
On Edge Detection on Surfaces

Michael Kolomenkin
Technion

michkol@tx.technion.ac.il

Ilan Shimshoni
University of Haifa

ishimshoni@mis.haifa.ac.il

Ayellet Tal
Technion

ayellet@ee.technion.ac.il

Abstract

Edge detection in images has been a fundamental prob-
lem in computer vision from its early days. Edge detection
on surfaces, on the other hand, has received much less at-
tention. The most common edges on surfaces are ridges
and valleys, used for processing range images in computer
vision, as well as for non-photorealistic rendering in com-
puter graphics. We propose a new type of edges on surfaces,
termed relief edges. Intuitively, the surface can be consid-
ered as an unknown smooth manifold, on top of which a
local height image is placed. Relief edges are the edges of
this local image. We show how to compute these edges from
the local differential geometric surface properties, by fitting
a local edge model to the surface. We also show how the
underlying manifold and the local images can be roughly
approximated and exploited in the edge detection process.
Last but not least, we demonstrate the application of relief
edges to artifact illustration in archaeology.

1. Introduction
Edges in images provide low-level cues, which can be

utilized in higher level processes, such as object detection,
recognition, and classification, as well as motion detection,
image matching, and tracking [3, 18]. They are more re-
silient to image formation parameters than the image in-
tensity values, while containing less information than the
whole image.

Edges on surfaces can be used in a similar way [2, 9].
While edges in images can have a variety of causes, such as
depth discontinuities, textures, shadows, and other lighting
effects that might hinder their use for higher level processes,
edges on surfaces are the outcome of the surface geometry
only (see Figure 1). This paper focuses on the problem of
accurately detecting edges on surfaces.

Many of the existing algorithms detect ridges and val-
leys, which are the extrema of principal curvatures [12, 19,
22]. Other types of curves are parabolic curves, which par-
tition the surface into hyperbolic and elliptic regions, and
zero-mean curvature curves, which classify sub-surfaces

(a) The scanned object (b) Ridges & valleys

(c) Demarcating curves (d) Relief edges

Figure 1. A seal from the early Iron Age, 11th century BCE

into concave and convex shapes [13]. They correspond to
the zeros of the Gaussian and mean curvature, respectively.
Finally, demarcating curves are the zero-crossings of the
curvature in the curvature gradient direction [14]. While
portraying important object properties, the aforementioned
curves sometimes fail to capture relevant features, such as
weak edges, highly curved edges, and noisy surfaces. As
shown in [5], no specific curve fits all applications.

This paper proposes a novel type of surface edges,
termed relief edges, which addresses these limitations. Con-
sider a surface as an unknown smooth manifold (base), on
top of which a local height function is defined (e.g., a re-
lief). The function can be considered locally as a standard
image defined on the tangent plane of the base. Relief edges
are the edges of this local image, i.e., a surface point p is a
relief edge point if it is an edge point of this image.

We demonstrate that relief edges are smoother and more
accurate than the other types of curves. They are better

1

suited for certain surfaces, such as reliefs prevalent in ar-
chaeological artifacts.

The main contributions of the paper is thus threefold.
First, we extend the definition of edges from functions on
a plane to functions on an unknown manifold. Second, we
describe an algorithm that extracts these edges. Finally, we
demonstrate the utility of these edges in archaeological ar-
tifact illustration.

Algorithm overview: Relief edges are defined as the zero
crossings of the normal curvature in the direction perpen-
dicular to the edge. Initially, the edge direction is estimated
for every point by fitting a step edge model to the surface.
Given the edge directions, the precise edge localization is
obtained (Section 3).

The quality of the estimation of the edge directions is
further improved (Section 4). First, a rough estimation of
the base normal is employed to limit the range of possible
edge directions. Second, the edge directions are smoothed,
while maintaining the properties of relief edges.

2. Related work
The paper proposes an extension of edge detection in im-

ages to arbitrary 2D surfaces. Hence, this section presents
related work both on images and on surfaces. It does not
describe volumetric edges [26] that are mere extensions of
2D edges to a higher dimension.

Edge detection in images: Edge detection has been ex-
tensively investigated [8]. Our work is most closely related
to gradient-based edge detection, which can be generally
classified into two classes.

The first class defines edges as the maximum of a
smoothed first derivative or zero crossings of a smoothed
second derivative. These methods differ in the manner in
which they smooth and the way the derivatives are calcu-
lated. Examples include the maximum of the derivative of
the Gaussian filter [4], the zero crossings of the Laplacian
of the Gaussian [16], and the cubic spline filter [24].

Other methods attempt to implicitly fit the data to an
edge model, such as a parametric-feature model [1] or a 1D
polynomial [20]. The fitting determines both the orientation
and the strength of the edge. These algorithms strongly rely
on the edge model and thus might fail when the underlying
assumption of the edge is unsuitable.

Our approach most resembles [17], which combines both
types of edge detection algorithms. Canny edge detection is
used for the initial edge estimation, followed by verification
that is based on the correlation of the data with an edge tem-
plate. This significantly increases the ability of the detector
to eliminate spurious edges and deal with weak edges.

Edge detection on surfaces: There are two classes of
edges on surfaces. The first includes ridges and val-

leys [12, 19, 22], which are the loci of points at which
the curvature obtains extrema along the principal direction.
They occur at surface normal discontinuities. Ridges and
valleys portray important object properties. However, illus-
trating the object only by valleys (or ridges) is often insuffi-
cient, since they do not always convey its structure. Draw-
ing both will overload the image with too many lines. It
should be noted that relief edges do not compete with ridges
and valleys, but rather complement them, since they portray
locations with different geometric properties.

The second class includes curves that are defined as the
zero crossings of some function of curvature. Examples
include parabolic lines (zeros of Gaussian curvature) [13],
curves of zero-mean curvature [13], and demarcating curves
(zeros of the normal curvature in the curvature gradient di-
rection) [14]. Parabolic curves are demonstrated to be noisy
and unreliable [6, 14]. The curves of zero-mean curvature
depend on the curvatures both along the edge and in the di-
rection perpendicular to it; hence their error is high when
the curvature in the edge direction is large. Both types of
curves are isotropic operators and suffer from similar flaws
as isotropic edges in images (e.g., Laplacian), such as poor
behavior at corners and inexact edge localization [8]. De-
marcating curves might be noisy when the curvature along
the edge varies. The relief edges proposed in this paper be-
long to this class and address these problems.

Other kinds of curves are view dependent, i.e., they
change when the viewpoint changes [6, 11, 25]. These
curves are often aesthetically pleasing and thus are applica-
ble for non-photorealistic rendering in computer graphics.

3. Relief edges
Given a surface S(u, v) : R2 → R3, we assume that it

consists of a smooth base surface B(u, v) : R2 → R3 and a
function (local image) I(u, v) : R2 → R defined on B:

S(u, v) = B(u, v) + n̄(u, v)I(u, v), (1)

where u and v are the coordinates of a planar parametriza-
tion and n̄(u, v) : R2 → S2 is the normal of B (S2 is the
unit sphere). We assume that B is locally a manifold and
that its curvature has a smaller value than the curvature of I
(Figure 2). The decoupling of S into B and I is unknown.
Note that in the special case of an image, B is the image
plane, n̄(u, v) is constant, and I is the image intensity.

The goal is to detect edges on S that correspond to edges
on the local images I . We consider the common definition
of edges in images, as points at which the derivative obtains
a maximum in the gradient direction. We will show that the
edges can be detected without accurately estimating B or
its normal n̄ – a rough estimate suffices.

In the following we first provide the necessary mathe-
matical background and then describe the computation of
the relief edges.

Figure 2. The surface S (magenta) is composed of a smooth base
B (black) and a function I (blue). Function I at point p can be
locally viewed as an image defined on the tangent plane (orange)
of the base. Point p is a relief edge point if it is an edge point of
this image. The normal np (brown) is the normal of S and n̄p

(green) is the normal of B corresponding to p.

3.1. Background

Before defining the curves, we review some definitions
in differential geometry [7]. The normal section of a surface
at a point p in a tangent direction v is the intersection of the
surface with the plane defined by v and the normal to the
surface at p. The normal curvature at point p in direction
v is the curvature of the normal section at p.

For a smooth surface, the normal curvature in direction
v is

κ(v) = vT IIv. (2)

The symmetric matrix II is the second fundamental form:

II =
[
κ1 0
0 κ2

]
, (3)

where κ1 and κ2 are the principal curvatures.
The derivatives of the curvature are defined by a 2×2×2

tensor with four unique numbers:

C = (∂uII; ∂vII) =
[(

a1 a2

a2 a3

)
;
(
a2 a3

a3 a4

)]
,

(4)
where ∂u and ∂v are the derivatives along the principal di-
rections. Multiplying C from its three sides by a direction
vector v, Cijkvivjvk gives a scalar, which is the derivative
in direction v of the curvature in this direction.

The Monge form is a polynomial approximation of a sur-
face S on the tangent plane at a given point, expressed as:

S(v) =
1
2
vT IIv +

1
2
Cijkvivjvk = (5)

1
2 (κ1u

2 + κ2v
2) + 1

6 (a1u
3 + 3a2u

2v + 3a3uv
2 + a4v

3),

where u and v are the coordinates of v in the princi-
pal directions. We will be using the Monge form to lo-
cally estimate the surface, utilizing the state-of-the-art tech-
niques developed for estimating the curvature and its deriva-
tive [10, 15, 23].

3.2. Computing relief edges

Relief edges are computed in two steps: estimating the
edge direction at every point and determining the relief edge
points using this estimation. We elaborate on these steps
below.

Estimating the edge direction: The edge direction is es-
timated by fitting an edge model that best approximates the
surface locally. Below we first describe our edge model and
then the process of fitting it to the surface.

We utilize the commonly-used smoothed step edge to
model relief edges. Since B is unknown, all our compu-
tations are performed with respect to the local tangent plane
of S at p, where the principal directions define the coordi-
nate system on this plane. To locally approximate surface
S, we use the Monge form polynomial (Equation 5). A
smoothed step edge E passing through point p in direction
(− sin(θ), cos(θ)) ≡ (−s, c) can be approximated by a cu-
bic polynomial as:

E(θ, α, u, v) =
1
6
α(cu+ sv)3 = (6)

=
1
6
α(c3u3 + 3c2su2v + 3cs2uv2 + s3v3),

where α is the edge intensity, and u and v are the local coor-
dinates. (Note that the other coefficients of the polynomial
are zero because the step edge is constant along its direction
and antisymmetric in the perpendicular direction.)

Using polar coordinates: (u, v) = (ρ cos(φ), ρ sin(φ))
≡ (ρc̃, ρs̃), Equations 5 and 6 can be rewritten as:

S =
ρ2

2
(κ1c̃

2 + κ2s̃
2) +

ρ3

6
(a1c̃

3 + 3a2c̃
2s̃+ 3a3c̃s̃

2 + a4s̃
3),

E(θ, α) ≡ αẼ(θ) = α
ρ3

6
(c3c̃3 + 3c2sc̃2s̃+ 3cs2c̃s̃2 + s3s̃3).

We define the orientation of the edge as the direction that
best fits the edge model. In other words, we seek (θ̂, α̂) that
minimize the difference between E(θ̂, α̂) and S. We define
the approximation error as:

Err(θ, α) =
∫
‖E(θ, α)− S‖2ρdρdφ, (7)

where the integral is defined over a neighborhood of p and
ρ is the Jacobian of the polar coordinates substitution. The
optimal edge is determined by (θ̂, α̂) = arg min Err(θ, α).

We reformulate Equation 7 in terms of vectors in the
polynomial space of cos and sin. This formulation allows
us to represent our optimization problem as the problem of
finding the roots of a third-order polynomial of sin2(θ), as
explained below.

Let the basis vectors and their inner product be:

x1 = c̃3, x2 = c̃2s̃, x3 = c̃s̃2, x4 = s̃3, x5 = c̃2, x6 = s̃2,

〈xi,xj〉 =
∫ 2π

φ=0

xixjdφ. (8)

Surface S, the step edge E, and the error Err(θ, α) can be
rewritten in terms of the basis vectors xi as:

S =
ρ3

6
(a1x1+3a2x2+3a3x3+a4x4)+

ρ2

2
(κ1x5+κ2x6)

=
ρ3

6
S1 +

ρ2

2
S2,

Ẽ(θ) =
ρ3

6
(c3x1 + 3c2sx2 + 3cs2x3 + s3x4) =

ρ3

6
E1(θ),

Err(θ, α) =
∫
ρ

‖αẼ(θ)− S‖2ρdρ, (9)

where the norm is calculated according to the inner product
in Equation 8.

Err(θ, α) = (10)
α2
∫
‖Ẽ‖2(θ)dρ+

∫
‖S‖2dρ− 2α

∫
〈Ẽ(θ), S〉dρ =

= α2‖E1‖2
∫
ρρ

6

36dρ+
∫
‖S‖2dρ−

−2α〈E1, S1〉
∫
ρρ

6

36dρ− 2α〈E1, S2〉
∫
ρρ

4

4 dρ.

Appendix A proves that 〈E1, S2〉 = 0. The value of
‖S‖2 is independent on θ and α and can be removed. There-
fore, the optimal parameters need to minimize:

(θ̂, α̂) = arg min (α2‖E1‖2 − 2α〈E1, S1〉)
∫
ρ
ρ6

36
dρ.

(11)
It is interesting to note that by Equation 11, θ̂ and α̂ are in-
dependent on the size of the region on which the integral
is computed. Since the magnitude ‖E1‖ of the edge is in-
dependent of its direction θ, θ̂ should maximize the edge–
surface correlation 〈E1(θ), S1〉:

θ̂ = arg max〈E1(θ), S1〉. (12)

In Appendix A we show that:

θ̂ = arg max(c3C1 + c2sC2 + cs2C3 + s3C4), (13)

where the Cis are scalars depending on the parameters of
the curvature derivative tensor.

After 〈E1(θ̂), S1〉 has been computed, α̂ is:

α̂ =
〈E1(θ̂), S1〉
‖E1(θ̂)‖2

. (14)

Equations 13 and 14 determine the orientation and the
intensity of the best fitting edge. In [14], it is shown that
the maxima of an equation of the type of Equation 13 cor-
respond to the roots of a cubic polynomial in sin2(θ), and
thus the polynomial may have up to three maxima. Multiple
maxima appear when there are several step edges that can
locally fit the surface. Section 4 describes our method for
choosing the appropriate one.

Determining the relief edges: The previous step com-
puted θ̂ and α̂ for every point on the surface. Our goal is
to find the edge points, which are the loci of points where
the gradient obtains maximum in the gradient direction.

In [24] it is shown that the maximum of the gradient in
the gradient direction corresponds to the zeros of the nor-
mal curvature in this direction. For a smoothed step edge,
the gradient direction is perpendicular to the edge direction.
Therefore, the loci of the relief edges are the zero crossings
of the curvature in the direction perpendicular to the edge
direction θ̂.

We can now formally define a relief edge point. Let
gp = [cos(θ̂), sin(θ̂)] be a vector perpendicular to the edge
direction at point p, and let Gp ≡ gTp IIgp be the value of
the normal curvature in the gradient direction at p.

Definition 3.1. Point p is a relief edge point iff Gp = 0.

The algorithm is applied to meshes. To achieve sub-
vertex accuracy, points on the mesh edges satisfying the
constraint are found. We use the method in [14, 22], which
accurately estimates the zero curves of a function on a mesh,
given the function values on the vertices.

In the implementation, we threshold the error defined in
Equation 7, normalized by ||S||2, which reflects the dissim-
ilarity of the surface to the edge model. This removes points
that satisfy Definition 3.1, but do not resemble step edges.

4. Enhancing relief edges
The algorithm proposed in the previous section usually

produces high quality edges, as can be seen in Figure 1.
However, when the surface is very noisy or deviates from
the step edge model, the resulting curves might be noisy or
incorrect, as illustrated in Figure 3. This section describes
how to handle these cases, by utilizing the relief surface
model illustrated in Figure 2.

Choosing edge orientations: The orientation obtained by
Equation 13 is optimal for edges well-approximated by the
step model. Deviations from the model, such as when sev-
eral maxima exist in Equation 13, might lead to erroneous
orientations. Though these deviations are rare, we present a
method that aids in choosing the correct orientation.

The method uses a rough estimation of B’s normal n̄p to
determine the possible orientations. Obviously, if n̄p were
known, the edge orientation could be computed precisely,
by using an edge detector on the local image (the plane per-
pendicular to the normal). Though our normal’s rough esti-
mation is insufficient for a precise calculation of the edge,
it suffices to limit the range of possible orientations.

To do that, we modify the function maximizing Equa-
tion 13. Let fcorr(θ) = c3C1 + c2sC2 + cs2C3 + s3C4 be
the original correlation of the edge and the surface and let
fbase(θ) be a function that limits the range of orientations,

(a) Relief edges (b) Enhanced relief edges
Figure 3. A late Hellenistic lamp (150-50 BCE): top, full object;
bottom, zoom in. Note the closing of the outline of Cupid’s foot
due to correcting the edge orientation and the smooth edges result-
ing from the smoothing procedure.

using the estimated base normal (defined below). We define
the modified function as:

fmod(θ) = fcorr(θ) · fbase(θ). (15)

If n̄p were known, the edge direction θbase could be cal-
culated as the projection of n̄p on the local tangent plane.
Then, fbase(θ) = δ(θ − θbase), where δ is the Kronecker
delta function. Since n̄p is known only approximately, we
use:

fbase(θ) = rw(θ − θbase), (16)

where

rw(x) =
{

1 ‖x‖ ≤ w
0 ‖x‖ > w.

(17)

Below we describe how to calculate the rough estimation
of n̄p and the width w.

To calculate n̄p, the surface (S) normals are smoothed at
the neighborhood of the point. This neighborhood should be
sufficiently large, so as to reduce the influence of the local
features on the estimated normal. Our approach utilizes an
adaptive Gaussian filter, similarly to [21]. However, since
the σ of the smoothing Gaussian in [21] estimates the size
of the local feature, it is unsuitable for estimating the base
surface. We therefore use a three times larger σ . This en-
ables us to average the normals of several features and thus
achieve a better approximation.

To calculate width w, we first compute the directions
θbase and θ̂ (Equation 13) for all the vertices. Then, w is
set to the standard deviation of the histogram of the error

‖θ̂ − θbase‖. Assuming that most of the values of θ̂ are cor-
rect, w is statistically meaningful. When the edge is weak,
its gradient estimation is unreliable, and thus it is removed,
by setting fbase(θ) ≡ 1. In the implementation, weak edges
are characterized by a small angle between the base normal
(∠(np, n̄p) ≤ 11◦). The value 1/(np · n̄p) is proportional
to the magnitude of the local image gradient. This measure
is most commonly used to threshold edges.

Since we are utilizing two thresholds – one that measures
the similarity to the edge model (Section 3.2) and one that
measures the edge strength, we can combine them to pro-
duce better results using a two-dimensional hysteresis.

Edge smoothing: While the method described above cap-
tures the features correctly, scanning noise and edge di-
rection estimation errors may cause the edges to become
jagged. In this case, smoothing should be applied. While
smoothing could be applied to the edges themselves, this
correction would not relate to the geometry of the surface.
Therefore, a smoothing scheme which indirectly smoothes
the edges is proposed.

This is done by first smoothing the function Gp, which
is defined at every vertex, yielding Ĝp. Then, we compute
the updated edge directions ĝp that satisfy:

Ĝp = ĝTp IIĝp. (18)

When such a direction does not exist (e.g., when Ĝp is re-
quired to have a negative value at a point with two positive
principal curvatures), the direction that minimizes the error
‖Gp − Ĝp‖ is chosen. Finally, Gp is recalculated accord-
ing to ĝp.

We observed that good results are achieved when simple
Gaussian smoothing is used to smooth Gp. The smoothing
parameter can be controlled by the user. In all our experi-
ments, the σ of the Gaussian is equal to 0.8 of the median
edge length of the mesh.

5. Results
This section shows results of relief edges and compares

them to other major edge families. While relief edges can
be used on any object, as shown in Figure 4, we focus on the
challenging archaeological artifacts, which are noisy and
contain edges which are difficult to detect.

Analysis of archaeological artifacts such as ceramic ves-
sels, stone tools, coins, seals and figurines is a major source
of our knowledge about the past. Traditionally, archaeolog-
ical artifacts are drawn by hand and printed in the reports of
archaeological excavations. These are produced manually
by artists, in an extremely time-consuming and expensive
procedure, prone to inaccuracies and biases. The main pur-
pose of these drawings is to depict the features of the 3D
object so that the archaeologist can visualize and compare

The object Relief edges
Figure 4. Elephant. Note that the relief edges are shown together
with the surface contours.

artifacts. Thus, all the major features (edges) have to be de-
tected. When, in the near future, digitization of the findings
by high resolution scanners will replace the 2D representa-
tions, accurate, automatic curve drawing will be needed.

Figures 5–8 show some results. Figures 5–6 demonstrate
the importance of choosing the correct orientation of the
edges. Since the edges pass on almost flat surfaces, the base
normal can be calculated accurately and aid in estimating
the edge direction. Figure 6 is a difficult object, due to the
high level of noise. Locally true edges and noisy surfaces
look similar and therefore demarcating curves fail to differ-
entiate between them. Relief edges on the other hand ex-
ploit the approximated base for estimating the local image
gradient. In addition, relief edges perform better at places
where the curve curvature is not constant.

Figures 7–8 demonstrate models having non-planar
bases. In particular, the base surface of Figure 8 is quite
complex. As can be seen, relief edges outperform the other
types of edges.

The algorithm was implemented in C++ using the
trimesh2 library by S. Rusinkiewicz. On a 2.66 GHz In-
tel Core 2 Duo PC all the steps of the algorithm run in real
time except the estimation of the base normal which cur-
rently takes 16 seconds for a surface of 50K vertices and 55
seconds for a surface of 140K vertices.

6. Conclusion
This paper has extended the definition of edges from im-

ages to surfaces, for which image edges are a special case.
These edges, termed relief curves, use local intrinsic surface
properties together with a rough approximation of the base
surface to produce superior results.

The results show that relief edges manage to capture
the 3D features. They have been utilized to draw edges
on scanned objects for artifact illustration in archaeology.
In the future we intend to utilize these edges for shape-
matching applications, which is an important challenge in
archaeology, as well as in computer vision in general.

Acknowledgements: This research was supported in part
by the Israel Science Foundation (ISF) 628/08, the Ollen-
dorff foundation, and the Joint Technion University of Haifa
Research Foundation. We thank Dr. A. Gilboa and the Zin-
man Institute of Archaeology at the University of Haifa.

References
[1] S. Baker, S. Nayar, and H. Murase. Parametric feature detec-

tion. Int. J. of Comp. Vis., 27(1):27–50, 1998.
[2] A. Bartoli and P. Sturm. The 3D line motion matrix and

alignment of line reconstructions. Int. J. of Comp. Vis.,
57(3):159–178, 2004.

(a) The object (b) Ridges & valleys

(c) Demarcating curves (d) Relief edges
Figure 5. Hellenistic stamped amphora handle from the first century BCE. While the text is hardly legible in the 3D object, relief edges
make most of the letters visible and improve on the alternatives. The text reads MAPΣΥA APTAMITI◦.

(a) The object (b) Ridges & valleys

(c) Demarcating curves (d) Relief edges
Figure 6. Hellenistic stamped amphora handle from the first century BCE. This is an example of a noisy surface. Only relief edges manage
distinguish between the edges and the noise utilizing the approximated base surface.

(a) The object (b) Ridges & valleys

(c) Demarcating curves (d) Relief edges
Figure 7. Hellenistic vase. The figures are well-depicted with long meaningful edges. Note especially the quality of the recovered arms
where the curvature of the edges change considerably .

[3] H. Bay, V. Ferraris, and L. Van Gool. Wide-baseline stereo
matching with line segments. IEEE Conf. on Comp. Vis. and
Patt. Rec., 1:329 – 336, 2005.

[4] J. Canny. A computational approach to edge detection. IEEE
Trans. on Patt. Anal. and Mach. Intell., 8(6):679–698, 1986.

[5] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros,
A. Finkelstein, T. Funkhouser, and S. Rusinkiewicz. Where
do people draw lines? ACM Trans. on Graph., 27(3):1–11,
2008.

[6] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. San-
tella. Suggestive contours for conveying shape. ACM Trans.
on Graph., 22(3):848–855, 2003.

[7] M. P. Do Carmo. Differential geometry of curves and sur-
faces. Prentice-Hall, 1976.

[8] D. A. Forsyth and J. Ponce. Computer Vision – A Modern
Approach. Prentice-Hall, 2002.

[9] A. Guéziec and N. Ayache. Smoothing and matching of 3D
space curves. Int. J. of Comp. Vis., 12(1):79–104, 1994.

(a) The object (b) Ridges & valleys (c) Demarcating curves (d) Relief edges
Figure 8. Figurine from the Persian period (4th c. BCE). The relief edges are continuous and smoother than the alternatives. Noisy edges
have been successfully removed.

[10] E. Hameiri and I. Shimshoni. Estimating the principal curva-
tures and the Darboux frame from real 3D range data. IEEE
SMC B, 33(4):626–637, August 2003.

[11] T. Judd, F. Durand, and E. Adelson. Apparent ridges for line
drawing. ACM Trans. on Graph., 22(3):19:1 – 19:7, 2007.

[12] D. Katsoulas and A. Werber. Edge detection in range images
of piled box-like objects. ICPR, 2:80–84, 2004.

[13] J. J. Koenderink. Solid Shape. MIT Press, 1990.
[14] M. Kolomenkin, I. Shimshoni, and A. Tal. Demarcating

curves for shape illustration. ACM Trans. on Graph., SIG-
GRAPH Asia, 27(4), 2008.

[15] T. Langer, A. Belyaev, and H. Seidel. Exact and interpolatory
quadratures for curvature tensor estimation. Comp. Aided
Geometric Design, 24(8-9):443–463, 2007.

[16] D. Marr and E. C. Hildreth. Theory of edge detection. Proc.
of the Royal Society of London, B(207):187–217, 1980.

[17] P. Meer and B. Georgescu. Edge detection with embedded
confidence. IEEE PAMI, 23(12):1351–1365, 2001.

[18] K. Mikolajczyk, A. Zisserman, and C. Schmid. Shape recog-
nition with edge-based features. British Mach. Vis. Conf.,
2:779 – 788, 2003.

[19] O. Monga, R. Deriche, G. Malandain, and J. P. Cocquerez.
Recursive filtering and edge tracking: two primary tools for
3D edge detection. IVC, 9(4):203–214, 1991.

[20] V. S. Nalwa and T. O. Binford. On detecting edges. IEEE
Trans. on Patt. Anal. and Mach. Intell., 8(6):699–714, 1986.

[21] Y. Ohtake, A. Belyaev, and H. Seidel. Mesh smoothing by
adaptive and anisotropic gaussian filter applied to mesh nor-
mals. Vis., Model., and Visual., pages 203–210, 2002.

[22] Y. Ohtake, A. Belyaev, and H. Seidel. Ridge-valley lines on
meshes via implicit surface fitting. ACM Trans. on Graph.,
23(3):609–612, 2004.

[23] S. Rusinkiewicz. Estimating curvatures and their derivatives
on triangle meshes. In 3D Data Processing, Visualization
and Transmission, pages 486–493, 2004.

[24] V. Torre and T. Poggio. On edge detection. IEEE Trans. on
Patt. Anal. and Mach. Intell., 8:147–163, 1986.

[25] X. Xuexiang, H. Ying, T. Feng, and S. Hock-Soon. An ef-
fective illustrative visualization framework based on photic
extremum lines (PELs). IEEE Trans. on Vis. and Comp.
Graph., 13(6):1328–1335, 2007.

[26] S. Zucker and R. Hummel. A three-dimensional edge opera-
tor. IEEE PAMI, 3(3):324–331, 1981.

Appendix A: Inner products of polynomials
In Equation 8, the inner products of the basis functions

need to be computed. When the exponent of sin(φ) or
cos(φ) is odd, the inner product is zero. Otherwise, the
inner product is defined by the Euler beta function:

B(x, y) = 2
∫ π/2

φ=0

(sin(φ))2x−1(cos(φ))2y−1dφ.

Thus, 〈x1,x1〉 = 〈x4,x4〉 = 5
8π ≡ A,

〈x2,x2〉 = 〈x3,x3〉 = 〈x1,x3〉 = 〈x2,x4〉 =
π

8
≡ B. (19)

We can now calculate the inner products in Section 3.2:

〈E1, S2〉 = (20)
〈c3x1 + 3c2sx2 + 3cs2x3 + s3x4, k1x5 + k2x6〉 = 0,

‖E1‖2 = ‖c3x1 + 3c2sx2 + 3cs2x3 + s3x4‖2 =
= c6〈x1,x1〉+ 9c4s2〈x2,x2〉+ 9c2s4〈x3,x3〉
+s6〈x4,x4〉+ 6c4s2〈x1,x3〉+ 6c2s4〈x2,x4〉

= · · · = ((1− 3c2 + 3c4))A+ 3A(c2 − c4) = A,

〈E1, S1〉 = c3a1〈x1,x1〉+ 9c2sa2〈x2,x2〉+
+9cs2a3〈x3,x3〉+ s3a4〈x4,x4〉+

+3c3a3〈x1,x3〉+ 3cs2a1〈x1,x3〉
+3s3a2〈x2,x4〉+ 3c2sa4〈x2,x4〉 =

= c3(a1A+ 3a3B) + 3c2s(3a2B + a4B)
+3cs2(3a3B + a1B) + s3(a4A+ 3a2B) =

= c3C1 + 3c2sC2 + 3cs2C3 + s3C4,

where the Cis are scalars depending on the parameters of
the curvature derivative tensor (Equation 13).

