . , N − 1}, a range R =
{⊥, 1, . . . , |R| − 1}, a subset S = {t1, . . . , tn} of D, we
consider the problem of encoding a function f : D 7→ R,
such that f(ti) = vi for 1 ≤ i ≤ n and f(x) = ⊥ for
x ∈ D \ S. Note that the function is entirely specified
by the assignment A = {(t1, v1), . . . , (tn, vn)}. For the
purpose of constructing our data structure, we assume
that the function values in R are encoded as elements
of the additive group Q = {0, 1}q, with addition defined
bitwise mod 2. As we shall see, the false-positive rate is
proportional to 2−q, so q must be chosen sufficiently
large. Any x ∈ R is encoded by its q-bit binary
expansion encode (x). Conversely, given y ∈ Q, we
define decode (y) to be the corresponding number if it
is less than |R| and ⊥ otherwise. We use the notation
r = dlog |R|e.

Given an assignment A, we denote by A(t) the value
A assigns to t, ie, A(ti) = vi. Let Π be a total ordering
on S. We write a >Π b to mean that a comes after b
in Π. We define Π(i) to be the ith element of S in Π;
if i > j, then obviously Π(i) >Π Π(j). For any triple
(D, m, k), we assume the ability to select a random hash
function hash : D → {1, . . . , m}k. This allows us to
access random locations in a Bloomier filter table of size
m.

Definition 3.1. Given hash as above, let hash (t) =
(h1, . . . , hk,). We say that {h1, . . . , hk} is the neighbor-
hood of t, denoted N(t).

Bloomier filter tables store the assignment
A, and are created by calling the procedure
create (A) [m, k, q], where A denotes the assignment
and (m, k, q) are the parameters chosen to optimize
the implementation. For notational convenience, we
will omit mention of these parameters when there is no
ambiguity. Our ultimate goal is to create a one-sided
error, linear space (measured in bits) data structure
supporting constant-bit table lookups. Specifically, we
need to implement the following operations:

• create (A): Given an assignment

A = {(t1, v1), . . . , (tn, vn)},

create (A) sets up a data structure Table. The
subdomain {t1, . . . , tn} specified by A is denoted
by S.

• set value (t, v,Table): For t ∈ D and v ∈ R,
set value (t, v,Table) associates the value v with

domain element t in Table. It is required that t be
in S.

• lookup (t,Table): For t ∈ S, lookup (t,Table)
returns the last value v associated with t. For all
but a fraction ε of D\S, lookup (t,Table) returns
⊥ (ie, certifies that t is not in S). For the remaining
elements of D \ S, lookup (t,Table) returns an
arbitrary element of R.

A data structure that supports only create and
lookup is referred to as an immutable data structure.
Note that although re-assignments to elements in S are
made by set value , no changes to S are allowed. Our
lower bounds show that, if we allow S to be modi-
fied, then linear size (measured in bits) is impossible
to achieve regardless of the query time. In other words,
Bloomier filters provably rule out fully dynamic opera-
tions.

There are three parameters of interest in our con-
structions: the runtime of each operation, the space re-
quirements, and the false-positive rate ε. The create

operation runs in expected O(n log n) time (indeed,
O(n) time, depending on the model) and uses O(n(r +
log 1/ε)) space. The set value and lookup opera-
tions run in O(1) time.

3.1 An Overview We first describe the immutable
data structure and later show how to use the same prin-
ciples to construct a mutable version. The table consists
of m q-bit elements, where m and q are implementation
parameters. We denote by Table [i] ∈ {0, 1}q the ith
q-bit value in Table. To look up the value v associated
with t, we use a hash function hash to compute k lo-
cations (h1, . . . , hk), where 1 ≤ hi ≤ m, and a q-bit
“masking value” M (used for reducing false positives).

We then compute x = M ⊕⊕k
i=1 Table [hi], where ⊕

denotes the bit-wise exclusive-or operation.
There are two main issues to address. First, we

must set the values of Table [i], for i = 1, . . . , m, so
that the decode operations yield the correct values for
all t ∈ S. We need to show that with high probability
a “random” solution works (for appropriate parameter
settings), and furthermore we wish to compute the
assignment efficiently, which we do by a simple greedy
algorithm. Second, we must ensure that, for all but an
ε expected fraction of t ∈ D \S, the computed “image”
in Q decodes to ⊥.

We set the table values using the following key
technique. Given a suitable choice of m and k, we show
that, with high probability, there is an ordering Π on S
and an order respecting matching, defined as follows:

Definition 3.2. Let S be a set with a neighborhood
N(t) defined for each t ∈ S. Let Π be a complete

ordering on the elements of S. We say that a matching
τ respects (S, Π,N) if (i) for all t ∈ S, τ (t) ∈ N(t), and
(ii) if ti >Π tj , then τ (ti) 6∈ N(tj). When the function
hash (and hence N) is understood from the context, we
say that τ respects Π on S.

Given Π and τ , we can, for t = Π(1), . . . , Π(n),
set the value v associated with t by setting Table [τ (t)].
By the order-respecting nature of τ , this assignment
cannot affect any previously set values. We show the
existence of good (Π,τ) using the notion of lossless
expanders [6, 28]. Our analysis implies that, with high
probability (over hash), we can find (Π,τ) in nearly
linear time using a greedy algorithm.

To limit the number of false positives, we use
the random mask M produced by hash (t). Because
M is distributed uniformly and independently of any
of the values stored in Table, when we look up t 6∈
S, the resulting value is uniformly and independently
distributed over {0, 1}q. If the size of R is small
compared with the size of {0, 1}q, then with high
probability this value will not encode a legal value of
R, and we will detect that t 6∈ S.

We make a mutable structure by using a two-table
construction. We use the first table, Table1, to encode
τ (t) for each t ∈ S. We note that since N(t) has
only k values, which may be computed from hash (t),
τ (t) ∈ N(t) can be compactly represented by a number
in {1, . . . , k}. Now, it follows from the definitions that
if t 6= t′ for t, t′ ∈ S, τ (t) 6= τ (t′). Thus, we can simply
store the value associated with t in Table2 [τ (t)]; the
locations will never collide.

3.2 Finding a Good Ordering and Matching

We give a greedy algorithm that, given S and hash ,
computes a pair (Π,τ) such that τ respects Π on S.
First, we consider how to compactly represent τ . Recall
that hash (t) defines the k neighbors, h1, . . . , hk of t.
Therefore, given hash , we can represent τ (t) ∈ N(t)
by an element of {1, . . . , k}. Thus, we define ι(t) such
that τ (t) = hι(t). With S = {t1, . . . , tn}, we also use the
shorthand ιi = ι(ti), from which τ = {ι1, . . . , ιn}. Our
algorithm is based on the abundance of “easy matches.”

Definition 3.3. Let m, k,hash be fixed, defining N(t)
for t ∈ D, and let S ⊆ D. We say that a location
h ∈ {1, . . . , m} is a singleton for S if h ∈ N(t) for
exactly one t ∈ S. We define tweak (t, S,hash) to be
the smallest value j such that hj is a singleton for S,
where N(t) = (h1, . . . , hk); tweak (t, S,hash) = ⊥ if
no such j exists.

If tweak (t, S,hash) is defined, then it sets the
value of ι(t) and t is easy to match. Note that this

choice will not interfere with the neighborhood for any
different t′ ∈ S. Let E denote the subset of S with
“easy matches” of that sort, and let H = S \ E. We
recursively find (Π′,τ ′) on H and extend (Π′,τ ′) to
(Π,τ) as follows. First, we put the elements of E
at the end of the ordering for the elements of H , so
that if t ∈ E and t′ ∈ H , then t >Π t′ (the ordering
of the elements within E can be arbitrary). Then we
define τ (t) to be the union of the matchings for H and
E. It is immediate that τ respects Π on S. We give
the algorithm in Figure 1. Note that it is not at all
clear that our algorithm for find match will succeed.
We show that for m and k suitably large, and hash

chosen at random, find match will succeed with high
probability.

3.3 Creating a Mutable Bloomier Filter Given
an ordering Π on S, and a matching τ that respects
Π on S (given the neighborhoods defined by hash),
we store values associated with any t ∈ S as follows.
Given t ∈ S, τ gives a location L ∈ N(t) such that L is
not in the neighborhood of any t′ that appears before
t in Π. Furthermore, given hash (t), L has a compact
description as an element ` ∈ {1, . . . , k}. Finally, no
other t′ ∈ S (before or after t) has the same value of L.

We can construct an immutable table as follows:
For t = Π[1], . . . , Π[n], we compute the neighborhood
N(t) = {h1, . . . , hk} and mask M from hash (t). From
τ (t) we obtain L ∈ N(t) with the above properties.

Finally, we set Table [L] so that M ⊕ ⊕k
i=1 Table [hi]

encodes the value v associated with t. By the properties
of L given above, altering Table [L] cannot affect any of
the t′ whose associated values have already been put
into the table. To retrieve the value associated with t,
we simply compute

x = M ⊕
k
⊕

i=1

Table [hi],

and see if x is a correct encoding of some value v ∈ R. If
it is not, we declare that t 6∈ S. Because M is random,
so is x if t 6∈ S; therefore, it is a valid encoding only
with probability |R|/2q.

In order to make a mutable table, we use the fact
that each t ∈ S has a distinct matching value L, with a
succinct representation ` ∈ {1, . . . , k} (given hash (t)).
We use the above technique to make an immutable table
that stores for each t the value ` that can be used to
recover its distinct matching value L. We then store
any value associated with t in the Lth location of a
second table.

We give our final algorithms in Figures 2 and 3.

4 Analysis of the Algorithm

The most technically demanding aspect of our analysis
is in showing that for a random hash , and sufficiently
large k and m, the find match routine will with
high probability find (Π,τ) such that τ respects Π on
S. Once we have such an (Π,τ), the analysis of our
algorithms is straightforward.

Lemma 4.1. Assuming that find match succeeded in
create , then for t ∈ S, the value v returned by
lookup (t,Table) will be the most recent v assigned to
t by create or set value .

Proof. When the assignment for t is first stored in Table,
τ (t) generates a location L ∈ N(t), with a concise
representation ` ∈ {1, . . . , k}. By the construction,
Table1[L] is set so that

M ⊕
⊕

Z∈N(t)

Table1[Z]

is a valid representation for `. We claim that the
same value of ` (and hence L) is recovered by the
lookup and set value commands on input t. These
routines recover ` by the same formula; it remains to
verify that none of the operations causes this value to
change. We observe that the lookup and set value

commands do not alter Table1. The only indices of
Table1 subsequently altered by create are of the form
τ (t′), where t′ >Π t (since the ts are processed according
to Π). However, by the properties of τ , it follows that
τ (t′) 6∈ N(t), so these changes to Table1 cannot affect
the recovered value of `, and hence L.

Finally, we observe that all of the L are distinct:
Suppose that t1, t2 ∈ S and t1 6= t2. Assume without
loss of generality that t1 >Π t2. Then τ (t1) 6∈ N(t2),
but τ (t2) ∈ N(t2), so τ (t1) 6= τ (t2). It follows that
Table2(L) is only altered when create and set value

associate a value to t, as desired. ♦
Lemma 4.2. Suppose that Table is created using an
assignment with support S. Then if t 6∈ S,

Pr[lookup (t,Table) = ⊥] ≥ 1 − k

2q
,

where the probability is taken over the coins of create ,
assuming that hash is a truly random hash function.

Proof. Since t 6∈ S, the data structures were generated
completely independent of the values of

(h1, . . . , hk, M) = hash (t).

In particular, M is uniformly distributed over {0, 1}q,
independent of anything else. Hence, the value of

M ⊕
⊕

Z∈N(t)

Table1[Z]

find match (hash , S)[m, k] Find (Π,τ) for S,hash

1. E = ∅;Π = ∅
For ti ∈ S

If tweak (ti, S,hash) is defined
ιi = tweak (ti, S,hash)

E = E + ti
If E = ∅ Return (failure)

2. H = S \ E
Recursively compute (Π′,τ ′) = find match (hash , H)[m, k].
If find match (hash ,H)[m,k]=failure Return (failure)

3. Π = Π′

For ti ∈ E
Add ti to the end of Π (ie, make ti be the largest element in Π thus far)

Return (Π,τ = {ι1, . . . , ιn})
(where ιi is determined for ti ∈ E, in Step 1, and for ti ∈ H (via τ

′) in Step 2.)

Figure 1: Given hash and S, find match finds an ordering Π on S and a matching τ on S that respects
Π on S.

create (A = {(t1, v1) . . . , (tn, vn)})[m, k, q] (create a mutable table)

1. Uniformly choose hash : D → {1, . . . , m}k × {0, 1}q

S = {t1, . . . , tn}
Create Table1 to be an array of m elements of {0, 1}q

Create Table2 to be an array of m elements of R.
(the initial values for both tables are arbitrary)
Put (hash , m, k, q) into the “header” of Table1

(we assume that these values may be recovered from Table1)

2. (Π,τ) = find match (hash , S)[m, k]
If find match (hash , S)[m, k] = failure Goto Step 1

3. For t = Π[1], . . . , Π[n]
v = A(t) (ie, the value assigned by A to t)
(h1, . . . , hk, M) = hash (t)
L = τ (t); ` = ι(t) (ie, L = h`)

Table1 [L] = encode (`) ⊕ M ⊕
k
⊕

i = 1

i 6= `

Table1 [hi]

Table2 [L] = v

4. Return (Table = (Table1,Table2))

Figure 2: Given an assignment A and parameters m, k, q, create creates a mutable data structure
corresponding to A.

lookup (t,Table = (Table1,Table2))

1. Get (hash , m, k, q) from Table1

(h1, . . . , hk, M) = hash (t)

` = decode

(

M ⊕
k
⊕

i=1

Table1[hi]

)

2. If ` is defined
L = h`

Return (Table2[L])
Else Return (⊥)

set value (t, v,Table = (Table1,Table2))

1. Get (hash , m, k, q) from Table1

(h1, . . . , hk, M) = hash (t)

` = decode

(

M ⊕
k
⊕

i=1

Table1[hi]

)

2. If ` is defined
L = h`

Table2[L] = v
Return (success)

Else Return (failure)

Figure 3: lookup looks up t in Table = (Table1,Table2). set value sets the value associated with t ∈ S
to v in Table = (Table1,Table2). Note that for set value , t must be an element of S, as determined (by
A) in the original create invocation.

will be uniformly distributed over {0, 1}q. However,
there are only k out of 2q values encoding legitimate
values of ` ∈ {1, . . . , k}. ♦

Thus, in the “ideal” setting, where hash is truly
random, it suffices to set

q =

⌈

lg

(

k

ε

)⌉

.

to achieve a false positive rate of ε. Of course, hash

is generated heuristically, and is at best pseudorandom,
so this analysis must be taken in context. We note that
if hash is a cryptographically strong pseudorandom
function, then the behavior of the data structure using
hash will be computationally indistinguishable from
that of using a truly random hash ; however, functions
with provable pseudorandomness properties are likely
to be too complicated to be used in practice.

4.1 Analyzing find match It remains to show for
any S, with reasonable probability (constant probability
suffices for our purposes), find match will indeed find
a pair (Π,τ) such that τ respects Π on S. Recall
that find match works by finding an “easy” set E,
solving the problem recursively for H = S \E, and then
combining the solutions for E and H to get a solution for
S. To show that find match terminates, it suffices to
show that for any subset A of S, find match will find
a nonempty “easy” set, EA, implying that find match

always makes progress.
Let G be an n × m bipartite graph defined as

follows: On the left side are n vertices, L1, . . . , Ln ∈ L,
corresponding to elements of S. On the right side are m
vertices, R1, . . . , Rm ∈ R, corresponding to {1, . . . , m}.
Recall that hash defines for each ti ∈ S a set of k values

h1, . . . , hk ∈ {1, . . . , m}; G contains an edge between Li

and Rhj , for 1 ≤ j ≤ k. The following property is
crucial to our analysis:

Definition 4.1. Let G be as above. We say that G
has the singleton property if for all nonempty A ⊆ L,
there exists a vertex Ri ∈ R such that Ri is adjacent to
exactly one vertex in A.

We claim that if G has the singleton property, then
find match will never get stuck. This is because
whenever find match is being called on a subset A
of S, the resulting easy set will contain Ri, and hence
will be nonempty.

We next reduce the singleton property to a well-
studied (lossless) expansion property. Let N(v) be the
set of neighbors of a vertex v ∈ L, and for A ⊆ L, let
N(A) be the set of neigbors (in R) of elements of A.

Definition 4.2. Let G be as above. We say that G
has the lossless expansion property if for all nonempty
A ⊆ L, |N(A)| > k|A|/2.

Lemma 4.3. If G has the lossless expansion property,
then it has the singleton property.

Proof. Assume to the contrary that each node in N(A)
has degree at least 2. Then G graph has at least 2|N(A)|
edges. However, by the lossless expansion property,
N(A) > |A|k/2, so G has greater than |A|k edges, which
is a contradiction.

Now, choosing hash at random corresponds to
choosing G according to the following distribution:
Each v ∈ L selects (with replacement) k random vertices
in r1, . . . , rk ∈ R to be adjacent to. Such random graphs
are well studied; Lemma 4.4 follows from a standard
counting argument.

Lemma 4.4. Let G be chosen as above, with fixed k
and m = ckn. For any constant c > 1 + 1/

√
n

and n sufficiently large, G has the lossless expansion
probability with probability at least 2/3.

Proof. (Sketch) The probability of a counterexample is
at most

n
∑

s=1

(

n

s

)(

m

bks/2c

)(bks/2c
m

)ks

≈
n
∑

s=1

(en

s

)s
(

2ecn

s

)ks/2
(s

2cn

)ks

≈
n
∑

s=1

(

ek/2+1

2k/2s

)s
(s

cn

)ks/2

≤ o(1) +
∑

s≥
√

n

c−s

= o(1).

♦

5 Lower Bounds

We consider the case R = {⊥, 1, 2}. The set S splits into
the subsets A and B that map to 1 and 2, respectively.
It is natural to wonder whether a single set of hash
functions might be sufficient for all pairs A, B. In
other words, is deterministic Bloomier filtering possible
with only O(n) bits of storage. We provide a negative
answer to this question. Our lower bound also holds for
nonuniform algorithms; in other words, we may use an
arbitrary large amount of storage besides the Bloomier
filter tables as long as the encoding depends only on n
and N .

Theorem 5.1. Deterministic Bloomier filtering
requires Ω(n + log log N) bits of storage.

Proof. Let G be a graph with
(

N
2n

)(

2n
n

)

nodes, each one
corresponding to a distinct vector {−1, 0, 1}N with ex-
actly n coordinates equal to 1 and n others equal to
−1. Two nodes of G are adjacent if there exists at
least one coordinate position 1 ≤ i ≤ N such that their
corresponding vectors (x1, . . . , xN) and (y1, . . . , yN) sat-
isfy xiyi = −1. Intuitively, each node corresponds to a
choice of A (the 1 coordinates) and B (the −1 coordi-
nates). Two nodes are joined by an edge if the set A of
one node intersects the set B of the other one. Since the
table T is the only source of information about A, B, no
two adjacent nodes should correspond to the same table
assignment; therefore, the size m of the array is at least
log χ(G), where χ(G) is the chromatic number of G.

Theorem 5.1 follows directly from the lemma below.
♦

Lemma 5.1. The chromatic number of G is between
Ω(2n log N) and O(4n ln N).

Proof. Consider a minimum coloring of G. For any
vector w ∈ {−1, 1}n and any sequence of n indices
1 ≤ i1 < · · · < in ≤ N , there exists a color c such
that w = (zc

i1 , . . . , z
c
in

). To see why, consider a choice of
A, B that matches the coordinates of w at the positions
i1, . . . , in. If we turn all the minus ones to zeroes, the
resulting set of vectors zc is (N, n)-universal (meaning
that the restrictions of the vectors zc to any given
choice of n coordinate positions produce all possible 2n

patterns). By Kleitman and Spencer [16], the number of
such vectors is known to be Ω(2n log N). For the upper
bound, we use the existence of a (N, 2n)-universal set of
vectors of size O(n2n log N)—also established in [16]—
and turn all zeroes into minus ones. (Alternatively,
we can use Razborov’s bound on the size of separating
sets [25].) Each node is colored by picking a vector from
the universal set that matches the the ones and minus
ones of the vector associated with that node. ♦

Going back to the randomized model of Bloomier
filtering, we consider what happens if we attempt to
modify the set S itself. Again we give a negative
answer, but this time the universe size need be only
polynomially larger than n for the scheme to break
down. Intuitively, this shows that too much information
is lost in a linear bit size encoding of the function f to
allow for changes in the set S.

Theorem 5.2. If N = 2nO(1)

and the number m of
storage bits satisfies n ≤ m ≤ n

c log log(N/cn3) for some
large enough constant c, then Bloomier filtering cannot
support dynamic updates on the set S.

Proof. Again, we consider S to be the disjoint union
of of an n-set A (resp. B) mapping to 1 (resp. 2).
Fix the original B, and consider the assignments of the
table T corresponding to the various choices of A. With
each assignment of T is associated a certain family of
n-element sets A ⊆ D. Let F be the largest such family:
obviously, |F| ≥

(

N
n

)

2−m. Given an integer k > 0, let
Lk be the set of elements x ∈ U that belong to at least
k sets of |F|. It is easy to see that Lk cannot be too
small. Indeed, let Fk denote the subfamily consisting
of the sets of F that are subsets of Lk. Obviously,
|F \ Fk| ≤ (k − 1)N . The assumptions of the theorem
imply that N > cn3; thus, the choice of k = b|F|/2Nc
ensures that k > c and

|Fk| ≥ |F| − (k − 1)N >
1

2
|F| ≥

(

N

n

)

2−m−1.

Because
(

Lk

n

)

≥ |Fk|, it follows that

|Lk| ≥ 2−
m+1

n N.(5.1)

The expected number of sets in F that a random
element from D intersects is n

N |F|. Given an n-element
B ⊆ D, let FB denote the subfamily of F whose sets
intersect B. For a random B,

E
∑

{

|S| : S ∈ FB
}

≤ n3

N
|F|.

Let FB
c = F \ FB and LB

k =
⋃ {S ∩ Lk |S ∈ FB

c }.
Since each x ∈ Lk intersects at least k sets of F ,

E |LB
k | ≥ |Lk| −

n3

kN
|F| ≥ |Lk| − 3n3.

Once the new choice of B is revealed, the table gets
updated. The only information about A is encoded
in the previous table assignment. Thus the algorithm
cannot distinguish between any two sets A in FB

c . To
summarize, given a random B, the algorithm must
answer ‘in A’ for any search key in LB

k ; furthermore,

Prob
[

|LB
k | ≥ |Lk| − 6n3

]

≥ 1

2
.(5.2)

Next, we partition the family of n-element sets B
according to the assignment of T each one corresponds
to. This gives us at most 2m subfamilies {Gi}, with
∑

i |{Gi}| =
(

N
n

)

. If Mi denotes the union
⋃{S ∩

Lk |S ∈ Gi }, then given any new choice of B in Gi

the algorithm must answer ‘in B’ for any search key in
Mi. By our previous remark, therefore, it is imperative
that Mi should be disjoint from LB

k . We show that if
m is too small, then for a random choice of B both sets
intersect with high probability.

Fix a parameter λ = b|Lk|2−cm/nc. Let i(B) denote
the index j such that B ∈ Gj and let τ = d|Lk|n/2Ne.
Given a random B, by Chernoff’s bound, the probability
that |B ∩ Lk| < τ is o(1). On the other hand, the
conditional probability that |Mi(B)| ≤ λ, given that
|B ∩ Lk| ≥ τ , is at most

max
s≥τ

2m

(

λ

s

)

/

(|Lk|
s

)

= 2m

(

λ

τ

)

/

(|Lk|
τ

)

≤ 2m λτ

|Lk|τ
= o(1).

Therefore, the probability that |Mi(B)| > λ is 1 − o(1).
Since λ > 6n3, it follows that, with probability at least
1/2−o(1), |Mi(B)| intersects LB

k and the algorithm fails.
♦

References

[1] Bloom, B. Space/time tradeoffs in in hash coding with
allowable errors, CACM 13 (1970), 422–426.

[2] Broder, A., Mitzenmacher, M. Network applications of
Bloom filters: a survey, Allerton 2002.

[3] Brodnik, A., Munro, J.I., Membership in constant
time and almost minimum space, SIAM J. Comput.
28 (1999), 1628–1640.

[4] Buhrman, H., Miltersen, P.B., Radhakrishnan, J.,
Venkatesh, S. Are bitvectors optimal? Proc. 32th
STOC (2000), 449–458.

[5] Byers, J., Considine, J., Mitzenmacher, M. Informed
content delivery over adaptive overlay networks, Proc.
ACM SIGCOMM 2002, Vol. 32:4, Computer Commu-
nication Review (2002), 47–60.

[6] Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.
Randomness conductors and constant-degree expansion
beyond the degree /2 barrier, Proc. 34th STOC (2002),
659–668.

[7] Cohen, S., Matias, Y. Spectral Bloom filters, SIGMOD
2003.

[8] Cuena-Acuna, F.M., Peery, C., Martin, R.P., Nguyen,
T.D. PlanetP: Using gossiping to build content ad-
dressable peer-to-peer information sharing communi-
ties, Rutgers Technical Report DCS-TR-487, 2002.

[9] Estan, C., Varghese, G. New directions in traffic
measurement and accounting, Proc. ACM SIGCOMM
2002, Vol 32:4, Computer Communication Review
(2002), 323–336.

[10] Fan, L., Cao. P., Almeida, J., Broder, A. Summary
cache: a scalable wide-area web cache sharing protocol,
IEEE / ACM Transactions on Networking, 8 (2000),
281-293.

[11] Fang, M., Shivakumar, N., Garcia-Molina, H., Mot-
wani, R., Ullman. J. Computing iceberg queries effi-
ciently, Proc. 24th Int. Conf. on VLDB (1998), 299–
310.

[12] Feng, W.-C., Shin, K.G., Kandlur, D., Saha, D.
Stochastic fair blue: A queue management algorithm
for enforcing fairness, INFOCOM ’01 (2001), 1520–
1529.

[13] Fredman, M.L., Komlos, J., Szemeredi, E. Storing a
sparse table with O(1) worst case access time, J. ACM
31 (1984), 538–544.

[14] Gremillion, L.L. Designing a Bloom Filter for differen-
tial file access, Comm. ACM 25 (1982), 600–604.

[15] Hsiao, P. Geographical region summary service for ge-
ographical routing, Mobile Computing and Communi-
cations Review 5 (2001), 25–39.

[16] Kleitman, D.J., Spencer, J. Families of k-independent
sets, Discrete Math 6 (1973), 255–262.

[17] Ledlie, J., Taylor, J., Serban, L., Seltzer, M. Self-
organization in peer-to-peer systems, Proc. 10th Eu-
ropean SIGOPS Workshop, September 2002.

[18] Li, Z., Ross, K.A. PERF join: an alternative to two-
way semijoin and bloomjoin CIKM ’95, Proc. 1995 In-

ternational Conference on Information and Knowledge
Management, 137–144, November 1995.

[19] Luby, M. LT codes, Proc. 43rd Annu. IEEE Symp.
Foundat. Comput. Sci., 2002.

[20] Mackert, L., Lohman, G. R* optimizer validation and
performance for distributed queries, Proc. Int’l. Conf.
on VLDB (1986), 149–159.

[21] Manber, U., Wu, S. An algorithm for approximate
membership checking with application to password se-
curity, Information Processing Letters 50 (1994), 191–
197.

[22] McIlroy, M.D. Development of a spelling list, IEEE
Trans. on Communications, COM-30 (1982), 91–99.

[23] Mitzenmacher, M. Compressed Bloom filters, IEEE
Transactions on Networking 10 (2002).

[24] Mullin, J.K. Optimal semijoins for distributed database
systems, IEEE Transactions on Software Engineering
16 (1990).

[25] Razborov, A.A. Applications of matrix methods to the
theory of lower bounds in computational complexity,
Combinatorica 10 (1990), 81–93.

[26] Rhea, S.C., Kubiatowicz, J. Probabilistic location and
routing, Proceedings of INFOCOM 2002.

[27] Rousskov, A., Wessels, D. Cache digests, Computer
Networks and ISDN Systems, 30(22-23), 2155-2168,
1998.

[28] Sipser, M., Spielman, D.A. Expander codes, IEEE
Trans. Inform. Theory 42 (1996), 1710–1722.

[29] Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones,
C.E., Tchakountio, F., Kent, S.T., Strayer W.T. Hash-
based IP traceback, Proc. ACM SIGCOMM 2001, Vol.
31:4, Computer Communication Review, 3–14, August
2001.

[30] Whitaker, A., Wetherall, D. Forwarding without loops
in Icarus, Proc. 5th OPENARCH (2002), 63–75.

